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Summary. Notions of linear independence and dependence of set of vectors, the sub-
space generated by a set of vectors and basis of real linear space are introduced. Some theo-
rems concerning those notions are proved.
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The articles([3],[[6], [[16], [[10], [[3], 1171, [12], 141, [[5], [14], [19], 7], 23], ([12], (1], 115], and]1]
provide the notation and terminology for this paper.

For simplicity, we follow the rulesx, X, Y, Z are setsa, b are real numberd/ is a real linear
spaceW;, Wo, W5 are subspaces ®f, v, vi, vo are vectors oY/, A, B are subsets of, L, L, Lo are
linear combinations d¥, | is a linear combination o4, F, G are finite sequences of elements of the
carrier ofV, f is a function from the carrier df into R, M is a non empty set, ang is a choice
function ofM.

The following four propositions are true:

(1) SLitly)=yLi+yLo.

(2) >S(aL)=a-5L.

@) >(-L)=-3L

4 yLi-Ly)=3yLi—yLo

Let us consideY and let us considek. We say thaf is linearly independent if and only if:
(Def. 1) For everyt such thaty | = 0y holds the support df= 0.

We introduceA is linearly dependent as an antonym/ois linearly independent.
Next we state several propositions:

(6H If AC BandBis linearly independent, thehis linearly independent.
(7) If Aislinearly independent, ther,G¢ A.
(8) Othe carrier ofv is linearly independent.
(9) {v}islinearly independent if§ # Oy .
(10) {ov} is linearly dependent.
(11) If {v1,v2} is linearly independent, then # Oy andvz # Oy.

1 The proposition (5) has been removed.
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(12) {v,0y} is linearly dependent angy, v} is linearly dependent.
(13) i #wp and{vi,Vv,} is linearly independent iff, £ Oy and for everya holdsv; # a- v,.

(14) w1 # v and{vi,vo} is linearly independent iff for akh, b such that- v, +b-v2 = Oy holds
a=0andb=0.

Let us consideY and let us considek. The functor Lif{A) yields a strict subspace ®fand is
defined by:

(Def. 2) The carrier of LigA) = {3 |}.
Next we state a number of propositions:
(17F] x e Lin(A) iff there existd such thak =S 1.
(18) Ifxe A thenx e Lin(A).
(19)  Lin(One carrier ofv) = Oy
(20) IfLin(A) =0y, thenA=0orA={0y}.
(21) For every strict subspa®é of V such thatA = the carrier oW holds Lin(A) =W.

(22) For every strict real linear spadeand for every subset of V such thatA = the carrier of
V holds Lin(A) = V.

(23) If AC B, then Lin(A) is a subspace of LiiB).

(24) For every strict real linear spa¥eand for all subsets, B of V such that LitA) =V and
A C Bholds Lin(B) = V.

(25) Lin(AUB) =Lin(A)+Lin(B).
(26) Lin(ANB) is a subspace of L{#) NLin(B).

(27) Supposd is linearly independent. Then there exiBtsuch thatA C B andB is linearly
independent and L{iB) = the RLS structure 0¥ .

(28) If Lin(A) =V, then there exist®8 such thatB C A andB is linearly independent and
Lin(B) = V.

LetV be areal linear space. A subseMofs called a basis of if:
(Def. 3) Itis linearly independent and L(ih) = the RLS structure o¥.

In the sequel denotes a basis df.
The following propositions are true:

(SZE] LetV be a strict real linear space aAde a subset of.. If Ais linearly independent, then
there exists a baslsof V such thalA C |.

(33) IfLin(A) =V, then there existssuch that C A.

(34) If Z+£0andZis finite and for allX, Y such thaiX € Z andY € Z holdsX CY orY C X,
thenJZ € Z.

(35) If0¢ M, then donCy =M and rnd2; C UM.
(36) xe 0y iff x=0y.
(37) If Wy is a subspace &k, thenW) NW is a subspace M.

2 The propositions (15) and (16) have been removed.
3 The propositions (29)—(31) have been removed.
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(38) IfW, is a subspace &b, and a subspace W, thenW, is a subspace &fb NWs.

(39) IfW, is a subspace afs andW; is a subspace Mk, thenW, +Ws is a subspace M.
(40) If Wy is a subspace &b, thenW, is a subspace &fb +Ws.

41) f(F~G) =(fF)"(fG).
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