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The articlesl[¥],[3],19], 1], [10], 12], [11],[8], [6], [4], and.[5] provide the notation and terminol-
ogy for this paper.

For simplicity, we adopt the following conventioR denotes a ringy denotes a right module
over R, W, Wi, Wo, W5 denote submodules &f, u, ug, up, v, v1, V2> denote vectors of/, andx
denotes a set.

Let us consideR, let us conside¥, and let us considati, Wo. The functoMy +Ws yields a
strict submodule 0¥ and is defined as follows:

(Def. 1) The carrier of\y +Wo = {v+u:veWy A ueWo}.

Let us consideR, let us consideY, and let us considéty, W,. The functoMh "W yielding a
strict submodule o¥ is defined as follows:

(Def. 2) The carrier of\y "W, = (the carrier of\;) N (the carrier of\,).
We now state a number of propositions:
(SH x € W +Ws iff there existvy, vo such thatr; € Wy andvs € Wo andx = v + vo.
(6) IfveWporveW,, thenve Wy +W.
(7) xeW NWs iff xe Wy andx e Wo.
(8) For every strict submodul®& of V holdsW +W =W.
(9) Wi+Wo=Wo+Wi.
(10) Wi+ (Ve +W5) = (W +Wk) +W.
(11) W is a submodule ofV; +Ws, andWs is a submodule oy +Ws.
(12) For every strict submodul of V holdsW is a submodule o\, iff Wy +Wo =Wb.
(13) For every strict submoduWy of V holdsOy +W =W andW + 0y =W.

(14) For every strict right modul overR holdsOy + Qy =V andQy +0y =V.

1 The propositions (1)—(4) have been removed.
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(15) LetV be a right module oveR andW be a submodule d6f. ThenQy +W = the right
module structure df andW + Qy = the right module structure &f.

(16) For every strict right modulé overR holdsQy + Qy = V.

(17) For every strict submoduW¥ of V holdswW nW =W.

(18) WiNWo =WoNW,.

(19) Win(WonWs) = (WA NW,) NWA.

(20) WiNW, is a submodule dfV; andWy NW is a submodule of\b,.

(21)(i)) For every strict submodul®; of V such thai\; is a submodule of\, holdsWy NWs =
W, and

(iiy  for everyW; such thathp NV, =Wy holdsW is a submodule of\,.
(22) If Wy is a submodule df\,, thenWy NW5 is a submodule o\, NWs.
(23) If Wy is a submodule df, thenWy NW is a submodule of\s.

(24) If Wy is a submodule df\b, and a submodule &4, thenW, is a submodule o, NW5.
(25) OvNW =0y andWnOy =0y.

(27E] For every strict submoduM of V holdsQy "W =W andW N Qy =W.
(28) For every strict right modulé overR holdsQy NQy = V.

(29) WiNWs is a submodule oiV; +Ws.

(30) For every strict submodul of V holdsW) "W, +Wo = Ws.

(31) For every strict submodul®; of V holdsWi N (Wy +Ws) =W

(32) WiNWs+WoNWs is a submodule dib N (W +W5).

(33) If Wy is a submodule of\,, thenWo N (W +W5) = Wp NWo +Wo NG,
(34) Wo+WiNWs is a submodule ofWy +Wa) N (Wa +W5).

(35) IfWj is a submodule 0iV,, thenWs +Wi NWs = (W +Wa) N (Vo +W5).

(36) For every strict submodull; of V such that, is a submodule di; holdsWy +Wo NW5 =
(Wi +Wo) NW5.

(37) For all strict submoduléah, W, of V holdsWj +Ws =W, iff Wy NWs =W

(38) For all strict submoduleab, W5 of V such that\; is a submodule o\, holdsWy +Ws is
a submodule oW\, +Ws.

(39) IfWy is a submodule di\b, thenW, is a submodule o\, +Ws.

(40) If Wy is a submodule o\ andW, is a submodule of\s, thenW; +W is a submodule of
W5.

(41) There exist¥V such that the carrier & = (the carrier o) U (the carrier ofb) if and
only if Wy is a submodule o\, orW, is a submodule oi;.

