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Summary. Inthe early 1930s, Huntington proposed several axiom systems for Boolean
algebras. Robbins slightly changed one of them and asked if the resulted system is still a basis
for variety of Boolean algebras. The solution (afirmative answer) was given in 1996 by Mc-
Cune with the help of automated theorem prover EQRER. Some simplified and restuc-
turized versions of this proof are known. In our version of proof that all Robbins algebras are
Boolean we use the results of McCuhé [8], Huntingidn [5], [7], [6] and D&hn [4].

MML Identifier: ROBBINS1.

WWW: http://mizar.org/JFM/Voll3/robbinsl.html

The articles[[11],[1R],[[10],11],12],[[8], and 9] provide the notation and terminology for this paper.

1. PRELIMINARIES

We introduce ComplStr which are extensions of 1-sorted structure and are systems

( a carrier, a complement operatipn
where the carrier is a set and the complement operation is a unary operation on the carrier.

We consider complemented lattice structures as extensianseii lattice structure and Com-
pIStr as systems

( a carrier, a join operation, a complement operajion
where the carrier is a set, the join operation is a binary operation on the carrier, and the complement
operation is a unary operation on the carrier.

We introduce ortholattice structures which are extensions of complemented lattice structure and
lattice structure and are systems

( a carrier, a join operation, a meet operation, a complement opejation
where the carrier is a set, the join operation and the meet operation are binary operations on the
carrier, and the complement operation is a unary operation on the carrier.

The strict complemented lattice structure TrivComplLat is defined as follows:

(Def. 1) TrivComplLat= ({0}, 0p,,0p;).
The strict ortholattice structure TrivOrtLat is defined as follows:
(Def. 2) TrivOrtLat= ({0}, 0p,,0p,,0p;).

Let us note that TrivComplLat is non empty and trivial and TrivOrtLat is non empty and trivial.

Let us observe that there exists an ortholattice structure which is strict, non empty, and trivial
and there exists a complemented lattice structure which is strict, non empty, and trivial.

Let L be a non empty trivial complemented lattice structure. One can check that the ComplStr
of L is non empty and trivial.

1This work has been partially supported by TYPES grant IST-1999-29001.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol13/robbins1.html

ROBBINS ALGEBRAS VS BOOLEAN ALGEBRAS 2

Let us note that there exists a ComplStr which is strict, non empty, and trivial.
Let L be a non empty ComplStr and bebe an element df. The functorx® yields an element
of L and is defined as follows:

(Def. 3) x¢ = (the complement operation &f(x).

LetL be a non empty complemented lattice structure ankl kebe elements df. We introduce
X+Yyas asynonym ofLly.

Let L be a non empty complemented lattice structure anxl iebe elements of. The functor
xx Yy yielding an element of is defined by:

(Def. 4) xxy= (X*UY")°.
LetL be a non empty complemented lattice structure. We say tleaRobbins if and only if:
(Def. 5) For all elements, y of L holds((Xx+ )¢+ (x+¥°)¢)¢ = x.
We say that is Huntington if and only if:
(Def. 6) For all elements, y of L holds(x®+ y©)¢ + (X +y)¢ = x.
Let G be a non emptyl-semi lattice structure. We say thatis join-idempotent if and only if:
(Def. 7) For every elementof G holdsxLIx = x.

Let us mention that TrivComplLat is join-commutative, join-associative, Robbins, Huntington,
and join-idempotent and TrivOrtLat is join-commutative, join-associative, Huntington, and Rob-
bins.

Let us observe that TrivOrtLat is meet-commutative, meet-associative, meet-absorbing, and
join-absorbing.

Let us mention that there exists a nhon empty complemented lattice structure which is strict,
join-associative, join-commutative, Robbins, join-idempotent, and Huntington.

One can verify that there exists a non empty ortholattice structure which is strict, lattice-like,
Robbins, and Huntington.

Let L be a join-commutative non empty complemented lattice structure argyiée elements
of L. Let us observe that the functe#s-y is commutative.

One can prove the following propositions:

(1) LetL be a Huntington join-commutative join-associative non empty complemented lattice
structure and, b be elements of. Thenaxb+axhb®=a.

(2) LetL be a Huntington join-commutative join-associative non empty complemented lattice
structure anc be an element df. Thena+a® = a®+ (a%)°.

(3) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anc be an element df. Then(x®)¢ = x.

(4) LetL be ajoin-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements of. Thena+a® = b+ b°.

(5) LetL be ajoin-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Then there exists an elemeht such that for every elemeat
of L holdsc+a=canda+a‘=c.

(6) Every join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure is upper-bounded.

Let us note that every non empty complemented lattice structure which is join-commutative,
join-associative, join-idempotent, and Huntington is also upper-bounded.

Let L be a join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure. Thén_ can be characterized by the condition:
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(Def. 8) There exists an elemespf L such thafl| = a+a°.

We now state two propositions:

(7) LetL be ajoin-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Then there exists an elemeht such that for every elemeat
of L holdscxa=cand(a+a‘)¢=c.

