Basis of Real Linear Space

Wojciech A. Trybulec Warsaw University

Summary. Notions of linear independence and dependence of set of vectors, the subspace generated by a set of vectors and basis of real linear space are introduced. Some theorems concerning those notions are proved.

MML Identifier: RLVECT_3.
WWW: http://mizar.org/JFM/Vol2/rlvect_3.html

The articles [8], [6], [16], [10], [3], [17], [2], [4], [5], [14], [9], [7], [13], [12], [11], [15], and [1] provide the notation and terminology for this paper.

For simplicity, we follow the rules: x, X, Y, Z are sets, a, b are real numbers, V is a real linear space, W_1, W_2, W_3 are subspaces of V, v, v_1, v_2 are vectors of V, A, B are subsets of V, L, L_1, L_2 are linear combinations of V, l is a linear combination of A, F, G are finite sequences of elements of the carrier of V, f is a function from the carrier of V into \mathbb{R}, M is a non empty set, and C_1 is a choice function of M.

The following four propositions are true:

- (1) $\Sigma(L_1 + L_2) = \Sigma L_1 + \Sigma L_2.$
- (2) $\Sigma(a \cdot L) = a \cdot \Sigma L.$
- (3) $\Sigma(-L) = -\Sigma L.$
- (4) $\Sigma(L_1 L_2) = \Sigma L_1 \Sigma L_2.$

Let us consider V and let us consider A. We say that A is linearly independent if and only if:

(Def. 1) For every *l* such that $\sum l = 0_V$ holds the support of $l = \emptyset$.

We introduce *A* is linearly dependent as an antonym of *A* is linearly independent. Next we state several propositions:

- (6)¹ If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
- (7) If *A* is linearly independent, then $0_V \notin A$.
- (8) $\emptyset_{\text{the carrier of } V}$ is linearly independent.
- (9) $\{v\}$ is linearly independent iff $v \neq 0_V$.
- (10) $\{0_V\}$ is linearly dependent.
- (11) If $\{v_1, v_2\}$ is linearly independent, then $v_1 \neq 0_V$ and $v_2 \neq 0_V$.

¹ The proposition (5) has been removed.

- (12) $\{v, 0_V\}$ is linearly dependent and $\{0_V, v\}$ is linearly dependent.
- (13) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent iff $v_2 \neq 0_V$ and for every *a* holds $v_1 \neq a \cdot v_2$.
- (14) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent iff for all a, b such that $a \cdot v_1 + b \cdot v_2 = 0_V$ holds a = 0 and b = 0.

Let us consider V and let us consider A. The functor Lin(A) yields a strict subspace of V and is defined by:

(Def. 2) The carrier of $Lin(A) = \{\sum l\}$.

Next we state a number of propositions:

- $(17)^2$ $x \in \text{Lin}(A)$ iff there exists l such that $x = \sum l$.
- (18) If $x \in A$, then $x \in Lin(A)$.
- (19) $\operatorname{Lin}(\emptyset_{\operatorname{the carrier of }V}) = \mathbf{0}_V.$
- (20) If $Lin(A) = \mathbf{0}_V$, then $A = \emptyset$ or $A = \{0_V\}$.
- (21) For every strict subspace W of V such that A = the carrier of W holds Lin(A) = W.
- (22) For every strict real linear space V and for every subset A of V such that A = the carrier of V holds Lin(A) = V.
- (23) If $A \subseteq B$, then Lin(A) is a subspace of Lin(B).
- (24) For every strict real linear space V and for all subsets A, B of V such that Lin(A) = V and $A \subseteq B$ holds Lin(B) = V.
- (25) $\operatorname{Lin}(A \cup B) = \operatorname{Lin}(A) + \operatorname{Lin}(B).$
- (26) $\operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
- (27) Suppose *A* is linearly independent. Then there exists *B* such that $A \subseteq B$ and *B* is linearly independent and Lin(B) = the RLS structure of *V*.
- (28) If Lin(A) = V, then there exists B such that $B \subseteq A$ and B is linearly independent and Lin(B) = V.

Let *V* be a real linear space. A subset of *V* is called a basis of *V* if:

(Def. 3) It is linearly independent and Lin(it) = the RLS structure of V.

In the sequel *I* denotes a basis of *V*. The following propositions are true:

- $(32)^3$ Let V be a strict real linear space and A be a subset of V. If A is linearly independent, then there exists a basis I of V such that $A \subseteq I$.
- (33) If Lin(A) = V, then there exists *I* such that $I \subseteq A$.
- (34) If $Z \neq \emptyset$ and Z is finite and for all X, Y such that $X \in Z$ and $Y \in Z$ holds $X \subseteq Y$ or $Y \subseteq X$, then $\bigcup Z \in Z$.
- (35) If $\emptyset \notin M$, then dom $C_1 = M$ and rng $C_1 \subseteq \bigcup M$.
- (36) $x \in \mathbf{0}_V$ iff $x = 0_V$.
- (37) If W_1 is a subspace of W_3 , then $W_1 \cap W_2$ is a subspace of W_3 .

 $^{^{2}}$ The propositions (15) and (16) have been removed.

³ The propositions (29)–(31) have been removed.

- (38) If W_1 is a subspace of W_2 and a subspace of W_3 , then W_1 is a subspace of $W_2 \cap W_3$.
- (39) If W_1 is a subspace of W_3 and W_2 is a subspace of W_3 , then $W_1 + W_2$ is a subspace of W_3 .
- (40) If W_1 is a subspace of W_2 , then W_1 is a subspace of $W_2 + W_3$.
- (41) $f(F \cap G) = (fF) \cap (fG).$

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [11] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlsub_2.html.
- [12] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_ 1.html.
- [13] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Voll/rlsub_1.html.
- [14] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_1.html.
- [15] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/V012/rlvect_2.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received July 10, 1990

Published January 2, 2004