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Summary. In the early 1930s, Huntington proposed several axiom systems for Boolean
algebras. Robbins slightly changed one of them and asked if the resulted system is still a basis
for variety of Boolean algebras. The solution (afirmative answer) was given in 1996 by Mc-
Cune with the help of automated theorem prover EQP/OTTER. Some simplified and restuc-
turized versions of this proof are known. In our version of proof that all Robbins algebras are
Boolean we use the results of McCune [8], Huntington [5], [7], [6] and Dahn [4].

MML Identifier: ROBBINS1.

WWW: http://mizar.org/JFM/Vol13/robbins1.html

The articles [11], [12], [10], [1], [2], [3], and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

We introduce ComplStr which are extensions of 1-sorted structure and are systems
〈 a carrier, a complement operation〉,

where the carrier is a set and the complement operation is a unary operation on the carrier.
We consider complemented lattice structures as extensions oft-semi lattice structure and Com-

plStr as systems
〈 a carrier, a join operation, a complement operation〉,

where the carrier is a set, the join operation is a binary operation on the carrier, and the complement
operation is a unary operation on the carrier.

We introduce ortholattice structures which are extensions of complemented lattice structure and
lattice structure and are systems

〈 a carrier, a join operation, a meet operation, a complement operation〉,
where the carrier is a set, the join operation and the meet operation are binary operations on the
carrier, and the complement operation is a unary operation on the carrier.

The strict complemented lattice structure TrivComplLat is defined as follows:

(Def. 1) TrivComplLat= 〈{ /0},op2,op1〉.

The strict ortholattice structure TrivOrtLat is defined as follows:

(Def. 2) TrivOrtLat= 〈{ /0},op2,op2,op1〉.

Let us note that TrivComplLat is non empty and trivial and TrivOrtLat is non empty and trivial.
Let us observe that there exists an ortholattice structure which is strict, non empty, and trivial

and there exists a complemented lattice structure which is strict, non empty, and trivial.
Let L be a non empty trivial complemented lattice structure. One can check that the ComplStr

of L is non empty and trivial.

1This work has been partially supported by TYPES grant IST-1999-29001.
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Let us note that there exists a ComplStr which is strict, non empty, and trivial.
Let L be a non empty ComplStr and letx be an element ofL. The functorxc yields an element

of L and is defined as follows:

(Def. 3) xc = (the complement operation ofL)(x).

Let L be a non empty complemented lattice structure and letx, y be elements ofL. We introduce
x+y as a synonym ofxty.

Let L be a non empty complemented lattice structure and letx, y be elements ofL. The functor
x∗y yielding an element ofL is defined by:

(Def. 4) x∗y = (xctyc)c.

Let L be a non empty complemented lattice structure. We say thatL is Robbins if and only if:

(Def. 5) For all elementsx, y of L holds((x+y)c +(x+yc)c)c = x.

We say thatL is Huntington if and only if:

(Def. 6) For all elementsx, y of L holds(xc +yc)c +(xc +y)c = x.

Let G be a non emptyt-semi lattice structure. We say thatG is join-idempotent if and only if:

(Def. 7) For every elementx of G holdsxtx = x.

Let us mention that TrivComplLat is join-commutative, join-associative, Robbins, Huntington,
and join-idempotent and TrivOrtLat is join-commutative, join-associative, Huntington, and Rob-
bins.

Let us observe that TrivOrtLat is meet-commutative, meet-associative, meet-absorbing, and
join-absorbing.

Let us mention that there exists a non empty complemented lattice structure which is strict,
join-associative, join-commutative, Robbins, join-idempotent, and Huntington.

One can verify that there exists a non empty ortholattice structure which is strict, lattice-like,
Robbins, and Huntington.

Let L be a join-commutative non empty complemented lattice structure and letx, y be elements
of L. Let us observe that the functorx+y is commutative.

