Operations on Submodules in Right Module over Associative Ring

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

MML Identifier: RMOD_3.

WWW: http://mizar.org/JFM/Vol2/rmod_3.html

The articles [7], [3], [9], [1], [10], [2], [11], [8], [6], [4], and [5] provide the notation and terminology for this paper.

Let us consider R, let us consider V, and let us consider W_1 , W_2 . The functor $W_1 + W_2$ yields a strict submodule of V and is defined as follows:

(Def. 1) The carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$

Let us consider R, let us consider V, and let us consider W_1 , W_2 . The functor $W_1 \cap W_2$ yielding a strict submodule of V is defined as follows:

(Def. 2) The carrier of $W_1 \cap W_2 =$ (the carrier of $W_1) \cap$ (the carrier of W_2).

We now state a number of propositions:

- $(5)^1$ $x \in W_1 + W_2$ iff there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.
- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2 \text{ iff } x \in W_1 \text{ and } x \in W_2.$
- (8) For every strict submodule W of V holds W + W = W.
- (9) $W_1 + W_2 = W_2 + W_1$.
- (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3$.
- (11) W_1 is a submodule of $W_1 + W_2$ and W_2 is a submodule of $W_1 + W_2$.
- (12) For every strict submodule W_2 of V holds W_1 is a submodule of W_2 iff $W_1 + W_2 = W_2$.
- (13) For every strict submodule W of V holds $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.
- (14) For every strict right module V over R holds $\mathbf{0}_V + \Omega_V = V$ and $\Omega_V + \mathbf{0}_V = V$.

¹ The propositions (1)–(4) have been removed.

- (15) Let V be a right module over R and W be a submodule of V. Then $\Omega_V + W =$ the right module structure of V and $W + \Omega_V =$ the right module structure of V.
- (16) For every strict right module *V* over *R* holds $\Omega_V + \Omega_V = V$.
- (17) For every strict submodule W of V holds $W \cap W = W$.
- (18) $W_1 \cap W_2 = W_2 \cap W_1$.
- $(19) \quad W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$
- (20) $W_1 \cap W_2$ is a submodule of W_1 and $W_1 \cap W_2$ is a submodule of W_2 .
- (21)(i) For every strict submodule W_1 of V such that W_1 is a submodule of W_2 holds $W_1 \cap W_2 = W_1$, and
- (ii) for every W_1 such that $W_1 \cap W_2 = W_1$ holds W_1 is a submodule of W_2 .
- (22) If W_1 is a submodule of W_2 , then $W_1 \cap W_3$ is a submodule of $W_2 \cap W_3$.
- (23) If W_1 is a submodule of W_3 , then $W_1 \cap W_2$ is a submodule of W_3 .
- (24) If W_1 is a submodule of W_2 and a submodule of W_3 , then W_1 is a submodule of $W_2 \cap W_3$.
- (25) $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (27)² For every strict submodule W of V holds $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (28) For every strict right module V over R holds $\Omega_V \cap \Omega_V = V$.
- (29) $W_1 \cap W_2$ is a submodule of $W_1 + W_2$.
- (30) For every strict submodule W_2 of V holds $W_1 \cap W_2 + W_2 = W_2$.
- (31) For every strict submodule W_1 of V holds $W_1 \cap (W_1 + W_2) = W_1$.
- (32) $W_1 \cap W_2 + W_2 \cap W_3$ is a submodule of $W_2 \cap (W_1 + W_3)$.
- (33) If W_1 is a submodule of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3$ is a submodule of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (35) If W_1 is a submodule of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) For every strict submodule W_1 of V such that W_1 is a submodule of W_3 holds $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (37) For all strict submodules W_1 , W_2 of V holds $W_1 + W_2 = W_2$ iff $W_1 \cap W_2 = W_1$.
- (38) For all strict submodules W_2 , W_3 of V such that W_1 is a submodule of W_2 holds $W_1 + W_3$ is a submodule of $W_2 + W_3$.
- (39) If W_1 is a submodule of W_2 , then W_1 is a submodule of $W_2 + W_3$.
- (40) If W_1 is a submodule of W_3 and W_2 is a submodule of W_3 , then $W_1 + W_2$ is a submodule of W_3 .
- (41) There exists W such that the carrier of W = (the carrier of W_1) \cup (the carrier of W_2) if and only if W_1 is a submodule of W_2 or W_2 is a submodule of W_1 .

