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MML Identifier: RMOD_4.

WWW: http://mizar.org/JFM/Vol2/rmod_4.html

The articles [11], [10], [16], [5], [2], [17], [3], [4], [12], [1], [13], [14], [6], [15], [7], [8], and [9]
provide the notation and terminology for this paper.

For simplicity, we adopt the following rules:R denotes a ring,V denotes a right module over
R, a, b denote scalars ofR, x denotes a set,i, k denote natural numbers,u, v, v1, v2, v3, w denote
vectors ofV, F , G denote finite sequences of elements of the carrier ofV, A, B denote subsets ofV,
f denotes a function from the carrier ofV into the carrier ofR, andS, T denote finite subsets ofV.

One can prove the following propositions:

(1) If lenF = lenG and for allk, v such thatk∈ domF andv = G(k) holdsF(k) = v ·a, then
∑F = ∑G·a.

(2) ∑(ε(the carrier ofV)) ·a = 0V .

(3) ∑〈v,u〉 ·a = v·a+u·a.

(4) ∑〈v,u,w〉 ·a = v·a+u·a+w ·a.

Let us considerR, let us considerV, and let us considerT. The functor∑T yields a vector ofV
and is defined by:

(Def. 3)1 There existsF such that rngF = T andF is one-to-one and∑T = ∑F.

Next we state a number of propositions:

(5) ∑( /0V) = 0V .

(6) ∑{v}= v.

(7) If v1 6= v2, then∑{v1,v2}= v1 +v2.

(8) If v1 6= v2 andv2 6= v3 andv1 6= v3, then∑{v1,v2,v3}= v1 +v2 +v3.

(9) If T missesS, then∑(T ∪S) = ∑T +∑S.

(10) ∑(T ∪S) = (∑T +∑S)−∑(T ∩S).

(11) ∑(T ∩S) = (∑T +∑S)−∑(T ∪S).

1 The definitions (Def. 1) and (Def. 2) have been removed.
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(12) ∑(T \S) = ∑(T ∪S)−∑S.

(13) ∑(T \S) = ∑T−∑(T ∩S).

(14) ∑(T−. S) = ∑(T ∪S)−∑(T ∩S).

(15) ∑(T−. S) = ∑(T \S)+∑(S\T).

Let us considerR and let us considerV. An element of (the carrier ofR)the carrier ofV is said to
be a linear combination ofV if:

(Def. 4) There existsT such that for everyv such thatv /∈ T holds it(v) = 0R.

In the sequelL, L1, L2, L3 are linear combinations ofV.
Let us considerR, let us considerV, and let us considerL. The support ofL yields a finite subset

of V and is defined by:

(Def. 5) The support ofL = {v : L(v) 6= 0R}.

Next we state two propositions:

(19)2 x∈ the support ofL iff there existsv such thatx = v andL(v) 6= 0R.

(20) L(v) = 0R iff v /∈ the support ofL.

Let us considerR and let us considerV. The functor0LCV yields a linear combination ofV and
is defined by:

(Def. 6) The support of0LCV = /0.

The following proposition is true

(22)3 0LCV (v) = 0R.

Let us considerR, let us considerV, and let us considerA. A linear combination ofV is said to
be a linear combination ofA if:

(Def. 7) The support of it⊆ A.

In the sequell is a linear combination ofA.
The following four propositions are true:

(25)4 If A⊆ B, thenl is a linear combination ofB.

(26) 0LCV is a linear combination ofA.

(27) For every linear combinationl of /0the carrier ofV holdsl = 0LCV .

(28) L is a linear combination of the support ofL.

Let us considerR, let us considerV, let us considerF , and let us considerf . The functorf F
yielding a finite sequence of elements of the carrier ofV is defined as follows:

(Def. 8) len( f F) = lenF and for everyi such thati ∈ dom( f F) holds( f F)(i) = Fi · f (Fi).

We now state several propositions:

(32)5 If i ∈ domF andv = F(i), then( f F)(i) = v· f (v).

(33) f ε(the carrier ofV) = ε(the carrier ofV).

2 The propositions (16)–(18) have been removed.
3 The proposition (21) has been removed.
4 The propositions (23) and (24) have been removed.
5 The propositions (29)–(31) have been removed.
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(34) f 〈v〉= 〈v· f (v)〉.

(35) f 〈v1,v2〉= 〈v1 · f (v1),v2 · f (v2)〉.

(36) f 〈v1,v2,v3〉= 〈v1 · f (v1),v2 · f (v2),v3 · f (v3)〉.

(37) f (F a G) = ( f F)a ( f G).