(8) LetL be ajoin-commutative join-associative non empty complemented lattice structure and
a, b be elements of. Thenaxb=bxa.

LetL be a join-commutative join-associative non empty complemented lattice structure and let
X, y be elements df. Let us observe that the functexy is commutative.

Let L be a join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure. The functoE yields an element df and is defined by:

(Def. 9) For every elemergof L holds L Exa= L .

Next we state several propositions:

(9) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure aacde an element df. Then L = (a+ a®)°.

(10) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Théf )¢ = L and T = (LE)C.

(11) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements of. If a® = b®, thena=h.

(12) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements of. Thena+ (b+b®)¢=a.

(13) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and be an element df. Thena+a=a.

Let us observe that every non empty complemented lattice structure which is join-commutative,
join-associative, and Huntington is also join-idempotent.
One can prove the following propositions:

(14) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anc be an element df. Thena+ 1L¢ =a.

(15) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure ané be an element df. Thenax T =a.

(16) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and be an element df. Thenaxa® = 1 L.

(17) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Thenax (b c) = (axb)xc.

(18) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements of. Thena+ b = (a°x b°®)°.

(19) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and be an element df. Thenaxa=a.

(20) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure ané be an element df. Thena+ T = T|.

(21) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements of. Thena+axb=a.
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(22) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements df. Thenax (a+b) =a.

(23) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements of. If a°+b= T andb®+a= T, thena=h.

(24) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b be elements df. If a+-b= T andaxb= LE, thena® = h.

(25) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Thenaxbxc+axbxc®+axb®+xc+axb®+c+afx
bxc+afxbxct4at«xb®xc4+at«b®+xct=T.

(26) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Then

(i) axcx(bxct) = LFE,

(i) axbxcx(axbxc)= L,

(i)  axbCxcx(axbxc)= L,

(iv) axbxcx(axb®xc)= L,

(V) axbxctx(atxbCxcf) = L, and

(vi) axbCxcx(atxbxc)= LC.

(27) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Thenaxb+axc=axbxc+axbxc®+axb®xc.

(28) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure ana, b, c be elements of. Then(ax (b+c))=axb®xc®+a°«xbxc+a‘«bx
c+afxhCxc+af*bCxct.

(29) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Thenaxb+axc+ (ax(b+c))*=T|.

(30) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, ¢ be elements of. Then(axb+axc) x(a* (b+c))°= LF.

(81) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure and, b, c be elements of. Thenax (b+c) =axb+axc.

(32) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure an@, b, ¢ be elements of. Thena+bxc= (a+b)*(a+c).

2. PRE-ORTHOLATTICES

LetL be a non empty ortholattice structure. We say thatwell-complemented if and only if:
(Def. 10) For every elememtof L holdsa® is a complement cé.

Let us note that TrivOrtLat is Boolean and well-complemented.

A pre-ortholattice is a lattice-like non empty ortholattice structure.

Let us note that there exists a pre-ortholattice which is strict, Boolean, and well-complemented.
One can prove the following two propositions:

(33) For every distributive well-complemented pre-ortholatticend for every element of L
holds (x°)¢ = x.

(34) LetL be a bounded distributive well-complemented pre-ortholatticexagde elements
of L. ThenxMy = (xX*UY°)C.
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3. CORRESPONDENCE BETWEENBOOLEAN PRE-ORTHOLATTICES AND BOOLEAN
LATTICES

LetL be a non empty complemented lattice structure. The functor Clyatding a strict ortholat-
tice structure is defined by the conditions (Def. 11).

(Def. 11)()) The carrier of CLatt = the carrier ofL,
(i) the join operation of CLatt = the join operation of,
(i)  the complement operation of CLdtt=the complement operation bf and
(iv) for all elements, b of L holds (the meet operation of CL&tit(a, b) = axb.

Let L be a non empty complemented lattice structure. Note that Clistion empty.

Let L be a join-commutative non empty complemented lattice structure. One can verify that
ClLattL is join-commutative.

Let L be a join-associative non empty complemented lattice structure. One can verify that
ClLattL is join-associative.

Let L be a join-commutative join-associative non empty complemented lattice structure. Ob-
serve that CLatt is meet-commutative.

Next we state the proposition

(35) LetL be a non empty complemented lattice structaréy be elements off, anda’, b’ be
elements of CLatt. If a=a andb =/, thenaxb=a' mb’ anda+b=a Lk anda® = a°.

LetL be ajoin-commutative join-associative Huntington non empty complemented lattice struc-
ture. Observe that CLdttis meet-associative, join-absorbing, and meet-absorbing.

LetL be a Huntington non empty complemented lattice structure. One can verify that. G4 att
Huntington.

LetL be ajoin-commutative join-associative Huntington non empty complemented lattice struc-
ture. Note that CLatt is lower-bounded.

