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The articles([5], [[12], [[7], [[1], [[2], [3], [[4], 8], [9], [11], [10], and([6] provide the notation and
terminology for this paper.
For simplicity, we adopt the following conventioris a seta, b, c are real number¥/ is a real
linear spacey, v, v1, Vo, V3, W, Wi, W, W3 are vectors oY/, andW, Wy, W, are subspaces df.
In this article we present several logical schemes. The schemmdbdaSep2leals with non
empty setsq, B, elementC, D, E of 4, elementsfF, G, H of B, and a unary functof’ yielding
an element ofB, and states that:
There exists a functiofi from 4 into B such thatf (C) = ¥ and f(D) = G and
f(£) = H and for every elemer of 4 such thalC # C andC # D andC # E
holdsf(C) = F(C)

provided the following conditions are met:

o C#D,

e C#E,and

e D+#E.

The scheméinCEx1deals with a real linear space, a vectorB of 4, and a real numbecf,
and states that:

There exists a linear combinatibof { B} such that (B) = C
for all values of the parameters.

The schemé&inCEx2deals with a real linear spacg vectorsB, C of 4, and real number®,
‘£, and states that:

There exists a linear combinatibof { B, C} such that(8) = D andl(C) = E
provided the parameters meet the following condition:

o B#_(.

The schemé&inCEx3deals with a real linear spacg vectorsB, C, D of 4, and real numbers
E, ¥, G, and states that:

There exists a linear combinatiérof { B, C, D} such thal (B) = £ andI(C) = F
andl(D)=¢G
provided the following conditions are satisfied:

o BLC,

e B# D, and

o C#D.

One can prove the following propositions:
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1) (v+w)—v=wand(w+v)—v=wand(v—v)+w=wand(w—V)+v=wandv+ (wW—
V) =wandw+ (v—v) =wandv— (V—w) = Ww.

2 (v+u —w=(v—w)+u.

(4H If vi —w=vp —w, thenvy = vs.

6F —av=(-a)w

(7) If Wy is a subspace &fb, thenv+W; C v+Ws.
(8) Ifuev+W,thenv+W =u+W.

(9) For every linear combinatiohof {u,v,w} such thatu # v andu # w andv # w holds
SE=1u)-u+1(v)-v+1(w)-w

(10) u#vandu#wandv#wand{u,v,w} is linearly independent if and only if for &, b, ¢
such that-u+b-v+c-w= 0y holdsa= 0 andb =0 andc = 0.

(11) xe Lin({v}) iff there existsa such thakk = a- v.

(12) velin({v}).

(13) xev+Lin({w}) iff there existsa such thakk =v+a-w.

(14) xe Lin({wq,wy}) iff there exista, b such that = a-w; +b-ws,.

(15) ws € Lin({wi,wz}) andwz € Lin({w1,Wz}).

(16) xev+Lin({wy,wy}) iff there exista, b such thak =v+a-wy +b-ws.

(17) x e Lin({v1,v2,v3}) iff there exista, b, c such thak=a-v1+b-vo+cC-vs.

(18) wy € Lin({w1,wo,w3}) andw, € Lin({w, W, W3}) andws € Lin({w, w2, W3}).

(19) xev+Lin({wy,wy,wa}) iff there exista, b, ¢ such thatkk=v+a-w; +b-ws+c-ws.
(20) If {u,v} is linearly independent and+ v, then{u,v— u} is linearly independent.
(21) If {u,v} is linearly independent ang+# v, then{u,v+ u} is linearly independent.
(22) If{u,v} is linearly independent ang+£ v anda # 0, then{u,a- v} is linearly independent.
(23) If {u,v} is linearly independent and+ v, then{u, —v} is linearly independent.
(24) Ifa#b,then{a-v,b-v} islinearly dependent.

(25) Ifa# 1, then{v,a-v} is linearly dependent.

(26) If {u,w,v} is linearly independent and# v andu # w andv # w, then {u,w,v — u} is
linearly independent.

(27) If {u,w,v} is linearly independent and=# v andu # w andv # w, then{u,w—u,v—u} is
linearly independent.

(28) If {u,w,v} is linearly independent and+ v andu # w andv # w, then {u,w,v+ u} is
linearly independent.

(29) If {u,w,v} is linearly independent and= v andu # w andv # w, then{u,w+ u,v+u} is
linearly independent.

(30) If {u,w,v} is linearly independent and+# vandu # wandv # wanda # 0, then{u,w,a- v}
is linearly independent.

1 The proposition (3) has been removed.
2 The proposition (5) has been removed.
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(31) If {u,w,v} is linearly independent and+# v andu # w andv # w anda # 0 andb # 0,
then{u,a-w,b- v} is linearly independent.

(32) If {u,w,v} is linearly independent and v andu # w andv # w, then{u,w, —v} is linearly
independent.

(33) If {u,w,v} is linearly independent and+# v andu # w andv # w, then {u,—w, —v} is
linearly independent.

(34) Ifa#b,then{a-v,b-v,w} is linearly dependent.

(35) Ifa#1, then{v,a-v,w} is linearly dependent.

(36) Ifve Lin({w}) andv # Oy, then Lin({v}) = Lin({w}).

(37) Supposer; # vo and {v1,v,} is linearly independent and, € Lin({wi,wz}) andv, €

Lin({w1,wz}). Then Lin({w1,wo}) = Lin({v1,v2}) and{ws,w,} is linearly independent and
W1 75 Wo.

(38) If w0y and{v,w} is linearly dependent, then there exiatsuch thav = a- w.

(39) If v#wand{v,w} is linearly independent anfl,v,w} is linearly dependent, then there
exista, bsuchthau=a-v+b-w.
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