The Steinitz Theorem and the Dimension of a Real Linear Space

Jing-Chao Chen Shanghai Jiaotong University Shanghai

Summary. Finite-dimensional real linear spaces are defined. The dimension of such spaces is the cardinality of a basis. Obviously, each two basis have the same cardinality. We prove the Steinitz theorem and the Exchange Lemma. We also investigate some fundamental facts involving the dimension of real linear spaces.

MML Identifier: RLVECT 5.

WWW: http://mizar.org/JFM/Vol9/rlvect_5.html

The articles [9], [8], [16], [10], [7], [2], [17], [4], [5], [1], [6], [3], [13], [15], [12], [11], and [14] provide the notation and terminology for this paper.

1. Prelimiaries

For simplicity, we use the following convention: V is a real linear space, W is a subspace of V, X is a set, Y is a natural number, Y is a vector of Y, Y are linear combinations of Y, and Y is a subset of Y.

Next we state a number of propositions:

- (1) If *X* is linearly independent and the support of $K_1 \subseteq X$ and the support of $K_2 \subseteq X$ and $\sum K_1 = \sum K_2$, then $K_1 = K_2$.
- (2) Let V be a real linear space and A be a subset of V. If A is linearly independent, then there exists a basis I of V such that $A \subseteq I$.
- (3) Let *L* be a linear combination of *V* and *x* be a vector of *V*. Then $x \in$ the support of *L* if and only if there exists *v* such that x = v and $L(v) \neq 0$.
- (5) Let L be a linear combination of V, F, G be finite sequences of elements of the carrier of V, and P be a permutation of dom F. If $G = F \cdot P$, then $\sum (LF) = \sum (LG)$.
- (6) Let L be a linear combination of V and F be a finite sequence of elements of the carrier of V. If the support of L misses rng F, then $\sum (LF) = 0_V$.
- (7) Let F be a finite sequence of elements of the carrier of V. Suppose F is one-to-one. Let L be a linear combination of V. If the support of $L \subseteq \operatorname{rng} F$, then $\sum (L F) = \sum L$.
- (8) Let L be a linear combination of V and F be a finite sequence of elements of the carrier of V. Then there exists a linear combination K of V such that the support of $K = \operatorname{rng} F \cap (\text{the support of } L)$ and LF = KF.

1

© Association of Mizar Users

¹ The proposition (4) has been removed.

- (9) Let L be a linear combination of V, A be a subset of V, and F be a finite sequence of elements of the carrier of V. Suppose $\operatorname{rng} F \subseteq \operatorname{the} \operatorname{carrier}$ of $\operatorname{Lin}(A)$. Then there exists a linear combination K of A such that $\sum (LF) = \sum K$.
- (10) Let L be a linear combination of V and A be a subset of V. Suppose the support of $L \subseteq$ the carrier of Lin(A). Then there exists a linear combination K of A such that $\sum L = \sum K$.
- (11) Let L be a linear combination of V. Suppose the support of $L \subseteq$ the carrier of W. Let K be a linear combination of W. Suppose $K = L \upharpoonright$ the carrier of W. Then the support of L = K support of K and $K = K \upharpoonright K$.
- (12) Let K be a linear combination of W. Then there exists a linear combination L of V such that the support of K = the support of L and $\sum K = \sum L$.
- (13) Let L be a linear combination of V. Suppose the support of $L \subseteq$ the carrier of W. Then there exists a linear combination K of W such that the support of K = the support of L and $\sum K = \sum L$.
- (14) For every basis *I* of *V* and for every vector *v* of *V* holds $v \in \text{Lin}(I)$.
- (15) Let A be a subset of W. Suppose A is linearly independent. Then there exists a subset B of V such that B is linearly independent and B = A.
- (16) Let *A* be a subset of *V*. Suppose *A* is linearly independent and $A \subseteq$ the carrier of *W*. Then there exists a subset *B* of *W* such that *B* is linearly independent and B = A.
- (17) For every basis A of W there exists a basis B of V such that $A \subseteq B$.
- (18) Let *A* be a subset of *V*. Suppose *A* is linearly independent. Let *v* be a vector of *V*. If $v \in A$, then for every subset *B* of *V* such that $B = A \setminus \{v\}$ holds $v \notin \text{Lin}(B)$.
- (19) Let I be a basis of V and A be a non empty subset of V. Suppose A misses I. Let B be a subset of V. If $B = I \cup A$, then B is linearly dependent.
- (20) For every subset A of V such that $A \subseteq$ the carrier of W holds Lin(A) is a subspace of W.
- (21) For every subset A of V and for every subset B of W such that A = B holds Lin(A) = Lin(B).

