## Linear Combinations in Right Module over Associative Ring

Michał Muzalewski Warsaw University Białystok Wojciech Skaba Nicolaus Copernicus University Toruń

MML Identifier: RMOD\_4.

WWW: http://mizar.org/JFM/Vol2/rmod\_4.html

The articles [11], [10], [16], [5], [2], [17], [3], [4], [12], [1], [13], [14], [6], [15], [7], [8], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: R denotes a ring, V denotes a right module over R, a, b denote scalars of R, x denotes a set, i, k denote natural numbers, u, v,  $v_1$ ,  $v_2$ ,  $v_3$ , w denote vectors of V, F, G denote finite sequences of elements of the carrier of V, A, B denote subsets of V, F denotes a function from the carrier of V into the carrier of R, and S, T denote finite subsets of V.

One can prove the following propositions:

- (1) If len F = len G and for all k, v such that  $k \in \text{dom } F$  and v = G(k) holds  $F(k) = v \cdot a$ , then  $\sum F = \sum G \cdot a$ .
- (2)  $\sum (\varepsilon_{\text{(the carrier of }V)}) \cdot a = 0_V.$
- (3)  $\sum \langle v, u \rangle \cdot a = v \cdot a + u \cdot a$ .
- (4)  $\sum \langle v, u, w \rangle \cdot a = v \cdot a + u \cdot a + w \cdot a$ .

Let us consider R, let us consider V, and let us consider T. The functor  $\sum T$  yields a vector of V and is defined by:

(Def. 3)<sup>1</sup> There exists F such that  $\operatorname{rng} F = T$  and F is one-to-one and  $\sum T = \sum F$ .

Next we state a number of propositions:

- $(5) \quad \Sigma(\emptyset_V) = 0_V.$
- (6)  $\sum \{v\} = v.$
- (7) If  $v_1 \neq v_2$ , then  $\sum \{v_1, v_2\} = v_1 + v_2$ .
- (8) If  $v_1 \neq v_2$  and  $v_2 \neq v_3$  and  $v_1 \neq v_3$ , then  $\sum \{v_1, v_2, v_3\} = v_1 + v_2 + v_3$ .
- (9) If T misses S, then  $\Sigma(T \cup S) = \Sigma T + \Sigma S$ .
- (10)  $\Sigma(T \cup S) = (\Sigma T + \Sigma S) \Sigma(T \cap S).$
- (11)  $\Sigma(T \cap S) = (\Sigma T + \Sigma S) \Sigma(T \cup S).$

<sup>&</sup>lt;sup>1</sup> The definitions (Def. 1) and (Def. 2) have been removed.

(12) 
$$\Sigma(T \setminus S) = \Sigma(T \cup S) - \Sigma S$$
.

(13) 
$$\Sigma(T \setminus S) = \Sigma T - \Sigma(T \cap S).$$

(14) 
$$\Sigma(T \dot{-} S) = \Sigma(T \cup S) - \Sigma(T \cap S).$$

(15) 
$$\Sigma(T \dot{-} S) = \Sigma(T \setminus S) + \Sigma(S \setminus T).$$

Let us consider R and let us consider V. An element of (the carrier of R)<sup>the carrier of V</sup> is said to be a linear combination of V if:

(Def. 4) There exists T such that for every v such that  $v \notin T$  holds it $(v) = 0_R$ .

In the sequel L,  $L_1$ ,  $L_2$ ,  $L_3$  are linear combinations of V.

Let us consider R, let us consider V, and let us consider L. The support of L yields a finite subset of V and is defined by:

(Def. 5) The support of  $L = \{v : L(v) \neq 0_R\}$ .

Next we state two propositions:

- (19)<sup>2</sup>  $x \in \text{the support of } L \text{ iff there exists } v \text{ such that } x = v \text{ and } L(v) \neq 0_R.$
- (20)  $L(v) = 0_R$  iff  $v \notin$  the support of L.

Let us consider R and let us consider V. The functor  $\mathbf{0}_{LC_V}$  yields a linear combination of V and is defined by:

(Def. 6) The support of  $\mathbf{0}_{LC_V} = \emptyset$ .

The following proposition is true

$$(22)^3$$
  $\mathbf{0}_{LC_V}(v) = 0_R$ .

Let us consider R, let us consider V, and let us consider A. A linear combination of V is said to be a linear combination of A if:

(Def. 7) The support of it  $\subseteq A$ .

In the sequel l is a linear combination of A.

