Submodules and Cosets of Submodules in Right Module over Associative Ring

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

MML Identifier: RMOD_2.

WWW: http://mizar.org/JFM/Vol2/rmod_2.html

The articles [7], [3], [9], [10], [1], [2], [6], [8], [4], and [5] provide the notation and terminology for this paper.

For simplicity, we follow the rules: x is a set, R is a ring, a is a scalar of R, V, X, Y are right modules over R, u, v, v₁, v₂ are vectors of V, and V₁, V₂, V₃ are subsets of V.

Let us consider R, V, V_1 . We say that V_1 is linearly closed if and only if:

(Def. 1) For all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $v \cdot a \in V_1$.

We now state several propositions:

- $(4)^1$ If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $0_V \in V_1$.
- (5) If V_1 is linearly closed, then for every v such that $v \in V_1$ holds $-v \in V_1$.
- (6) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v u \in V_1$.
- (7) $\{0_V\}$ is linearly closed.
- (8) If the carrier of $V = V_1$, then V_1 is linearly closed.
- (9) If V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u : v \in V_1 \land u \in V_2\}$, then V_3 is linearly closed.
- (10) If V_1 is linearly closed and V_2 is linearly closed, then $V_1 \cap V_2$ is linearly closed.

Let us consider *R* and let us consider *V*. A right module over *R* is said to be a submodule of *V* if it satisfies the conditions (Def. 2).

- (Def. 2)(i) The carrier of it \subseteq the carrier of V,
 - (ii) the zero of it = the zero of V,
 - (iii) the addition of it = (the addition of V) [: the carrier of it, the carrier of it:], and
 - (iv) the right multiplication of it = (the right multiplication of V) | [: the carrier of it, the carrier of R:].

1

¹ The propositions (1)–(3) have been removed.

We follow the rules: W, W_1 , W_2 denote submodules of V and w, w_1 , w_2 denote vectors of W. One can prove the following propositions:

- $(16)^2$ If $x \in W_1$ and W_1 is a submodule of W_2 , then $x \in W_2$.
- (17) If $x \in W$, then $x \in V$.
- (18) w is a vector of V.
- (19) $0_W = 0_V$.
- (20) $0_{(W_1)} = 0_{(W_2)}$.
- (21) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (22) If w = v, then $w \cdot a = v \cdot a$.
- (23) If w = v, then -v = -w.
- (24) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- (25) $0_V \in W$.
- (26) $0_{(W_1)} \in W_2$.
- (27) $0_W \in V$.
- (28) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (29) If $v \in W$, then $v \cdot a \in W$.
- (30) If $v \in W$, then $-v \in W$.
- (31) If $u \in W$ and $v \in W$, then $u v \in W$.
- (32) V is a submodule of V.
- (33) Let X, V be strict right modules over R. If V is a submodule of X and X is a submodule of V, then V = X.

Let us consider R, V. One can verify that there exists a submodule of V which is strict. Next we state several propositions:

- (34) If V is a submodule of X and X is a submodule of Y, then V is a submodule of Y.
- (35) If the carrier of $W_1 \subseteq$ the carrier of W_2 , then W_1 is a submodule of W_2 .
- (36) If for every v such that $v \in W_1$ holds $v \in W_2$, then W_1 is a submodule of W_2 .
- (37) For all strict submodules W_1 , W_2 of V such that the carrier of W_1 = the carrier of W_2 holds $W_1 = W_2$.
- (38) For all strict submodules W_1 , W_2 of V such that for every vector v of V holds $v \in W_1$ iff $v \in W_2$ holds $W_1 = W_2$.
- (39) Let V be a strict right module over R and W be a strict submodule of V. If the carrier of W = the carrier of V, then W = V.
- (40) Let *V* be a strict right module over *R* and *W* be a strict submodule of *V*. If for every vector v of *V* holds $v \in W$, then W = V.
- (41) If the carrier of $W = V_1$, then V_1 is linearly closed.

 $^{^2}$ The propositions (11)–(15) have been removed.

