Basis of Real Linear Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. Notions of linear independence and dependence of set of vectors, the subspace generated by a set of vectors and basis of real linear space are introduced. Some theorems concerning those notions are proved.

MML Identifier: RLVECT_3.

WWW: http://mizar.org/JFM/Vol2/rlvect_3.html

The articles [8], [6], [16], [10], [3], [17], [2], [4], [5], [14], [9], [7], [13], [12], [11], [15], and [1] provide the notation and terminology for this paper.

For simplicity, we follow the rules: x, X, Y, Z are sets, a, b are real numbers, V is a real linear space, W_{1}, W_{2}, W_{3} are subspaces of V, v, v_{1}, v_{2} are vectors of V, A, B are subsets of V, L, L_{1}, L_{2} are linear combinations of V, l is a linear combination of A, F, G are finite sequences of elements of the carrier of V, f is a function from the carrier of V into \mathbb{R}, M is a non empty set, and C_{1} is a choice function of M.

The following four propositions are true:
(1) $\sum\left(L_{1}+L_{2}\right)=\sum L_{1}+\sum L_{2}$.
(2) $\quad \sum(a \cdot L)=a \cdot \sum L$.
(3) $\Sigma(-L)=-\sum L$.
(4) $\sum\left(L_{1}-L_{2}\right)=\sum L_{1}-\sum L_{2}$.

Let us consider V and let us consider A. We say that A is linearly independent if and only if:
(Def. 1) For every l such that $\sum l=0_{V}$ holds the support of $l=\emptyset$.
We introduce A is linearly dependent as an antonym of A is linearly independent.
Next we state several propositions:
(6) If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
(7) If A is linearly independent, then $0_{V} \notin A$.
(8) $\emptyset_{\text {the carrier of } V}$ is linearly independent.
(9) $\{v\}$ is linearly independent iff $v \neq 0_{V}$.
(10) $\left\{0_{V}\right\}$ is linearly dependent.
(11) If $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $v_{1} \neq 0_{V}$ and $v_{2} \neq 0_{V}$.

[^0](12) $\left\{v, 0_{V}\right\}$ is linearly dependent and $\left\{0_{V}, v\right\}$ is linearly dependent.
(13) $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent iff $v_{2} \neq 0_{V}$ and for every a holds $v_{1} \neq a \cdot v_{2}$.
(14) $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent iff for all a, b such that $a \cdot v_{1}+b \cdot v_{2}=0_{V}$ holds $a=0$ and $b=0$.

Let us consider V and let us consider A. The functor $\operatorname{Lin}(A)$ yields a strict subspace of V and is defined by:
(Def. 2) The carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
Next we state a number of propositions:
$(17)^{2} \quad x \in \operatorname{Lin}(A)$ iff there exists l such that $x=\sum l$.
(18) If $x \in A$, then $x \in \operatorname{Lin}(A)$.
(19) $\operatorname{Lin}\left(⿹_{\text {the carrier of } V}\right)=\mathbf{0}_{V}$.
(20) If $\operatorname{Lin}(A)=\mathbf{0}_{V}$, then $A=\emptyset$ or $A=\left\{0_{V}\right\}$.
(21) For every strict subspace W of V such that $A=$ the carrier of W holds $\operatorname{Lin}(A)=W$.
(22) For every strict real linear space V and for every subset A of V such that $A=$ the carrier of V holds $\operatorname{Lin}(A)=V$.
(23) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a subspace of $\operatorname{Lin}(B)$.
(24) For every strict real linear space V and for all subsets A, B of V such that $\operatorname{Lin}(A)=V$ and $A \subseteq B$ holds $\operatorname{Lin}(B)=V$.
(25) $\operatorname{Lin}(A \cup B)=\operatorname{Lin}(A)+\operatorname{Lin}(B)$.
(26) $\operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
(27) Suppose A is linearly independent. Then there exists B such that $A \subseteq B$ and B is linearly independent and $\operatorname{Lin}(B)=$ the RLS structure of V.
(28) If $\operatorname{Lin}(A)=V$, then there exists B such that $B \subseteq A$ and B is linearly independent and $\operatorname{Lin}(B)=V$.

Let V be a real linear space. A subset of V is called a basis of V if:
(Def. 3) It is linearly independent and $\operatorname{Lin}($ it $)=$ the RLS structure of V.
In the sequel I denotes a basis of V.
The following propositions are true:
$(32)^{3}$ Let V be a strict real linear space and A be a subset of V. If A is linearly independent, then there exists a basis I of V such that $A \subseteq I$.
(33) If $\operatorname{Lin}(A)=V$, then there exists I such that $I \subseteq A$.
(34) If $Z \neq \emptyset$ and Z is finite and for all X, Y such that $X \in Z$ and $Y \in Z$ holds $X \subseteq Y$ or $Y \subseteq X$, then $\cup Z \in Z$.
(35) If $\emptyset \notin M$, then $\operatorname{dom} C_{1}=M$ and $\operatorname{rng} C_{1} \subseteq \cup M$.
(36) $\quad x \in \mathbf{0}_{V}$ iff $x=0_{V}$.
(37) If W_{1} is a subspace of W_{3}, then $W_{1} \cap W_{2}$ is a subspace of W_{3}.

[^1](38) If W_{1} is a subspace of W_{2} and a subspace of W_{3}, then W_{1} is a subspace of $W_{2} \cap W_{3}$.
(39) If W_{1} is a subspace of W_{3} and W_{2} is a subspace of W_{3}, then $W_{1}+W_{2}$ is a subspace of W_{3}.
(40) If W_{1} is a subspace of W_{2}, then W_{1} is a subspace of $W_{2}+W_{3}$.
(41) $\quad f\left(F^{\frown} G\right)=(f F)^{\wedge}(f G)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall. html
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html]
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[9] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
[10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[11] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/rlsub_2.html
[12] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html
[13] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Vol1/rlsub_1.html
[14] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html
[15] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/rlvect_2.html
[16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

[^0]: ${ }^{1}$ The proposition (5) has been removed.

[^1]: ${ }^{2}$ The propositions (15) and (16) have been removed.
 ${ }^{3}$ The propositions (29)-(31) have been removed.