The following proposition is true

(36) For every join-commutative join-associative Huntington non empty complemented lattice
structurel holds L = Lcpan -

LetL be ajoin-commutative join-associative Huntington non empty complemented lattice struc-
ture. One can verify that CLdttis complemented, distributive, and bounded.

4. PROOFS ACCORDING TOBERND INGO DAHN

Let G be a non empty complemented lattice structure and bet an element 0. We introduce
—Xx as a synonym of®.

Let G be a join-commutative non empty complemented lattice structure. Let us obser@ that
is Huntington if and only if:

(Def. 12) For all elements, y of G holds—(—x+ —y) + —(x+ —y) =Y.

Let G be a non empty complemented lattice structure. We sayGimts idempotent element if
and only if:

(Def. 13) There exists an elemendf G such thak+x = x.

In the sequeG is a Robbins join-associative join-commutative non empty complemented lattice
structure and;, y, zare elements dob.

Let G be a non empty complemented lattice structure and kebe elements ofs. The functor
0(x,y) yielding an element o6 is defined as follows:

(Def. 14) 3(x,y) = —(—x+VY).
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Let G be a non empty complemented lattice structure and kebe elements of. The functor
Expandx,y) yields an element d& and is defined as follows:

(Def. 15) Expanék,y) = d(x+VY,8(X,Y)).

Let G be a non empty complemented lattice structure and et an element db. The functor
Xo Yields an element db and is defined as follows:

(Def. 16) xo = —(—x+X).
The functor X yields an element d& and is defined as follows:
(Def. 17) X =x+x.

Let G be a non empty complemented lattice structure anx lbet an element db. The functor
X1 yields an element ob and is defined by:

(Def. 18) x1 =Xo+X.
The functorx; yielding an element o6 is defined as follows:
(Def. 19) X =xg+2x.
The functorxg yielding an element o6 is defined as follows:
(Def. 20) x3=xo+ (2X+X).
The functorx, yielding an element o6 is defined by:
(Def. 21) x4 =X+ (2x+ 2x).
Next we state a number of propositions:
B7) 3(x+Y,8(xy)) =Y.
(38) Expandxy) =
39) d(—x+VY,z) =—(8(x,y) +2).
(40) 3(x,X) = Xo.
(41) o
(42) 3(x2,X) = Xo.
(43) Xo+X=Xa.
(44) Xa+X%o=X3+X1.
(45) X3+ Xo = X2+ X1.
(46) Xz+X=X4.
(47) 3(x3,%) =X
(48) If —x= —y, thend(x,z) = (Y, 2).
(49)
(50) o

X, —Y) = (Y, —X).

X3,X) =

(52) 3(X1+ X2, X) = Xo.

5(
(

(51) 8(x1+X3,X) = Xo.
(

(53) &(

X1+ X3,X0) = X.
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Let us conside, x. The functor3(x) yields an element dB and is defined by:
(Def. 22) B(X) = — (X1 +X3) + X+ —X3.

We now state three propositions:

(54) 3(B(x),X) = —Xa.
(55) 3(B(X),X) = —(X1+X3).
(56) There exisy, zsuch that-(y+2) = —z

5. PROOFS ACCORDING TOWILLIAM MCCUNE
We now state two propositions:

(57) If for everyzholds——z = z thenG is Huntington.

(58) If G has idempotent element, thénis Huntington.

Let us note that TrivComplLat has idempotent element.

One can check that every Robbins join-associative join-commutative non empty complemented
lattice structure which has idempotent element is also Huntington.

We now state two propositions:

(59) If there exist elements d of G such that+ d = ¢, thenG is Huntington.

(60) There exisy, zsuch thay+z=2z

Let us observe that every join-associative join-commutative hon empty complemented lattice
structure which is Robbins is also Huntington.
LetL be a non empty ortholattice structure. We say thistde Morgan if and only if:

(Def. 23) For all elements, y of L holdsxmy = (x®Ly®)C.

LetL be a non empty complemented lattice structure. One can verify thatICisade Morgan.
Next we state two propositions:

(61) LetL be awell-complemented join-commutative meet-commutative non empty ortholattice
structure and be an element df. Thenx+x¢= T andxnx®= 1,.

62) For every bounded distributive well-complemented pre-ortholdttivelds (T )¢ = L, .
( y p p

Let us note that TrivOrtLat is de Morgan.

Let us note that there exists a pre-ortholattice which is strict, de Morgan, Boolean, Robbins, and
Huntington.

One can verify that every non empty ortholattice structure which is join-associative, join-commutative,
and de Morgan is also meet-commutative.

The following proposition is true

(63) For every Huntington de Morgan pre-ortholatticeolds 1 & = 1 .

Let us mention that every well-complemented pre-ortholattice which is Boolean is also Hunt-
ington.

Let us observe that every de Morgan pre-ortholattice which is Huntington is also Boolean.

Let us note that every pre-ortholattice which is Robbins and de Morgan is also Boolean and
every well-complemented pre-ortholattice which is Boolean is also Robbins.
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