Let us considerR, let us considerV, and let us considerL. The functor∑L yielding a vector of
V is defined as follows:

(Def. 9) There existsF such thatF is one-to-one and rngF = the support ofL and∑L = ∑(L F).

The following propositions are true:

(40)6 If 0R 6= 1R, thenA 6= /0 andA is linearly closed iff for everyl holds∑ l ∈ A.

(41) ∑(0LCV ) = 0V .

(42) For every linear combinationl of /0the carrier ofV holds∑ l = 0V .

(43) For every linear combinationl of {v} holds∑ l = v· l(v).

(44) If v1 6= v2, then for every linear combinationl of {v1,v2} holds∑ l = v1 · l(v1)+v2 · l(v2).

(45) If the support ofL = /0, then∑L = 0V .

(46) If the support ofL = {v}, then∑L = v·L(v).

(47) If the support ofL = {v1,v2} andv1 6= v2, then∑L = v1 ·L(v1)+v2 ·L(v2).

Let us considerR, let us considerV, and let us considerL1, L2. Let us observe thatL1 = L2 if
and only if:

(Def. 10) For everyv holdsL1(v) = L2(v).

Let us considerR, let us considerV, and let us considerL1, L2. The functorL1 + L2 yields a
linear combination ofV and is defined by:

(Def. 11) For everyv holds(L1 +L2)(v) = L1(v)+L2(v).

Next we state several propositions:

(51)7 The support ofL1 +L2 ⊆ (the support ofL1)∪ (the support ofL2).

(52) SupposeL1 is a linear combination ofA andL2 is a linear combination ofA. ThenL1 +L2

is a linear combination ofA.

(53) LetRbe a commutative ring,V be a right module overR, andL1, L2 be linear combinations
of V. ThenL1 +L2 = L2 +L1.

(54) L1 +(L2 +L3) = (L1 +L2)+L3.

(55) LetRbe a commutative ring,V be a right module overR, andL be a linear combination of
V. ThenL+0LCV = L and0LCV +L = L.

Let us considerR, let us considerV, a, and let us considerL. The functorL ·a yielding a linear
combination ofV is defined by:

(Def. 12) For everyv holds(L ·a)(v) = L(v) ·a.

Next we state the proposition

6 The propositions (38) and (39) have been removed.
7 The propositions (48)–(50) have been removed.
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(58)8 The support ofL ·a⊆ the support ofL.

In the sequelR1 is an integral domain,V1 is a right module overR1, L4 is a linear combination
of V1, anda1 is a scalar ofR1.

The following propositions are true:

(59) If a1 6= 0(R1), then the support ofL4 ·a1 = the support ofL4.

(60) L ·0R = 0LCV .

(61) If L is a linear combination ofA, thenL ·a is a linear combination ofA.

(62) L · (a+b) = L ·a+L ·b.

(63) (L1 +L2) ·a = L1 ·a+L2 ·a.

(64) (L ·b) ·a = L · (b·a).

(65) L ·1R = L.

Let us considerR, let us considerV, and let us considerL. The functor−L yielding a linear
combination ofV is defined as follows:

(Def. 13) −L = L ·−1R.

Let us note that the functor−L is involutive.
One can prove the following propositions:

(67)9 (−L)(v) =−L(v).

(68) If L1 +L2 = 0LCV , thenL2 =−L1.

(69) The support of−L = the support ofL.

(70) If L is a linear combination ofA, then−L is a linear combination ofA.

Let us considerR, let us considerV, and let us considerL1, L2. The functorL1−L2 yielding a
linear combination ofV is defined by:

(Def. 14) L1−L2 = L1 +−L2.

The following propositions are true:

(73)10 (L1−L2)(v) = L1(v)−L2(v).

(74) The support ofL1−L2 ⊆ (the support ofL1)∪ (the support ofL2).

(75) SupposeL1 is a linear combination ofA andL2 is a linear combination ofA. ThenL1−L2

is a linear combination ofA.

(76) L−L = 0LCV .

(77) ∑(L1 +L2) = ∑L1 +∑L2.

For simplicity, we adopt the following rules:R denotes an integral domain,V denotes a right
module overR, L, L1, L2 denote linear combinations ofV, anda denotes a scalar ofR.

The following propositions are true:

(78) ∑(L ·a) = ∑L ·a.

(79) ∑(−L) =−∑L.

(80) ∑(L1−L2) = ∑L1−∑L2.

8 The propositions (56) and (57) have been removed.
9 The proposition (66) has been removed.

10 The propositions (71) and (72) have been removed.
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