One can prove the following propositions:

(1) Let L be a Huntington join-commutative join-associative non empty complemented lattice
structure anda, b be elements ofL. Thena∗b+a∗bc = a.

(2) Let L be a Huntington join-commutative join-associative non empty complemented lattice
structure anda be an element ofL. Thena+ac = ac +(ac)c.

(3) Let L be a join-commutative join-associative Huntington non empty complemented lattice
structure andx be an element ofL. Then(xc)c = x.

(4) Let L be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. Thena+ac = b+bc.

(5) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Then there exists an elementc of L such that for every elementa
of L holdsc+a = c anda+ac = c.

(6) Every join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure is upper-bounded.

Let us note that every non empty complemented lattice structure which is join-commutative,
join-associative, join-idempotent, and Huntington is also upper-bounded.

Let L be a join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure. Then>L can be characterized by the condition:
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(Def. 8) There exists an elementa of L such that>L = a+ac.

We now state two propositions:

(7) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Then there exists an elementc of L such that for every elementa
of L holdsc∗a = c and(a+ac)c = c.

(8) LetL be a join-commutative join-associative non empty complemented lattice structure and
a, b be elements ofL. Thena∗b = b∗a.

Let L be a join-commutative join-associative non empty complemented lattice structure and let
x, y be elements ofL. Let us observe that the functorx∗y is commutative.

Let L be a join-commutative join-associative join-idempotent Huntington non empty comple-
mented lattice structure. The functor⊥C

L yields an element ofL and is defined by:

(Def. 9) For every elementa of L holds⊥C
L ∗a =⊥C

L .

Next we state several propositions:

(9) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure anda be an element ofL. Then⊥C

L = (a+ac)c.

(10) LetL be a join-commutative join-associative join-idempotent Huntington non empty com-
plemented lattice structure. Then(>L)c =⊥C

L and>L = (⊥C
L )c.

(11) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. If ac = bc, thena = b.

(12) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. Thena+(b+bc)c = a.

(13) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena+a = a.

Let us observe that every non empty complemented lattice structure which is join-commutative,
join-associative, and Huntington is also join-idempotent.

One can prove the following propositions:

(14) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena+⊥C

L = a.

(15) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena∗>L = a.

(16) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena∗ac =⊥C

L .

(17) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena∗ (b∗c) = (a∗b)∗c.

(18) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. Thena+b = (ac∗bc)c.

(19) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena∗a = a.

(20) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda be an element ofL. Thena+>L =>L.

(21) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. Thena+a∗b = a.
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(22) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. Thena∗ (a+b) = a.

(23) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. If ac +b =>L andbc +a =>L, thena = b.

(24) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b be elements ofL. If a+b =>L anda∗b =⊥C

L , thenac = b.

(25) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena∗b∗c+a∗b∗cc +a∗bc ∗c+a∗bc ∗cc +ac ∗
b∗c+ac∗b∗cc +ac∗bc∗c+ac∗bc∗cc =>L.

(26) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Then

(i) a∗c∗ (b∗cc) =⊥C
L ,

(ii) a∗b∗c∗ (ac∗b∗c) =⊥C
L ,

(iii) a∗bc∗c∗ (ac∗b∗c) =⊥C
L ,

(iv) a∗b∗c∗ (ac∗bc∗c) =⊥C
L ,

(v) a∗b∗cc∗ (ac∗bc∗cc) =⊥C
L , and

(vi) a∗bc∗c∗ (ac∗b∗c) =⊥C
L .

(27) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena∗b+a∗c = a∗b∗c+a∗b∗cc +a∗bc∗c.

(28) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Then(a∗ (b+ c))c = a∗bc ∗ cc + ac ∗b∗ c+ ac ∗b∗
cc +ac∗bc∗c+ac∗bc∗cc.

(29) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena∗b+a∗c+(a∗ (b+c))c =>L.

(30) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Then(a∗b+a∗c)∗ (a∗ (b+c))c =⊥C

L .

