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Summary. Three basic theorems in differential calculus of one variable functions are
presented: Rolle Theorem, Lagrange Theorem and Cauchy Theorem. There are also direct
conclusions.

MML Identifier: ROLLE.

WWW: http://mizar.org/JFM/Vol2/rolle.html

The articles [9], [11], [1], [10], [2], [12], [3], [4], [5], [8], [6], and [7] provide the notation and
terminology for this paper.

We use the following convention:g, r, s, p, t, x, x0, x1 denote real numbers andf , f1, f2 denote
partial functions fromR to R.

We now state a number of propositions:

(1) Let givenp, g. Supposep < g. Let given f . Supposef is continuous on[p,g] and f (p) =
f (g) and f is differentiable on]p,g[. Then there existsx0 such thatx0 ∈ ]p,g[ and f ′(x0) = 0.

(2) Let givenx, t. Suppose 0< t. Let given f . Supposef is continuous on[x,x+ t] and
f (x) = f (x+ t) and f is differentiable on]x,x+ t[. Then there existss such that 0< s and
s< 1 and f ′(x+s· t) = 0.

(3) Let givenp, g. Supposep < g. Let given f . Supposef is continuous on[p,g] and differ-

entiable on]p,g[. Then there existsx0 such thatx0 ∈ ]p,g[ and f ′(x0) = f (g)− f (p)
g−p .

(4) Let givenx, t. Suppose 0< t. Let given f . Supposef is continuous on[x,x+ t] and
differentiable on]x,x+ t[. Then there existss such that 0< s and s < 1 and f (x+ t) =
f (x)+ t · f ′(x+s· t).

(5) Let givenp, g. Supposep < g. Let given f1, f2. Supposef1 is continuous on[p,g] and
differentiable on]p,g[ and f2 is continuous on[p,g] and differentiable on]p,g[. Then there
existsx0 such thatx0 ∈ ]p,g[ and( f1(g)− f1(p)) · f2′(x0) = ( f2(g)− f2(p)) · f1′(x0).

(6) Let givenx, t. Suppose 0< t. Let given f1, f2. Suppose that

(i) f1 is continuous on[x,x+ t] and differentiable on]x,x+ t[,

(ii) f2 is continuous on[x,x+ t] and differentiable on]x,x+ t[, and

(iii) for every x1 such thatx1 ∈ ]x,x+ t[ holds f2′(x1) 6= 0.

Then there existss such that 0< s ands< 1 and f1(x+t)− f1(x)
f2(x+t)− f2(x) = f1

′(x+s·t)
f2
′(x+s·t) .
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(7) Let givenp, g. Supposep < g. Let given f . Supposef is differentiable on]p,g[ and for
everyx such thatx∈ ]p,g[ holds f ′(x) = 0. Then f is a constant on]p,g[.

(8) Let givenp, g. Supposep < g. Let given f1, f2. Supposef1 is differentiable on]p,g[ and
f2 is differentiable on]p,g[ and for everyx such thatx ∈ ]p,g[ holds f1′(x) = f2′(x). Then
f1− f2 is a constant on]p,g[ and there existsr such that for everyx such thatx∈ ]p,g[ holds
f1(x) = f2(x)+ r.

(9) Let givenp, g. Supposep < g. Let given f . Supposef is differentiable on]p,g[ and for
everyx such thatx∈ ]p,g[ holds 0< f ′(x). Then f is increasing on]p,g[.

(10) Let givenp, g. Supposep < g. Let given f . Supposef is differentiable on]p,g[ and for
everyx such thatx∈ ]p,g[ holds f ′(x) < 0. Then f is decreasing on]p,g[.

(11) Let givenp, g. Supposep < g. Let given f . Supposef is differentiable on]p,g[ and for
everyx such thatx∈ ]p,g[ holds 0≤ f ′(x). Then f is non-decreasing on]p,g[.

(12) Let givenp, g. Supposep < g. Let given f . Supposef is differentiable on]p,g[ and for
everyx such thatx∈ ]p,g[ holds f ′(x)≤ 0. Then f is non increasing on]p,g[.
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