2. The Steinitz Theorem

Next we state two propositions:

- (22) Let A, B be finite subsets of V and v be a vector of V. Suppose $v \in \text{Lin}(A \cup B)$ and $v \notin \text{Lin}(B)$. Then there exists a vector w of V such that $w \in A$ and $w \in \text{Lin}(((A \cup B) \setminus \{w\}) \cup \{v\})$.
- (23) Let A, B be finite subsets of V. Suppose the RLS structure of V = Lin(A) and B is linearly independent. Then $\overline{\overline{B}} \leq \overline{\overline{A}}$ and there exists a finite subset C of V such that $C \subseteq A$ and $\overline{\overline{C}} = \overline{\overline{A}} \overline{\overline{B}}$ and the RLS structure of $V = \text{Lin}(B \cup C)$.

3. FINITE DIMENSIONAL VECTOR SPACES

Let *V* be a real linear space. We say that *V* is finite dimensional if and only if:

(Def. 1) There exists a finite subset of V which is a basis of V.

Let us observe that there exists a real linear space which is strict and finite dimensional. Let *V* be a real linear space. Let us observe that *V* is finite dimensional if and only if:

(Def. 2) There exists a finite subset of V which is a basis of V.

We now state several propositions:

- (24) If V is finite dimensional, then every basis of V is finite.
- (25) If *V* is finite dimensional, then for every subset *A* of *V* such that *A* is linearly independent holds *A* is finite.
- (26) If *V* is finite dimensional, then for all bases *A*, *B* of *V* holds $\overline{\overline{A}} = \overline{\overline{B}}$.
- (27) $\mathbf{0}_V$ is finite dimensional.
- (28) If V is finite dimensional, then W is finite dimensional.

Let V be a real linear space. Note that there exists a subspace of V which is finite dimensional and strict.

Let V be a finite dimensional real linear space. Note that every subspace of V is finite dimensional.

Let V be a finite dimensional real linear space. Note that there exists a subspace of V which is strict.

4. The Dimension of a Vector Space

Let V be a real linear space. Let us assume that V is finite dimensional. The functor $\dim(V)$ yields a natural number and is defined as follows:

(Def. 3) For every basis *I* of *V* holds dim(V) = \overline{I} .

We adopt the following rules: V is a finite dimensional real linear space, W, W_1 , W_2 are subspaces of V, and u, v are vectors of V.

The following propositions are true:

- (29) $\dim(W) \leq \dim(V)$.
- (30) For every subset A of V such that A is linearly independent holds $\overline{\overline{A}} = \dim(\text{Lin}(A))$.
- (31) $\dim(V) = \dim(\Omega_V)$.
- (32) $\dim(V) = \dim(W) \text{ iff } \Omega_V = \Omega_W.$
- (33) $\dim(V) = 0 \text{ iff } \Omega_V = \mathbf{0}_V.$
- (34) $\dim(V) = 1$ iff there exists v such that $v \neq 0_V$ and $\Omega_V = \operatorname{Lin}(\{v\})$.
- (35) $\dim(V) = 2$ iff there exist u, v such that $u \neq v$ and $\{u, v\}$ is linearly independent and $\Omega_V = \text{Lin}(\{u, v\})$.
- (36) $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2)$.
- (37) $\dim(W_1 \cap W_2) \ge (\dim(W_1) + \dim(W_2)) \dim(V).$
- (38) If *V* is the direct sum of W_1 and W_2 , then $\dim(V) = \dim(W_1) + \dim(W_2)$.
- (39) $n \le \dim(V)$ iff there exists a strict subspace W of V such that $\dim(W) = n$.

Let V be a finite dimensional real linear space and let n be a natural number. The functor $\operatorname{Sub}_n(V)$ yields a set and is defined as follows:

(Def. 4) $x \in \text{Sub}_n(V)$ iff there exists a strict subspace W of V such that W = x and $\dim(W) = n$.

One can prove the following propositions:

- (40) If $n \le \dim(V)$, then $\operatorname{Sub}_n(V)$ is non empty.
- (41) If $\dim(V) < n$, then $\operatorname{Sub}_n(V) = \emptyset$.
- (42) $\operatorname{Sub}_n(W) \subseteq \operatorname{Sub}_n(V)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real 1.html.
- [8] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlsub_2.html.
- [12] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlsub_1.html.
- [13] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [14] Wojciech A. Trybulec. Basis of real linear space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rlvect_3.html.
- [15] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/rlvect_2.html.
- $[16] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1, 1989. } \\ \texttt{http://mizar.org/JFM/Vol1/subset_1.html.}$
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 1, 1997

Published January 2, 2004