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Summary. Notions of linear independence and dependence of set of vectors, the sub-
space generated by a set of vectors and basis of real linear space are introduced. Some theo-
rems concerning those notions are proved.
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The articles [8], [6], [16], [10], [3], [17], [2], [4], [5], [14], [9], [7], [13], [12], [11], [15], and [1]
provide the notation and terminology for this paper.

For simplicity, we follow the rules:x, X, Y, Z are sets,a, b are real numbers,V is a real linear
space,W1, W2, W3 are subspaces ofV, v, v1, v2 are vectors ofV, A, B are subsets ofV, L, L1, L2 are
linear combinations ofV, l is a linear combination ofA, F , G are finite sequences of elements of the
carrier ofV, f is a function from the carrier ofV into R, M is a non empty set, andC1 is a choice
function ofM.

The following four propositions are true:

(1) ∑(L1 +L2) = ∑L1 +∑L2.

(2) ∑(a·L) = a·∑L.

(3) ∑(−L) =−∑L.

(4) ∑(L1−L2) = ∑L1−∑L2.

Let us considerV and let us considerA. We say thatA is linearly independent if and only if:

(Def. 1) For everyl such that∑ l = 0V holds the support ofl = /0.

We introduceA is linearly dependent as an antonym ofA is linearly independent.
Next we state several propositions:

(6)1 If A⊆ B andB is linearly independent, thenA is linearly independent.

(7) If A is linearly independent, then 0V /∈ A.

(8) /0the carrier ofV is linearly independent.

(9) {v} is linearly independent iffv 6= 0V .

(10) {0V} is linearly dependent.

(11) If {v1,v2} is linearly independent, thenv1 6= 0V andv2 6= 0V .

1 The proposition (5) has been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol2/rlvect_3.html


BASIS OF REAL LINEAR SPACE 2

(12) {v,0V} is linearly dependent and{0V ,v} is linearly dependent.

(13) v1 6= v2 and{v1,v2} is linearly independent iffv2 6= 0V and for everya holdsv1 6= a·v2.

(14) v1 6= v2 and{v1,v2} is linearly independent iff for alla, b such thata·v1+b·v2 = 0V holds
a = 0 andb = 0.

Let us considerV and let us considerA. The functor Lin(A) yields a strict subspace ofV and is
defined by:

(Def. 2) The carrier of Lin(A) = {∑ l}.

Next we state a number of propositions:

(17)2 x∈ Lin(A) iff there existsl such thatx = ∑ l .

(18) If x∈ A, thenx∈ Lin(A).

(19) Lin( /0the carrier ofV) = 0V .

(20) If Lin(A) = 0V , thenA = /0 or A = {0V}.

(21) For every strict subspaceW of V such thatA = the carrier ofW holds Lin(A) = W.

(22) For every strict real linear spaceV and for every subsetA of V such thatA = the carrier of
V holds Lin(A) = V.

(23) If A⊆ B, then Lin(A) is a subspace of Lin(B).

(24) For every strict real linear spaceV and for all subsetsA, B of V such that Lin(A) = V and
A⊆ B holds Lin(B) = V.

(25) Lin(A∪B) = Lin(A)+Lin(B).

(26) Lin(A∩B) is a subspace of Lin(A)∩Lin(B).

(27) SupposeA is linearly independent. Then there existsB such thatA⊆ B andB is linearly
independent and Lin(B) = the RLS structure ofV.

(28) If Lin(A) = V, then there existsB such thatB ⊆ A and B is linearly independent and
Lin(B) = V.

Let V be a real linear space. A subset ofV is called a basis ofV if:

(Def. 3) It is linearly independent and Lin(it) = the RLS structure ofV.

In the sequelI denotes a basis ofV.
The following propositions are true:

(32)3 LetV be a strict real linear space andA be a subset ofV. If A is linearly independent, then
there exists a basisI of V such thatA⊆ I .

(33) If Lin(A) = V, then there existsI such thatI ⊆ A.

(34) If Z 6= /0 andZ is finite and for allX, Y such thatX ∈ Z andY ∈ Z holdsX ⊆Y or Y ⊆ X,
then

⋃
Z ∈ Z.

(35) If /0 /∈M, then domC1 = M and rngC1 ⊆
⋃

M.

(36) x∈ 0V iff x = 0V .

(37) If W1 is a subspace ofW3, thenW1∩W2 is a subspace ofW3.

2 The propositions (15) and (16) have been removed.
3 The propositions (29)–(31) have been removed.
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(38) If W1 is a subspace ofW2 and a subspace ofW3, thenW1 is a subspace ofW2∩W3.

(39) If W1 is a subspace ofW3 andW2 is a subspace ofW3, thenW1 +W2 is a subspace ofW3.

(40) If W1 is a subspace ofW2, thenW1 is a subspace ofW2 +W3.

(41) f (F a G) = ( f F)a ( f G).
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[4] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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