Average Value Theorems for Real Functions of One Variable¹

Jarosław Kotowicz Warsaw University Białystok Konrad Raczkowski Warsaw University Białystok

Paweł Sadowski Warsaw University Białystok

Summary. Three basic theorems in differential calculus of one variable functions are presented: Rolle Theorem, Lagrange Theorem and Cauchy Theorem. There are also direct conclusions.

MML Identifier: ROLLE.

WWW: http://mizar.org/JFM/Vol2/rolle.html

The articles [9], [11], [1], [10], [2], [12], [3], [4], [5], [8], [6], and [7] provide the notation and terminology for this paper.

We use the following convention: g, r, s, p, t, x, x_0 , x_1 denote real numbers and f, f_1 , f_2 denote partial functions from \mathbb{R} to \mathbb{R} .

We now state a number of propositions:

- (1) Let given p, g. Suppose p < g. Let given f. Suppose f is continuous on [p,g] and f(p) = f(g) and f is differentiable on [p,g]. Then there exists x_0 such that $x_0 \in [p,g]$ and $f'(x_0) = 0$.
- (2) Let given x, t. Suppose 0 < t. Let given f. Suppose f is continuous on [x, x+t] and f(x) = f(x+t) and f is differentiable on]x, x+t[. Then there exists s such that 0 < s and s < 1 and $f'(x+s \cdot t) = 0$.
- (3) Let given p, g. Suppose p < g. Let given f. Suppose f is continuous on [p,g] and differentiable on]p,g[. Then there exists x_0 such that $x_0 \in]p,g[$ and $f'(x_0) = \frac{f(g)-f(p)}{g-p}$.
- (4) Let given x, t. Suppose 0 < t. Let given f. Suppose f is continuous on [x, x+t] and differentiable on]x, x+t[. Then there exists s such that 0 < s and s < 1 and $f(x+t) = f(x) + t \cdot f'(x+s \cdot t)$.
- (5) Let given p, g. Suppose p < g. Let given f_1 , f_2 . Suppose f_1 is continuous on [p,g] and differentiable on]p,g[and f_2 is continuous on [p,g] and differentiable on]p,g[. Then there exists x_0 such that $x_0 \in [p,g]$ and $(f_1(g)-f_1(p))\cdot f_2'(x_0)=(f_2(g)-f_2(p))\cdot f_1'(x_0)$.
- (6) Let given x, t. Suppose 0 < t. Let given f_1 , f_2 . Suppose that
- (i) f_1 is continuous on [x, x+t] and differentiable on [x, x+t],
- (ii) f_2 is continuous on [x, x+t] and differentiable on [x, x+t], and
- (iii) for every x_1 such that $x_1 \in]x, x+t[$ holds $f_2'(x_1) \neq 0$.

Then there exists s such that 0 < s and s < 1 and $\frac{f_1(x+t) - f_1(x)}{f_2(x+t) - f_2(x)} = \frac{f_1'(x+s \cdot t)}{f_2'(x+s \cdot t)}$.

1

¹Supported by RPBP.III-24.C8.

- (7) Let given p, g. Suppose p < g. Let given f. Suppose f is differentiable on]p,g[and for every x such that $x \in [p,g[$ holds f'(x) = 0. Then f is a constant on [p,g[.
- (8) Let given p, g. Suppose p < g. Let given f_1 , f_2 . Suppose f_1 is differentiable on]p,g[and f_2 is differentiable on]p,g[and for every x such that $x \in]p,g[$ holds $f_1'(x) = f_2'(x)$. Then $f_1 f_2$ is a constant on]p,g[and there exists r such that for every x such that $x \in]p,g[$ holds $f_1(x) = f_2(x) + r$.
- (9) Let given p, g. Suppose p < g. Let given f. Suppose f is differentiable on]p,g[and for every x such that $x \in [p,g[$ holds 0 < f'(x). Then f is increasing on [p,g[.
- (10) Let given p, g. Suppose p < g. Let given f. Suppose f is differentiable on]p,g[and for every x such that $x \in [p,g[$ holds f'(x) < 0. Then f is decreasing on [p,g[.
- (11) Let given p, g. Suppose p < g. Let given f. Suppose f is differentiable on]p,g[and for every x such that $x \in [p,g[$ holds $0 \le f'(x)$. Then f is non-decreasing on [p,g[.
- (12) Let given p, g. Suppose p < g. Let given f. Suppose f is differentiable on]p,g[and for every x such that $x \in]p,g[$ holds $f'(x) \le 0$. Then f is non increasing on]p,g[.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [3] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [4] Jarosław Kotowicz. Partial functions from a domain to a domain. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/ JFM/Vol2/partfun2.html.
- [5] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_2.html.
- [6] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [7] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vo12/fdiff 1.html.
- [8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received June 18, 1990

Published January 2, 2004