(31) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena∗ (b+c) = a∗b+a∗c.

(32) LetL be a join-commutative join-associative Huntington non empty complemented lattice
structure anda, b, c be elements ofL. Thena+b∗c = (a+b)∗ (a+c).

2. PRE-ORTHOLATTICES

Let L be a non empty ortholattice structure. We say thatL is well-complemented if and only if:

(Def. 10) For every elementa of L holdsac is a complement ofa.

Let us note that TrivOrtLat is Boolean and well-complemented.
A pre-ortholattice is a lattice-like non empty ortholattice structure.
Let us note that there exists a pre-ortholattice which is strict, Boolean, and well-complemented.
One can prove the following two propositions:

(33) For every distributive well-complemented pre-ortholatticeL and for every elementx of L
holds(xc)c = x.

(34) LetL be a bounded distributive well-complemented pre-ortholattice andx, y be elements
of L. Thenxuy = (xctyc)c.
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3. CORRESPONDENCE BETWEENBOOLEAN PRE-ORTHOLATTICES AND BOOLEAN

LATTICES

Let L be a non empty complemented lattice structure. The functor CLattL yielding a strict ortholat-
tice structure is defined by the conditions (Def. 11).

(Def. 11)(i) The carrier of CLattL = the carrier ofL,

(ii) the join operation of CLattL = the join operation ofL,

(iii) the complement operation of CLattL = the complement operation ofL, and

(iv) for all elementsa, b of L holds (the meet operation of CLattL)(a, b) = a∗b.

Let L be a non empty complemented lattice structure. Note that CLattL is non empty.
Let L be a join-commutative non empty complemented lattice structure. One can verify that

CLattL is join-commutative.
Let L be a join-associative non empty complemented lattice structure. One can verify that

CLattL is join-associative.
Let L be a join-commutative join-associative non empty complemented lattice structure. Ob-

serve that CLattL is meet-commutative.
Next we state the proposition

(35) LetL be a non empty complemented lattice structure,a, b be elements ofL, anda′, b′ be
elements of CLattL. If a = a′ andb = b′, thena∗b = a′ub′ anda+b = a′tb′ andac = a′c.

Let L be a join-commutative join-associative Huntington non empty complemented lattice struc-
ture. Observe that CLattL is meet-associative, join-absorbing, and meet-absorbing.

Let L be a Huntington non empty complemented lattice structure. One can verify that CLattL is
Huntington.

Let L be a join-commutative join-associative Huntington non empty complemented lattice struc-
ture. Note that CLattL is lower-bounded.

The following proposition is true

(36) For every join-commutative join-associative Huntington non empty complemented lattice
structureL holds⊥C

L =⊥CLattL.

Let L be a join-commutative join-associative Huntington non empty complemented lattice struc-
ture. One can verify that CLattL is complemented, distributive, and bounded.

4. PROOFS ACCORDING TOBERND INGO DAHN

Let G be a non empty complemented lattice structure and letx be an element ofG. We introduce
−x as a synonym ofxc.

Let G be a join-commutative non empty complemented lattice structure. Let us observe thatG
is Huntington if and only if:

(Def. 12) For all elementsx, y of G holds−(−x+−y)+−(x+−y) = y.

Let G be a non empty complemented lattice structure. We say thatG has idempotent element if
and only if:

(Def. 13) There exists an elementx of G such thatx+x = x.

In the sequelG is a Robbins join-associative join-commutative non empty complemented lattice
structure andx, y, z are elements ofG.

Let G be a non empty complemented lattice structure and letx, y be elements ofG. The functor
δ(x,y) yielding an element ofG is defined as follows:

(Def. 14) δ(x,y) =−(−x+y).
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Let G be a non empty complemented lattice structure and letx, y be elements ofG. The functor
Expand(x,y) yields an element ofG and is defined as follows:

(Def. 15) Expand(x,y) = δ(x+y,δ(x,y)).