Let us consideR and let us considéf. The functor SupV) yielding a set is defined by:

(Def. 3) For every holdsx € SulV) iff there exists a strict submoduW# of V such thatV = x.

2 The proposition (26) has been removed.
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Let us consideR and let us considéf. Observe that Sul') is non empty.
We now state the proposition

(44f| For every strict right modul¥’ overR holdsV € Sul(V).

Let us consideR, let us consideY, and let us considéty, Wo. We say thaV is the direct sum
of Wy andW, if and only if:

(Def. 4) The right module structure ¥f =W +W, andW; N\W, = Oy.

The following two propositions are true:

(46@ If V is the direct sum ofV; andWs, thenV is the direct sum o\ andW,.

(47) Every strict right modul¥ overRis the direct sum of, andQ,, and the direct sum d@y
andOy .

In the sequeC; is a coset oM, andC; is a coset of\b.
The following propositions are true:

(48) If C; meetCy, thenCy NC; is a coset oM, NWs.

(49) LetV be aright module oveR andWi, W, be submodules of . ThenV is the direct sum
of Wi andW, if and only if for every cose€; of Wy and for every coset, of W, there exists
a vectorv of V such thatty NC, = {v}.

(50) LetV be a strict right module oveR andW;, W be submodules of . ThenWy +Wso =V
if and only if for every vectow of V there exist vectors;, v, of V such thatv; € Wy and
Vo € Wb andv = vy + Vo,

(51) LetV be aright module oveR, Wi, W, be submodules &f, andv, vy, V2, Uz, U2 be vectors
of V. Supposé#/ is the direct sum of\; andW, andv = v1 + v, andv = u; + U andvy € Wy
andu; € Wy andv, € W andu, € Wo. Thenvy, = up andvs = Up.

(52) Suppos¥ =W +W, and there existg such that for allv1, v, ug, Up such thav = vy +v»
andv = u; + up andvy; € Wy andu; € Wy andv, € Wo andu, € Wo holdsvy = up andvs = up.
ThenV is the direct sum of\; and\W\s.

Let us consideR, letV be a right module oveR, let v be a vector o/, and letwW;, W, be
submodules o¥/. Let us assume that is the direct sum ofM; andWs. The functorv(Wl_Wz)

yielding an element ofthe carrier oV, the carrier oV ] is defined as follows:
(Def.5) v= (V(Wl-,Wz) )1 + (V(Wl-,Wz) )2 and(v(WLWZ) )1 eWp and(v<W1W2) )2 eWo.
Next we state two propositions:
(57ﬂ If V is the direct sum oy andWa, then (v, y,y)1 = (Vi wy))2-

(58) IfV is the direct sum ofv; andwWs, then(v<Wl‘W2))2 = (V(W2 Wl))l'

In the sequehy, A, are elements of SUW).
Let us consideR and let us considev. The functor SubJoi yields a binary operation on
SuhV) and is defined by:

(Def. 6) For allAg, Ay, Wi, W, such thath; =W, andAy; =W, holds (SubJoiV) (Ag, Ay) =W +
Wh.
3 The propositions (42) and (43) have been removed.

4 The proposition (45) has been removed.
5 The propositions (53)—(56) have been removed.
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Let us consideR and let us considér. The functor SubMe&f yielding a binary operation on

SuhV) is defined by:

(Def. 7) For allAg, Ay, Wi, Wo such thatA; =W; and A, = W, holds (SubMeeV ) (Aq, Ay) =

Wi NW.

We now state several propositions:

63f] (SuV),SubJoiv, SubMeeV) is a lattice.

(64) (SuhV),SubJoitV, SubMeeV) is a lower bound lattice.

(65) For every right modul¥ overR holds(Sub(V), SubJoirv, SubMeeV) is an upper bound

lattice.

(66) For every right modul¥ overR holds{Suk(V), SubJoirV, SubMeeV) is a bound lattice.

(67) (SukV),SubJoirv, SubMeeV) is a modular lattice.
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6 The propositions (59)—(62) have been removed.
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