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The articles([11],[10],[116],[[5],[12],[[17],L8],[T4], ([1R],[T1], [[1B],[114],[16],1151,17],[1B], and 9]
provide the notation and terminology for this paper.
For simplicity, we adopt the following ruled® denotes a ringy denotes a right module over
R, a, b denote scalars d®, x denotes a set, k denote natural numbers, v, vi, Vs, v3, w denote
vectors oV, F, G denote finite sequences of elements of the carrigft, &, B denote subsets &f,
f denotes a function from the carrier\éfinto the carrier oRR, andS, T denote finite subsets bf.
One can prove the following propositions:

(1) IflenF =lenG and for allk, v such thak € domF andv = G(k) holdsF (k) = v-a, then
SF=5G-a

(2) Z(e(the carrier oN)) -a=0y.
Q) Y(vwuy-a=v-atu-a
@ SMuw-acv-atuaiwa

Let us consideR, let us consideY, and let us considér. The functory T yields a vector o¥/
and is defined by:

(Def. 3] There exist§ such that rng = T andF is one-to-one an§ T = 5 F.

Next we state a number of propositions:
(5) 3(0v)=0v.
® sivi=v
(7) Ifvi#vo, thenS{vi,Vo} =Vvi+Vo.
(8) If vy # vo andva # vz andvy # va, theny {vi,Vo,Va} = Vi + Vo + V3.
(9) If T missesS, theny (TUS) =5T+35S

(10) $(TUS=(3T+39-3(TNS).

(11) $(TNS=(sT+39~5(TUS).

1 The definitions (Def. 1) and (Def. 2) have been removed.
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12) 3(T\§=3(TuU9-3s
13) 3(T\§=3T-3(TNY
14) ¥(T=9 =3 (TU9-3(TNS).
(15) 3(T=9=3(T\9+Z(S\T).

Let us consideR and let us consider. An element of (the carrier dR)"® camer oV g said to
be a linear combination &f if:

(Def. 4) There exist3 such that for every such thaw ¢ T holds itv) = Og.

In the sequel, Ly, L, L3 are linear combinations &f.
Let us consideR, let us consideY, and let us considdr. The support ot yields a finite subset
of V and is defined by:

(Def.5) The support of = {v: L(v) # Or}.
Next we state two propositions:
(19E] x € the support ot iff there existsv such thak = v andL(v) # Og.
(20) L(v) =0giff v ¢ the support of..

Let us consideR and let us considey. The functorO.c, yields a linear combination &f and
is defined by:

(Def. 6) The support od ¢, = 0.
The following proposition is true
22f O.c, (v) = Or.

Let us consideR, let us consideY, and let us considek. A linear combination o¥ is said to
be a linear combination &k if:

(Def. 7) The support of iC A.

In the sequel is a linear combination oA.
The following four propositions are true:

(25f] 1f AC B, thenl is a linear combination dB.

(26) O,c, is a linear combination oA.

(27) For every linear combinatidrof Qe carrier otv holdsl = 0.c,, .
(28) L is alinear combination of the supportlof

Let us consideR, let us consideY, let us consideF, and let us considef. The functorf F
yielding a finite sequence of elements of the carriev @ defined as follows:

(Def. 8) len(f F) =lenF and for evenyi such thai € dom(f F) holds(f F)(i) =FK - f(F).

We now state several propositions:
(32F| If i € domF andv = F(i), then(f F)(i) = v- f(v).

(33) f E(the carrier ofV) = E(the carrier ofV)-

2 The propositions (16)—(18) have been removed.

3 The proposition (21) has been removed.

4 The propositions (23) and (24) have been removed.
5 The propositions (29)—(31) have been removed.



LINEAR COMBINATIONS IN RIGHT MODULE OVER. .. 3

(34) f{v)=(v-f(v)).
(35) f{vi,v2) = (vi-f(v1),v2- f(Vv2)).

(36) f (vi,vo,v3) = (v1- f(v1),v2- f(v2),v3- f(v3)).
@B7) f(F~G) =(fF)"(fG).

