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The articles [5], [12], [7], [1], [2], [3], [4], [8], [9], [11], [10], and [6] provide the notation and
terminology for this paper.

For simplicity, we adopt the following convention:x is a set,a, b, c are real numbers,V is a real
linear space,u, v, v1, v2, v3, w, w1, w2, w3 are vectors ofV, andW, W1, W2 are subspaces ofV.

In this article we present several logical schemes. The schemeLambdaSep3deals with non
empty setsA , B, elementsC , D, E of A , elementsF , G , H of B, and a unary functorF yielding
an element ofB, and states that:

There exists a functionf from A into B such thatf (C ) = F and f (D) = G and
f (E) = H and for every elementC of A such thatC 6= C andC 6= D andC 6= E
holds f (C) = F (C)

provided the following conditions are met:
• C 6= D,
• C 6= E , and
• D 6= E .

The schemeLinCEx1deals with a real linear spaceA , a vectorB of A , and a real numberC ,
and states that:

There exists a linear combinationl of {B} such thatl(B) = C
for all values of the parameters.

The schemeLinCEx2deals with a real linear spaceA , vectorsB, C of A , and real numbersD,
E , and states that:

There exists a linear combinationl of {B,C} such thatl(B) = D andl(C ) = E
provided the parameters meet the following condition:

• B 6= C .
The schemeLinCEx3deals with a real linear spaceA , vectorsB, C , D of A , and real numbers

E , F , G , and states that:
There exists a linear combinationl of {B,C ,D} such thatl(B) = E andl(C ) = F
andl(D) = G

provided the following conditions are satisfied:
• B 6= C ,
• B 6= D, and
• C 6= D.

One can prove the following propositions:
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(1) (v+w)−v = w and(w+v)−v = w and(v−v)+w = w and(w−v)+v = w andv+(w−
v) = w andw+(v−v) = w andv− (v−w) = w.

(2) (v+u)−w = (v−w)+u.

(4)1 If v1−w = v2−w, thenv1 = v2.

(6)2 −a·v = (−a) ·v.

(7) If W1 is a subspace ofW2, thenv+W1 ⊆ v+W2.

(8) If u∈ v+W, thenv+W = u+W.

(9) For every linear combinationl of {u,v,w} such thatu 6= v and u 6= w and v 6= w holds
∑ l = l(u) ·u+ l(v) ·v+ l(w) ·w.

(10) u 6= v andu 6= w andv 6= w and{u,v,w} is linearly independent if and only if for alla, b, c
such thata·u+b·v+c·w = 0V holdsa = 0 andb = 0 andc = 0.

(11) x∈ Lin({v}) iff there existsa such thatx = a·v.

(12) v∈ Lin({v}).

(13) x∈ v+Lin({w}) iff there existsa such thatx = v+a·w.

(14) x∈ Lin({w1,w2}) iff there exista, b such thatx = a·w1 +b·w2.

(15) w1 ∈ Lin({w1,w2}) andw2 ∈ Lin({w1,w2}).

(16) x∈ v+Lin({w1,w2}) iff there exista, b such thatx = v+a·w1 +b·w2.

(17) x∈ Lin({v1,v2,v3}) iff there exista, b, c such thatx = a·v1 +b·v2 +c·v3.

(18) w1 ∈ Lin({w1,w2,w3}) andw2 ∈ Lin({w1,w2,w3}) andw3 ∈ Lin({w1,w2,w3}).

(19) x∈ v+Lin({w1,w2,w3}) iff there exista, b, c such thatx = v+a·w1 +b·w2 +c·w3.

(20) If {u,v} is linearly independent andu 6= v, then{u,v−u} is linearly independent.

(21) If {u,v} is linearly independent andu 6= v, then{u,v+u} is linearly independent.

(22) If {u,v} is linearly independent andu 6= v anda 6= 0, then{u,a·v} is linearly independent.

(23) If {u,v} is linearly independent andu 6= v, then{u,−v} is linearly independent.

(24) If a 6= b, then{a·v,b·v} is linearly dependent.

(25) If a 6= 1, then{v,a·v} is linearly dependent.

(26) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,w,v− u} is
linearly independent.

(27) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,w−u,v−u} is
linearly independent.

(28) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,w,v+ u} is
linearly independent.

(29) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,w+u,v+u} is
linearly independent.

(30) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w anda 6= 0, then{u,w,a·v}
is linearly independent.

1 The proposition (3) has been removed.
2 The proposition (5) has been removed.
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(31) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w anda 6= 0 andb 6= 0,
then{u,a·w,b·v} is linearly independent.

(32) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,w,−v} is linearly
independent.

(33) If {u,w,v} is linearly independent andu 6= v andu 6= w andv 6= w, then{u,−w,−v} is
linearly independent.

(34) If a 6= b, then{a·v,b·v,w} is linearly dependent.

(35) If a 6= 1, then{v,a·v,w} is linearly dependent.

(36) If v∈ Lin({w}) andv 6= 0V , then Lin({v}) = Lin({w}).

(37) Supposev1 6= v2 and {v1,v2} is linearly independent andv1 ∈ Lin({w1,w2}) and v2 ∈
Lin({w1,w2}). Then Lin({w1,w2}) = Lin({v1,v2}) and{w1,w2} is linearly independent and
w1 6= w2.

(38) If w 6= 0V and{v,w} is linearly dependent, then there existsa such thatv = a·w.

(39) If v 6= w and{v,w} is linearly independent and{u,v,w} is linearly dependent, then there
exista, b such thatu = a·v+b·w.
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[2] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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