Let G be a non empty complemented lattice structure and letx be an element ofG. The functor
x0 yields an element ofG and is defined as follows:

(Def. 16) x0 =−(−x+x).

The functor 2x yields an element ofG and is defined as follows:

(Def. 17) 2x = x+x.

Let G be a non empty complemented lattice structure and letx be an element ofG. The functor
x1 yields an element ofG and is defined by:

(Def. 18) x1 = x0 +x.

The functorx2 yielding an element ofG is defined as follows:

(Def. 19) x2 = x0 +2x.

The functorx3 yielding an element ofG is defined as follows:

(Def. 20) x3 = x0 +(2x+x).

The functorx4 yielding an element ofG is defined by:

(Def. 21) x4 = x0 +(2x+2x).

Next we state a number of propositions:

(37) δ(x+y,δ(x,y)) = y.

(38) Expand(x,y) = y.

(39) δ(−x+y,z) =−(δ(x,y)+z).

(40) δ(x,x) = x0.

(41) δ(2x,x0) = x.

(42) δ(x2,x) = x0.

(43) x2 +x = x3.

(44) x4 +x0 = x3 +x1.

(45) x3 +x0 = x2 +x1.

(46) x3 +x = x4.

(47) δ(x3,x0) = x.

(48) If −x =−y, thenδ(x,z) = δ(y,z).

(49) δ(x,−y) = δ(y,−x).

(50) δ(x3,x) = x0.

(51) δ(x1 +x3,x) = x0.

(52) δ(x1 +x2,x) = x0.

(53) δ(x1 +x3,x0) = x.
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Let us considerG, x. The functorβ(x) yields an element ofG and is defined by:

(Def. 22) β(x) =−(x1 +x3)+x+−x3.

We now state three propositions:

(54) δ(β(x),x) =−x3.

(55) δ(β(x),x) =−(x1 +x3).

(56) There existy, z such that−(y+z) =−z.

5. PROOFS ACCORDING TOWILLIAM MCCUNE

We now state two propositions:

(57) If for everyz holds−−z= z, thenG is Huntington.

(58) If G has idempotent element, thenG is Huntington.

Let us note that TrivComplLat has idempotent element.
One can check that every Robbins join-associative join-commutative non empty complemented

lattice structure which has idempotent element is also Huntington.
We now state two propositions:

(59) If there exist elementsc, d of G such thatc+d = c, thenG is Huntington.

(60) There existy, z such thaty+z= z.

Let us observe that every join-associative join-commutative non empty complemented lattice
structure which is Robbins is also Huntington.

Let L be a non empty ortholattice structure. We say thatL is de Morgan if and only if:

(Def. 23) For all elementsx, y of L holdsxuy = (xctyc)c.

Let L be a non empty complemented lattice structure. One can verify that CLattL is de Morgan.
Next we state two propositions:

(61) LetL be a well-complemented join-commutative meet-commutative non empty ortholattice
structure andx be an element ofL. Thenx+xc =>L andxuxc =⊥L.

(62) For every bounded distributive well-complemented pre-ortholatticeL holds(>L)c =⊥L.

Let us note that TrivOrtLat is de Morgan.
Let us note that there exists a pre-ortholattice which is strict, de Morgan, Boolean, Robbins, and

Huntington.
One can verify that every non empty ortholattice structure which is join-associative, join-commutative,

and de Morgan is also meet-commutative.
The following proposition is true

(63) For every Huntington de Morgan pre-ortholatticeL holds⊥C
L =⊥L.

Let us mention that every well-complemented pre-ortholattice which is Boolean is also Hunt-
ington.

Let us observe that every de Morgan pre-ortholattice which is Huntington is also Boolean.
Let us note that every pre-ortholattice which is Robbins and de Morgan is also Boolean and

every well-complemented pre-ortholattice which is Boolean is also Robbins.
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