Let us consider R and let us consider V. The functor Sub(V) yielding a set is defined by:

(Def. 3) For every x holds $x \in Sub(V)$ iff there exists a strict submodule W of V such that W = x.

² The proposition (26) has been removed.

Let us consider R and let us consider V. Observe that Sub(V) is non empty. We now state the proposition

(44)³ For every strict right module *V* over *R* holds $V \in \text{Sub}(V)$.

Let us consider R, let us consider V, and let us consider W_1 , W_2 . We say that V is the direct sum of W_1 and W_2 if and only if:

(Def. 4) The right module structure of $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

The following two propositions are true:

- $(46)^4$ If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (47) Every strict right module V over R is the direct sum of $\mathbf{0}_V$ and Ω_V and the direct sum of Ω_V and $\mathbf{0}_V$.

In the sequel C_1 is a coset of W_1 and C_2 is a coset of W_2 . The following propositions are true:

- (48) If C_1 meets C_2 , then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (49) Let V be a right module over R and W_1 , W_2 be submodules of V. Then V is the direct sum of W_1 and W_2 if and only if for every coset C_1 of W_1 and for every coset C_2 of W_2 there exists a vector v of V such that $C_1 \cap C_2 = \{v\}$.
- (50) Let V be a strict right module over R and W_1 , W_2 be submodules of V. Then $W_1 + W_2 = V$ if and only if for every vector v of V there exist vectors v_1 , v_2 of V such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (51) Let V be a right module over R, W_1 , W_2 be submodules of V, and v, v_1 , v_2 , u_1 , u_2 be vectors of V. Suppose V is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$. Then $v_1 = u_1$ and $v_2 = u_2$.
- (52) Suppose $V = W_1 + W_2$ and there exists v such that for all v_1, v_2, u_1, u_2 such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

Let us consider R, let V be a right module over R, let v be a vector of V, and let W_1 , W_2 be submodules of V. Let us assume that V is the direct sum of W_1 and W_2 . The functor $v_{\langle W_1, W_2 \rangle}$ yielding an element of [: the carrier of V, the carrier of V:] is defined as follows:

$$(\text{Def. 5}) \quad v = (v_{\left\langle W_1, W_2 \right\rangle})_1 + (v_{\left\langle W_1, W_2 \right\rangle})_2 \text{ and } (v_{\left\langle W_1, W_2 \right\rangle})_1 \in W_1 \text{ and } (v_{\left\langle W_1, W_2 \right\rangle})_2 \in W_2.$$

Next we state two propositions:

- (57)⁵ If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_1 = (v_{\langle W_2, W_1 \rangle})_2$.
- (58) If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_2 = (v_{\langle W_2, W_1 \rangle})_1$.

In the sequel A_1 , A_2 are elements of Sub(V).

Let us consider R and let us consider V. The functor SubJoin V yields a binary operation on Sub(V) and is defined by:

(Def. 6) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $(SubJoin V)(A_1, A_2) = W_1 + W_2$.

³ The propositions (42) and (43) have been removed.

⁴ The proposition (45) has been removed.

⁵ The propositions (53)–(56) have been removed.

Let us consider R and let us consider V. The functor SubMeet V yielding a binary operation on Sub(V) is defined by:

(Def. 7) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

We now state several propositions:

- $(63)^6$ $\langle \text{Sub}(V), \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lattice.
- (64) $\langle \text{Sub}(V), \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lower bound lattice.
- (65) For every right module V over R holds $\langle \operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V \rangle$ is an upper bound lattice.
- (66) For every right module V over R holds $\langle Sub(V), SubJoin V, SubMeet <math>V \rangle$ is a bound lattice.
- (67) $\langle \text{Sub}(V), \text{SubJoin } V, \text{SubMeet } V \rangle$ is a modular lattice.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [4] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [5] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in right module over associative ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rmod_2.html.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain 1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [11] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received October 22, 1990

Published January 2, 2004

⁶ The propositions (59)–(62) have been removed.