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Summary. Finite-dimensional real linear spaces are defined. The dimension of such
spaces is the cardinality of a basis. Obviously, each two basis have the same cardinality. We
prove the Steinitz theorem and the Exchange Lemma. We also investigate some fundamental
facts involving the dimension of real linear spaces.
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The articles([9],[[8], [[16], [10], [[7], [[2], 7], 14], [[5], [[1], [6], I[3], [13], [15], [12], [11], and [14]
provide the notation and terminology for this paper.

1. PRELIMIARIES

For simplicity, we use the following conventioX:is a real linear spacy is a subspace of, x is
a sethis a natural numbey; is a vector oV, K1, Ko are linear combinations &f, andX is a subset
of V.

Next we state a number of propositions:

(1) If X is linearly independent and the supportkaf C X and the support oK, C X and
S Ki=35Kp, thenK; = Ko.

(2) LetV be areal linear space ardbe a subset of. If Ais linearly independent, then there
exists a basis of V such thaiA C |.

(3) LetL be alinear combination &f andx be a vector o¥/. Thenx € the support ot. if and
only if there existy such tha = vandL(v) # 0.

(SH LetL be a linear combination &f, F, G be finite sequences of elements of the carrier of
V, andP be a permutation of dof If G=F -P, theny (LF) = S (L G).

(6) LetL be alinear combination &f andF be a finite sequence of elements of the carrier of
V. If the support oL misses rné, theny (LF) = Oy.

(7) LetF be a finite sequence of elements of the carrier oSupposd- is one-to-one. Lekt
be a linear combination &f. If the support ol C rngF, theny (LF) =S L.

(8) LetL be alinear combination &f andF be a finite sequence of elements of the carrier of
V. Then there exists a linear combinatiknof V such that the support ¢ = rngF N (the
supportofL) andLF =K F.

1 The proposition (4) has been removed.
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(9) LetL be a linear combination df, A be a subset of/, andF be a finite sequence of
elements of the carrier &. Suppose rng C the carrier of LifA). Then there exists a linear
combinatiorK of Asuchtha (LF) = S K.

(10) LetL be alinear combination &f andA be a subset of . Suppose the support bfC the
carrier of Lin(A). Then there exists a linear combinatidrof A such thaty L = S K.

(11) LetL be a linear combination &f. Suppose the support &fC the carrier ofW. LetK
be a linear combination &/. Suppos& = L[the carrier olV. Then the support df = the
support ofK andy L = 5 K.

(12) LetK be a linear combination a. Then there exists a linear combinatibrof V such
that the support oK = the supportof. andy K =5 L.

(13) LetL be a linear combination &f. Suppose the support &fC the carrier oflW. Then
there exists a linear combinatiéh of W such that the support ¢€ = the support oL and

TK=5L.
(14) For every basisof V and for every vectov of V holdsv € Lin(l).

(15) LetAbe asubset V. Suppose is linearly independent. Then there exists a suBgat
V such thaB is linearly independent arigl= A.

(16) LetAbe a subset df. Supposeé is linearly independent an®l C the carrier ofV. Then
there exists a subsBtof W such thaB is linearly independent ari8i= A.

(17) For every basié of W there exists a basB of V such thatA C B.

(18) LetAbe asubsetdf. Supposéis linearly independent. Letbe a vector oV. If ve A
then for every subsd of V such thaB = A\ {v} holdsv ¢ Lin(B).

(19) Letl be a basis of andA be a non empty subset ¥f SupposeA missed. LetB be a
subset o¥/. If B=1UA, thenB is linearly dependent.

(20) For every subsek of V such thatA C the carrier ofV holds Lin(A) is a subspace &.
(21) Forevery subsétofV and for every subs& of W such thatA = B holds Lin(A) = Lin(B).

2. THE STEINITZ THEOREM
Next we state two propositions:

(22) LetA, B be finite subsets df andv be a vector ol/. Supposer € Lin(AUB) andv ¢
Lin(B). Then there exists a vectarof V such thatv € Aandw € Lin(((AUB) \ {w}) U{v}).

(23) LetA, B be finite subsets of. Suppose the RLS structure\6f= Lin(A) andB is linearly
iﬂdegendent. TheB < A and there exists a finite subs2bf V such thalC C AandC =
A — B and the RLS structure & = Lin(BUC).

3. FNITE DIMENSIONAL VECTOR SPACES

LetV be areal linear space. We say tiais finite dimensional if and only if:
(Def. 1) There exists a finite subset\fwhich is a basis of.

Let us observe that there exists a real linear space which is strict and finite dimensional.
LetV be areal linear space. Let us observe thé finite dimensional if and only if:

(Def. 2) There exists a finite subset\fwhich is a basis o¥.

We now state several propositions:
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(24) IfV is finite dimensional, then every basis\ofs finite.

(25) IfV is finite dimensional, then for every subgebf V such thatA is linearly independent
holdsA s finite.

(26) IfV is finite dimensional, then for all basésB of V holdsA = B.
(27) Oy is finite dimensional.

(28) IfV is finite dimensional, theW is finite dimensional.

LetV be areal linear space. Note that there exists a subspatsvbfch is finite dimensional
and strict.

LetV be a finite dimensional real linear space. Note that every subspatésdfnite dimen-
sional.

LetV be a finite dimensional real linear space. Note that there exists a subspaeehath is
strict.

4. THE DIMENSION OF AVECTOR SPACE

LetV be areal linear space. Let us assume Yha finite dimensional. The functor dify) yields
a natural number and is defined as follows:

(Def. 3) For every basisof V holds dimV) = T.

We adopt the following rulesY is a finite dimensional real linear spad¥, Wi, W5 are sub-
spaces of/, andu, v are vectors of/.
The following propositions are true:

(29) dimw) <dim(V).

(30) For every subsé& of V such thatA is linearly independent holds = dim(Lin(A)).
(31) dimV)=dim(Qy).

(32) dimV) =dim(W) iff Qy = Q.

(33) dimV)=0iff Qy =0y.

(34) dimV) =1 iff there existss such thaw # Oy andQy = Lin({v}).

(35) dim(V) = 2iff there existu, v such thau # v and{u,v} is linearly independent ar@dy, =
Lin({u,v}).

(36)  dimWy +Wb) + dim(Wi NWs) = dim(W) + dim(W).

(B7)  dimWiNW) > (dim(Wy) + dim(Ws)) — dim(V).

(38) IfVisthe direct sum of\y andWs, then din{V) = dim(Wy) + dim(W.).
(39) n<dim(V) iff there exists a strict subspa®é of V such that diniw) = n.

Let V be a finite dimensional real linear space andndie a natural number. The functor
Suly(V) yields a set and is defined as follows:

(Def. 4) x e Suly(V) iff there exists a strict subspa@é of V such thaw = x and dim(W) = n.
One can prove the following propositions:
(40) If n<dim(V), then Suh(V) is non empty.
(41) Ifdim(V) < n, then Suh(V) = 0.
(42) Sul(W) C Suly(V).
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