Let us consideR, let us consideY, and let us considdr. The functory L yielding a vector of
V is defined as follows:

(Def. 9) There exist& such thaF is one-to-one and rrfg = the support ol andy L =S (LF).
The following propositions are true:
(4OE] If Or # 1R, thenA # 0 andA s linearly closed iff for every holdsy | € A.
(41) 3(Ocy) =0Ov.
(42) For every linear combinatidrof Oie carrier ofv hOlASS 1 = Oy .
(43) For every linear combinatidrof {v} holdsy | =v-I(v).
(44) If va # v, then for every linear combinatidrof {v1,vo} holdsy | = vy -1(vq) + Vo - [(v2).
(45) If the support of. =0, theny L =0y.
(46) If the support of. = {v}, theny L =v-L(v).
(47) If the support of. = {vq,Vv2} andvy # Vo, theny L = vy - L(v1) + V2 - L(v2).

Let us consideR, let us conside¥, and let us considdry, Lo. Let us observe thdt; = L if
and only if:

(Def. 10) For every holdsLj(v) = La(Vv).

Let us consideR, let us conside¥, and let us considdrs, L,. The functorL; + L, yields a
linear combination of and is defined by:

(Def. 11) For every holds (L1 + L2)(v) = L1(v) + La(Vv).
Next we state several propositions:
(51 The support of.1 + L, C (the support of.;) U (the support of.,).

(52) Suppost; is alinear combination oA andL; is a linear combination oA. ThenlL; + L,
is a linear combination oA.

(53) LetRbe a commutative ring// be a right module oveR, andL1, L, be linear combinations
of V. ThenL; + L, = Lo+ L;3.

(54) Li+(La+Ls)=(L1+L2)+Ls.

(55) LetRbe a commutative ring/ be a right module oveRR, andL be a linear combination of
V. ThenL+OLCV =L andOLCV +L=L.

Let us consideR, let us consideY, a, and let us considdr. The functorl - a yielding a linear
combination ol is defined by:

(Def. 12) For every holds(L -a)(v) = L(v) - a.

Next we state the proposition

6 The propositions (38) and (39) have been removed.
" The propositions (48)—(50) have been removed.
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(58f] The support of_-a C the support of..

In the sequeR; is an integral domairy; is a right module oveRy, L4 is a linear combination
of Vi, anda is a scalar oR;.
The following propositions are true:

(59) Ifa # O, then the support df, - a; = the support ot 4.

(60) L-Or=0.c,-

(61) IfLisalinear combination oA, thenL -ais a linear combination oA.
(62) L-(a+b)=L-a+L-b

(63) (Li+Ly)-a=Li-a+lz-a

(64) (L-b)-a=L-(b-a).

(65) L-1g=L.

Let us consideR, let us conside¥, and let us considdr. The functor—L yielding a linear
combination ol is defined as follows:

(Def.13) —L=L-—1g.

Let us note that the functerL is involutive.
One can prove the following propositions:

67 (L)W =-LW).

(68) IfLi+L>=0,,thenLy =—L;.

(69) The support of-L = the support of..

(70) If Lis alinear combination oA, then—L is a linear combination oA.

Let us consideR, let us consideY, and let us considdr;, L. The functorl; — L, yielding a
linear combination oY is defined by:

(Def.14) Li—Ly=L1+—-Lo.
The following propositions are true:
(73[9 (L1—L2)(v) = La(v) — La(v).
(74) The support of; — L C (the support of.1) U (the support ot.,).

(75) Suppost; is a linear combination oA andL; is a linear combination oA. ThenL; —L>
is a linear combination oA.

(76) L—L=0Lc,.
(77) S(Li+lz)=3Li+5Lo.

For simplicity, we adopt the following ruled® denotes an integral domai, denotes a right
module oveR, L, L1, L denote linear combinations ¥f, anda denotes a scalar &
The following propositions are true:

(78) s(L-ay=5L-a

(79) 3(-L)=-3L.

(80) y(Li—Lz)=3Li—-YLo.

8 The propositions (56) and (57) have been removed.

9 The proposition (66) has been removed.
10 The propositions (71) and (72) have been removed.
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