The following four propositions are true:

- $(25)^4$  If  $A \subseteq B$ , then *l* is a linear combination of *B*.
- (26)  $\mathbf{0}_{LC_V}$  is a linear combination of A.
- (27) For every linear combination l of  $\emptyset_{\text{the carrier of } V}$  holds  $l = \mathbf{0}_{LC_V}$ .
- (28) L is a linear combination of the support of L.

Let us consider R, let us consider V, let us consider F, and let us consider f. The functor f F yielding a finite sequence of elements of the carrier of V is defined as follows:

(Def. 8)  $\operatorname{len}(f F) = \operatorname{len} F$  and for every i such that  $i \in \operatorname{dom}(f F)$  holds  $(f F)(i) = F_i \cdot f(F_i)$ .

We now state several propositions:

$$(32)^5$$
 If  $i \in \text{dom } F$  and  $v = F(i)$ , then  $(f F)(i) = v \cdot f(v)$ .

(33) 
$$f \, \varepsilon_{\text{(the carrier of } V)} = \varepsilon_{\text{(the carrier of } V)}.$$

<sup>&</sup>lt;sup>2</sup> The propositions (16)–(18) have been removed.

<sup>&</sup>lt;sup>3</sup> The proposition (21) has been removed.

<sup>&</sup>lt;sup>4</sup> The propositions (23) and (24) have been removed.

<sup>&</sup>lt;sup>5</sup> The propositions (29)–(31) have been removed.

- (34)  $f\langle v\rangle = \langle v \cdot f(v)\rangle.$
- (35)  $f\langle v_1, v_2 \rangle = \langle v_1 \cdot f(v_1), v_2 \cdot f(v_2) \rangle.$
- $(36) \quad f\langle v_1, v_2, v_3 \rangle = \langle v_1 \cdot f(v_1), v_2 \cdot f(v_2), v_3 \cdot f(v_3) \rangle.$
- (37)  $f(F \cap G) = (f F) \cap (f G)$ .

Let us consider R, let us consider V, and let us consider L. The functor  $\sum L$  yielding a vector of V is defined as follows:

(Def. 9) There exists F such that F is one-to-one and rng F = the support of L and  $\sum L = \sum (LF)$ .

The following propositions are true:

- (40)<sup>6</sup> If  $0_R \neq \mathbf{1}_R$ , then  $A \neq \emptyset$  and A is linearly closed iff for every l holds  $\sum l \in A$ .
- (41)  $\sum (\mathbf{0}_{LC_V}) = 0_V$ .
- (42) For every linear combination l of  $\emptyset_{\text{the carrier of }V}$  holds  $\sum l = 0_V$ .
- (43) For every linear combination l of  $\{v\}$  holds  $\sum l = v \cdot l(v)$ .
- (44) If  $v_1 \neq v_2$ , then for every linear combination l of  $\{v_1, v_2\}$  holds  $\sum l = v_1 \cdot l(v_1) + v_2 \cdot l(v_2)$ .
- (45) If the support of  $L = \emptyset$ , then  $\sum L = 0_V$ .
- (46) If the support of  $L = \{v\}$ , then  $\sum L = v \cdot L(v)$ .
- (47) If the support of  $L = \{v_1, v_2\}$  and  $v_1 \neq v_2$ , then  $\sum L = v_1 \cdot L(v_1) + v_2 \cdot L(v_2)$ .

Let us consider R, let us consider V, and let us consider  $L_1$ ,  $L_2$ . Let us observe that  $L_1 = L_2$  if and only if:

(Def. 10) For every v holds  $L_1(v) = L_2(v)$ .

Let us consider R, let us consider V, and let us consider  $L_1$ ,  $L_2$ . The functor  $L_1 + L_2$  yields a linear combination of V and is defined by:

(Def. 11) For every v holds  $(L_1 + L_2)(v) = L_1(v) + L_2(v)$ .

Next we state several propositions:

- (51)<sup>7</sup> The support of  $L_1 + L_2 \subseteq$  (the support of  $L_1$ )  $\cup$  (the support of  $L_2$ ).
- (52) Suppose  $L_1$  is a linear combination of A and  $L_2$  is a linear combination of A. Then  $L_1 + L_2$  is a linear combination of A.
- (53) Let *R* be a commutative ring, *V* be a right module over *R*, and  $L_1$ ,  $L_2$  be linear combinations of *V*. Then  $L_1 + L_2 = L_2 + L_1$ .
- (54)  $L_1 + (L_2 + L_3) = (L_1 + L_2) + L_3$ .
- (55) Let R be a commutative ring, V be a right module over R, and L be a linear combination of V. Then  $L + \mathbf{0}_{LC_V} = L$  and  $\mathbf{0}_{LC_V} + L = L$ .

