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The articles([7],[[3],[9],[10],[1],T2], [6], [8], [4], and.[5] provide the notation and terminology for
this paper.

For simplicity, we follow the rulesx is a setRis a ring,a is a scalar oR, V, X, Y are right
modules oveR, u, v, v1, V» are vectors of/, andVy, Vs, V3 are subsets of .

Let us consideR, V, Vi. We say thaV; is linearly closed if and only if:

(Def. 1) For allv, u such thatv € V; andu € V; holdsv+u € V; and for alla, v such thatv e V;
holdsv-a e V;.

We now state several propositions:

(4H If V1 # 0 andV; is linearly closed, then\0e V.

(5) IfVvyislinearly closed, then for evemysuch thaw € V1 holds—v € V.

(6) If Vyislinearly closed, then for all, u such thaw € V; andu € V; holdsv—u € V;.
(7) {Ov}islinearly closed.

(8) Ifthe carrier oV =Vy, thenV; is linearly closed.

(9) IfVhislinearly closed anif, is linearly closed antf; = {v+u:veVi A ueV,}, thenVs
is linearly closed.

(10) IfVyislinearly closed an¥, is linearly closed, thel; NV; is linearly closed.

Let us consideR and let us considey. A right module oveRR is said to be a submodule of
if it satisfies the conditions (Def. 2).
(Def. 2)(1)) The carrier of itC the carrier oV,
(ii) the zero of it=the zero ol,
(iii)  the addition of it= (the addition o) [[:the carrier of it, the carrier of it:and

(iv) the right multiplication of it= (the right multiplication o) [[:the carrier of it, the carrier
of R.

1 The propositions (1)—(3) have been removed.
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We follow the rulesW, Wy, W» denote submodules ®f andw, wq, wo denote vectors oiV.
One can prove the following propositions:

(16f] If xeW; andw is a submodule df\, thenx € Wo.
(A7) IfxeW,thenxeV.

(18) wis a vector oiv.

(19) Qv =0v.

(20) Q) =Owy)-

(21) Ifwy =vandw;, = u, thenw; +wp = v+u.
(22) Ifw=yv,thenw-a=v-a.

(23) Ifw=yv,then—v=—w.

(24) Ifw; =vandw, = u, thenw; —wp =v—u.
(25) G eW.

(26) OQwy) €Wo.

(27) Qv eV

(28) IfueWandveW, thenu+veW.

(29) IfveW, thenv-aeW.

(30) IfveW, then—veW.

(31) lfueWandveW, thenu—veW.

(32) V is asubmodule o¥.

(33) LetX,V be strict right modules oveR. If V is a submodule oX andX is a submodule of
V, thenV = X.

Let us consideR, V. One can verify that there exists a submodul® afhich is strict.
Next we state several propositions:

(34) IfVis asubmodule oX andX is a submodule of, thenV is a submodule of.
(35) If the carrier ofM; C the carrier of\,, thenW, is a submodule of\..
(36) If for everyv such thats € Wy holdsv € Ws, thenW is a submodule of\,.

(37) For all strict submoduléah, W, of V such that the carrier &4 = the carrier oM, holds
W =Wo.

(88) For all strict submoduled), W, of V such that for every vector of V holdsv € W iff
v eW, holdsWy =Ws.

(39) LetV be a strict right module oveR andW be a strict submodule &f. If the carrier of
W = the carrier ofv, thenW = V.

(40) LetV be a strict right module oveR andW be a strict submodule &f. If for every vector
v of V holdsv € W, thenW = V.

(41) If the carrier oW =V, thenV; is linearly closed.

2 The propositions (11)—(15) have been removed.
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(42) If vy £ 0andV; is linearly closed, then there exists a strict submodidlef V such that
V1 = the carrier ofW.

Let us consideR and let us conside¥. The functorOy yields a strict submodule &f and is
defined as follows:

(Def. 3) The carrier oby = {0y }.

Let us consideR and let us conside¥. The functorQy yields a strict submodule &f and is
defined as follows:

(Def. 4) Qy = the right module structure &f.
One can prove the following propositions:
(46f] xeoyiff x=0y.
(47) Ow=0y.
(48)  Owy) = Owy)-
(49) Ow is a submodule of.
(50) Oy is a submodule ofv.
(51) Oy, is a submodule of\,.
(53@ Every strict right modul®& overRis a submodule of)y .

Let us consideR, let us consideY, and let us considar, W. The functorv+W yields a subset
of V and is defined by:

(Def.5) v4+W={v4+u:ueW}.

Let us consideR, let us consideY, and let us consid&f/. A subset ol is called a coset oV
if:

(Def. 6) There exists such that it=v+W.

In the sequeB, C denote cosets /.
One can prove the following propositions:

(57F] x e v+W iff there existsu such thau € W andx = v+u.
(58) O ev+Wiff veW.

(59) vev+Ww.

(60) Oy +W = the carrier ofV.

(61) v+0y ={v}.

(62) v+ Qy = the carrier oiV.

(63) Oy € v+ W iff v4+W = the carrier ofV.

(64) veW iff v+W = the carrier ofV.

(65) If ve W, thenv-a+W = the carrier ofV.

(66) ueWiff v4+W =v+u+W.

3 The propositions (43)—(45) have been removed.
4 The proposition (52) has been removed.
5 The propositions (54)—(56) have been removed.
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ueWiff v4W = (v—u) +W.

veu+Wiff u+W =v+W.

If ue vi+W andu e v +W, thenvy + W = v, +W.

If ve W, thenv-acv+W.

If ve W, then—vev+W.

u+vev+Wiff ue w.

V—uev+Wiff uew.

u € v+ W iff there existsvy such that/; € W andu=v—vj.

There existy such that, € v+W andvo, e v+W iff vi —vo € W.

If v+W = u+W, then there existg; such that; ¢ W andv+v; = u.

If vi+W = u+W, then there existg; such that; ¢ W andv—v; = u.
For all strict submodule&s, W, of V holdsv+W; = v+Ws iff Wi =W,
For all strict submodulesh, W, of V such that/+W; = u+W, holdsW;, = Ws.
There exist€ such thaw € C.

Cis linearly closed iffC = the carrier ofw.

For all strict submoduléss, W, of V and for every cosef; of Wy and for every coset,

of W, such thatC; = C, holdsW, =Ws.
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{v} is a coset oby.

If V1 is a coset oDy, then there existg such thaw; = {v}.

The carrier ofV is a coset ofV.

The carrier oV is a coset of)y.

If V1 is a coset ofdy, thenV, = the carrier ol.

0, € Ciff C =the carrier ofW.

ueCiff C=u+W.

If ue C andv € C, then there existg; such that; e W andu+vy = V.
If ue C andv € C, then there existg; such that; e W andu—vy = .
There exist€ such that; € Candv, € Ciiff vi —vo € W.

Ifue BandueC, thenB=_C.

6 The proposition (74) has been removed.
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