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Summary. Three basic theorems in differential calculus of one variable functions are
presented: Rolle Theorem, Lagrange Theorem and Cauchy Theorem. There are also direct
conclusions.

MML Identifier: ROLLE.

WWW: http://mizar.org/JFM/Vol2/rolle.html

The articles|[9], [[11], [T1], [[10], [12], [[12], (I3], [[4], [[5], [[8], [[6], and[l7] provide the notation and
terminology for this paper.

We use the following conventiom, r, s, p, t, X, Xo, X1 denote real numbers arfd f1, f, denote
partial functions fronR to R.

We now state a number of propositions:

(1) Letgivenp, g. Suppose < g. Let givenf. Suppose is continuous orip,g] and f (p) =
f(g) andf is differentiable orjp,g[. Then there existg such thatg € |p,g[ and f’(xp) = 0.

(2) Let givenx, t. Suppose (< t. Let given f. Supposef is continuous or{x,x+t] and
f(x) = f(x+t) and f is differentiable onx,x+t[. Then there exists such that 0< sand
s<landf’(x+s-t)=0.

(3) Letgivenp, g. Supposep < g. Let givenf. Supposef is continuous orip, g] and differ-

entiable orp,g[. Then there exist& such that € |p,g[ and f'(xg) = %;fp).

(4) Let givenx, t. Suppose (< t. Let given f. Supposef is continuous or{x,x+t] and
differentiable onjx,x+t[. Then there exists such that O< sands < 1 and f(x+t) =
f(x)+t- f'(x+s-1).

(5) Letgivenp, g. Supposep < g. Let given f1, f,. Supposef; is continuous orip,g] and
differentiable onp,g[ and f2 is continuous orip, g] and differentiable ofp,g[. Then there

existsxo such thato € |p, gl and(f1(g) — f1(p)) - f2'(%0) = (f2(9) — f2(p)) - f1'(x0).
(6) Letgivenx,t. Suppose & t. Let givenfy, f. Suppose that
(i)  f1is continuous orix,x+t] and differentiable ofx,x+t],
(i)  fois continuous orx,x+t] and differentiable o, x+t[, and
(i)  for every x; such that € ]x,x+t[ holds fo'(x1) # O.

fi(x+t)—f1(x) _ fll(X+Srt)
f(H)—fo(x) — R/ (x+st)

Then there existssuch that O< sands < 1 and
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(7) Letgivenp, g. Supposep < g. Let givenf. Supposef is differentiable orjp,g[ and for
everyx such thai € |p,g[ holds f'(x) = 0. Thenf is a constant ofp, g[.

(8) Letgivenp, g. Suppose < g. Let given fy, fo. Supposef; is differentiable orjp,g[ and
f, is differentiable onp,g[ and for everyx such thaix € |p,g[ holds fi'(x) = f2'(x). Then
f1 — f2 is a constant ohp, g[ and there exists such that for every such that € |p,g[ holds
f1(x) = fa(x) +r.

(9) Letgivenp, g. Supposep < g. Let given f. Supposef is differentiable orjp,g[ and for
everyx such thai € |p,g[ holds 0< f’(x). Thenf is increasing onp,g[.

(10) Let givenp, g. Supposep < g. Let given f. Supposef is differentiable orjp,g[ and for
everyx such thak € |p,g[ holds f’(x) < 0. Thenf is decreasing ofp, g|.

(11) Letgivenp, g. Supposep < g. Let given f. Supposef is differentiable orip,g[ and for
everyx such thak € |p, g[ holds 0< f/(x). Thenf is non-decreasing o, g|.

(12) Letgivenp, g. Supposep < g. Let given f. Supposef is differentiable orip,g[ and for
everyx such tha € |p,g[ holds f(x) < 0. Thenf is non increasing ofp, g|.
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