Let us consider R, let us consider V, a, and let us consider L. The functor  $L \cdot a$  yielding a linear combination of V is defined by:

(Def. 12) For every v holds  $(L \cdot a)(v) = L(v) \cdot a$ .

Next we state the proposition

<sup>&</sup>lt;sup>6</sup> The propositions (38) and (39) have been removed.

<sup>&</sup>lt;sup>7</sup> The propositions (48)–(50) have been removed.

 $(58)^8$  The support of  $L \cdot a \subseteq$  the support of L.

In the sequel  $R_1$  is an integral domain,  $V_1$  is a right module over  $R_1$ ,  $L_4$  is a linear combination of  $V_1$ , and  $a_1$  is a scalar of  $R_1$ .

The following propositions are true:

- (59) If  $a_1 \neq 0_{(R_1)}$ , then the support of  $L_4 \cdot a_1 =$  the support of  $L_4$ .
- (60)  $L \cdot 0_R = \mathbf{0}_{LC_V}$ .
- (61) If L is a linear combination of A, then  $L \cdot a$  is a linear combination of A.
- (62)  $L \cdot (a+b) = L \cdot a + L \cdot b$ .
- (63)  $(L_1 + L_2) \cdot a = L_1 \cdot a + L_2 \cdot a$ .
- (64)  $(L \cdot b) \cdot a = L \cdot (b \cdot a)$ .
- (65)  $L \cdot \mathbf{1}_R = L$ .

Let us consider R, let us consider V, and let us consider L. The functor -L yielding a linear combination of V is defined as follows:

(Def. 13) 
$$-L = L \cdot -\mathbf{1}_R$$
.

Let us note that the functor -L is involutive.

One can prove the following propositions:

- $(67)^9$  (-L)(v) = -L(v).
- (68) If  $L_1 + L_2 = \mathbf{0}_{LC_V}$ , then  $L_2 = -L_1$ .
- (69) The support of -L = the support of L.
- (70) If L is a linear combination of A, then -L is a linear combination of A.

Let us consider R, let us consider V, and let us consider  $L_1$ ,  $L_2$ . The functor  $L_1 - L_2$  yielding a linear combination of V is defined by:

(Def. 14) 
$$L_1 - L_2 = L_1 + -L_2$$
.

The following propositions are true:

$$(73)^{10} \quad (L_1 - L_2)(v) = L_1(v) - L_2(v).$$

- (74) The support of  $L_1 L_2 \subseteq$  (the support of  $L_1$ )  $\cup$  (the support of  $L_2$ ).
- (75) Suppose  $L_1$  is a linear combination of A and  $L_2$  is a linear combination of A. Then  $L_1 L_2$  is a linear combination of A.
- $(76) \quad L L = \mathbf{0}_{LC_V}.$
- (77)  $\Sigma(L_1 + L_2) = \Sigma L_1 + \Sigma L_2$ .

For simplicity, we adopt the following rules: R denotes an integral domain, V denotes a right module over R, L, L<sub>1</sub>, L<sub>2</sub> denote linear combinations of V, and a denotes a scalar of R.

The following propositions are true:

(78) 
$$\sum (L \cdot a) = \sum L \cdot a$$
.

(79) 
$$\sum (-L) = -\sum L.$$

(80) 
$$\Sigma(L_1 - L_2) = \Sigma L_1 - \Sigma L_2$$
.

<sup>&</sup>lt;sup>8</sup> The propositions (56) and (57) have been removed.

<sup>&</sup>lt;sup>9</sup> The proposition (66) has been removed.

<sup>&</sup>lt;sup>10</sup> The propositions (71) and (72) have been removed.

## REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card\_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq\_1.html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct\_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset\_1.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp\_1.html.
- [7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp\_2.html.
- [8] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in right module over associative ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rmod\_2.html.
- [9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre\_topc.html.
- [10] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [13] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect\_1.html.
- [14] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/rlvect\_2.html.
- [15] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq\_
- $[16] \begin{tabular}{ll} {\it Zinaida Trybulec. Properties of subsets. \it Journal of Formalized Mathematics, 1, 1989. $http://mizar.org/JFM/Vol1/subset_1.html. \\ \end{tabular}$
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.

Received October 22, 1990

Published January 2, 2004