(42) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists a strict submodule W of V such that $V_1 =$ the carrier of W.

Let us consider R and let us consider V. The functor $\mathbf{0}_V$ yields a strict submodule of V and is defined as follows:

(Def. 3) The carrier of $\mathbf{0}_V = \{0_V\}$.

Let us consider R and let us consider V. The functor Ω_V yields a strict submodule of V and is defined as follows:

(Def. 4) Ω_V = the right module structure of V.

One can prove the following propositions:

- $(46)^3$ $x \in \mathbf{0}_V$ iff $x = 0_V$.
- (47) $\mathbf{0}_W = \mathbf{0}_V$.
- (48) $\mathbf{0}_{(W_1)} = \mathbf{0}_{(W_2)}$.
- (49) $\mathbf{0}_W$ is a submodule of V.
- (50) $\mathbf{0}_V$ is a submodule of W.
- (51) $\mathbf{0}_{(W_1)}$ is a submodule of W_2 .
- (53)⁴ Every strict right module V over R is a submodule of Ω_V .

Let us consider R, let us consider V, and let us consider v, W. The functor v + W yields a subset of V and is defined by:

(Def. 5) $v + W = \{v + u : u \in W\}.$

Let us consider R, let us consider V, and let us consider W. A subset of V is called a coset of W if:

(Def. 6) There exists v such that it = v + W.

In the sequel B, C denote cosets of W.

One can prove the following propositions:

- (57)⁵ $x \in v + W$ iff there exists u such that $u \in W$ and x = v + u.
- (58) $0_V \in v + W \text{ iff } v \in W.$
- (59) $v \in v + W$.
- (60) $0_V + W =$ the carrier of W.
- (61) $v + \mathbf{0}_V = \{v\}.$
- (62) $v + \Omega_V = \text{the carrier of } V.$
- (63) $0_V \in v + W$ iff v + W = the carrier of W.
- (64) $v \in W$ iff v + W = the carrier of W.
- (65) If $v \in W$, then $v \cdot a + W =$ the carrier of W.
- (66) $u \in W \text{ iff } v + W = v + u + W.$

³ The propositions (43)–(45) have been removed.

⁴ The proposition (52) has been removed.

⁵ The propositions (54)–(56) have been removed.

- (67) $u \in W \text{ iff } v + W = (v u) + W.$
- (68) $v \in u + W \text{ iff } u + W = v + W.$
- (69) If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$.
- (70) If $v \in W$, then $v \cdot a \in v + W$.
- (71) If $v \in W$, then $-v \in v + W$.
- (72) $u+v \in v+W \text{ iff } u \in W.$
- (73) $v u \in v + W \text{ iff } u \in W.$
- $(75)^6$ $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v v_1$.
- (76) There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ iff $v_1 v_2 \in W$.
- (77) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$.
- (78) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v v_1 = u$.
- (79) For all strict submodules W_1 , W_2 of V holds $v + W_1 = v + W_2$ iff $W_1 = W_2$.
- (80) For all strict submodules W_1 , W_2 of V such that $v + W_1 = u + W_2$ holds $W_1 = W_2$.
- (81) There exists C such that $v \in C$.
- (82) C is linearly closed iff C = the carrier of W.
- (83) For all strict submodules W_1 , W_2 of V and for every coset C_1 of W_1 and for every coset C_2 of W_2 such that $C_1 = C_2$ holds $W_1 = W_2$.
- (84) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (85) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (86) The carrier of W is a coset of W.
- (87) The carrier of V is a coset of Ω_V .
- (88) If V_1 is a coset of Ω_V , then V_1 = the carrier of V.
- (89) $0_V \in C$ iff C = the carrier of W.
- (90) $u \in C \text{ iff } C = u + W.$
- (91) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u + v_1 = v$.
- (92) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (93) There exists C such that $v_1 \in C$ and $v_2 \in C$ iff $v_1 v_2 \in W$.
- (94) If $u \in B$ and $u \in C$, then B = C.

⁶ The proposition (74) has been removed.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [5] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 22, 1990

Published January 2, 2004