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Summary. The article is continuation of [17]. At the beginning we prove some theo-
rems concerning sums of finite sequence of vectors. We introduce the following notions: sum
of finite subset of vectors, linear combination, carrier of linear combination, linear combina-
tion of elements of a given set of vectors, sum of linear combination. We also show that the
set of linear combinations is a real linear space. At the end of article we prove some auxiliary
theorems that should be proved in [8], [5], [9], [2] or [10].
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The articles [13], [12], [7], [19], [15], [9], [3], [20], [5], [6], [17], [10], [16], [14], [4], [18], [1], and
[11] provide the notation and terminology for this paper.

In this article we present several logical schemes. The schemeLambdaSep1deals with non
empty setsA , B, an elementC of A , an elementD of B, and a unary functorF yielding an element
of B, and states that:

There exists a functionf from A into B such thatf (C ) = D and for every elementx
of A such thatx 6= C holds f (x) = F (x)

for all values of the parameters.
The schemeLambdaSep2deals with non empty setsA , B, elementsC , D of A , elementsE , F

of B, and a unary functorF yielding an element ofB, and states that:
There exists a functionf from A into B such thatf (C ) = E and f (D) = F and for
every elementx of A such thatx 6= C andx 6= D holds f (x) = F (x)

provided the parameters satisfy the following condition:
• C 6= D.

For simplicity, we adopt the following rules:X, Y, x are sets,i, k, n are natural numbers,V is a
real linear space,v, v1, v2, v3 are vectors ofV, a, b are real numbers,F , G are finite sequences of
elements of the carrier ofV, A, B are subsets ofV, and f is a function from the carrier ofV into R.

Let S be a 1-sorted structure and let us considerx. Let us assume thatx ∈ S. The functorxS

yields an element ofSand is defined as follows:

(Def. 1) xS = x.

The following propositions are true:

(3)1 For every non empty 1-sorted structureSand for every elementv of SholdsvS = v.

(4) Let V be an Abelian add-associative right zeroed right complementable non empty loop
structure andF , G, H be finite sequences of elements of the carrier ofV. Suppose lenF =
lenG and lenF = lenH and for everyk such thatk ∈ domF holdsH(k) = Fk + Gk. Then
∑H = ∑F +∑G.

1 The propositions (1) and (2) have been removed.
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(5) If lenF = lenG and for everyk such thatk∈ domF holdsG(k) = a·Fk, then∑G= a·∑F.

(6) Let V be an Abelian add-associative right zeroed right complementable non empty loop
structure andF , G be finite sequences of elements of the carrier ofV. If lenF = lenG and for
everyk such thatk∈ domF holdsG(k) =−Fk, then∑G =−∑F .

(7) Let V be an Abelian add-associative right zeroed right complementable non empty loop
structure andF , G, H be finite sequences of elements of the carrier ofV. Suppose lenF =
lenG and lenF = lenH and for everyk such thatk ∈ domF holdsH(k) = Fk −Gk. Then
∑H = ∑F −∑G.

(8) Let V be an Abelian add-associative right zeroed right complementable non empty loop
structure,F , G be finite sequences of elements of the carrier ofV, and f be a permutation
of domF. If lenF = lenG and for everyi such thati ∈ domG holdsG(i) = F( f (i)), then
∑F = ∑G.

(9) Let V be an Abelian add-associative right zeroed right complementable non empty loop
structure,F , G be finite sequences of elements of the carrier ofV, and f be a permutation of
domF. If G = F · f , then∑F = ∑G.

Let V be a 1-sorted structure. One can check that there exists a subset ofV which is empty and
finite.

Let V be a 1-sorted structure and letS, T be finite subsets ofV. ThenS∪T is a finite subset of
V. ThenS∩T is a finite subset ofV. ThenS\T is a finite subset ofV. ThenS−. T is a finite subset
of V.

Let V be a non empty loop structure and letT be a finite subset ofV. Let us assume thatV is
Abelian, add-associative, and right zeroed. The functor∑T yields an element ofV and is defined
by:

(Def. 4)2 There exists a finite sequenceF of elements of the carrier ofV such that rngF = T andF
is one-to-one and∑T = ∑F.

Let V be a non empty 1-sorted structure. Observe that there exists a subset ofV which is non
empty and finite.

LetV be a non empty 1-sorted structure and letv be an element ofV. Then{v} is a finite subset
of V.

LetV be a non empty 1-sorted structure and letv1, v2 be elements ofV. Then{v1,v2} is a finite
subset ofV.

Let V be a non empty 1-sorted structure and letv1, v2, v3 be elements ofV. Then{v1,v2,v3} is
a finite subset ofV.

The following propositions are true:

(14)3 For every Abelian add-associative right zeroed non empty loop structureV holds∑( /0V) =
0V .

(15) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andv be an element ofV. Then∑{v}= v.

(16) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andv1, v2 be elements ofV. If v1 6= v2, then∑{v1,v2}= v1 +v2.

(17) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andv1, v2, v3 be elements ofV. If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑{v1,v2,v3}= v1 +v2 +v3.

(18) LetV be an Abelian add-associative right zeroed non empty loop structure andS, T be
finite subsets ofV. If T missesS, then∑(T ∪S) = ∑T +∑S.

2 The definitions (Def. 2) and (Def. 3) have been removed.
3 The propositions (10)–(13) have been removed.
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(19) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andS, T be finite subsets ofV. Then∑(T ∪S) = (∑T +∑S)−∑(T ∩S).

(20) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andS, T be finite subsets ofV. Then∑(T ∩S) = (∑T +∑S)−∑(T ∪S).

(21) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andS, T be finite subsets ofV. Then∑(T \S) = ∑(T ∪S)−∑S.

(22) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andS, T be finite subsets ofV. Then∑(T \S) = ∑T−∑(T ∩S).

(23) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andS, T be finite subsets ofV. Then∑(T−. S) = ∑(T ∪S)−∑(T ∩S).

(24) LetV be an Abelian add-associative right zeroed non empty loop structure andS, T be
finite subsets ofV. Then∑(T−. S) = ∑(T \S)+∑(S\T).

Let V be a non empty zero structure. An element ofRthe carrier ofV is said to be a linear combi-
nation ofV if:

(Def. 5) There exists a finite subsetT of V such that for every elementv of V such thatv /∈ T holds
it(v) = 0.

In the sequelL, L1, L2, L3 denote linear combinations ofV.
Let V be a non empty loop structure and letL be a linear combination ofV. The support ofL

yielding a finite subset ofV is defined as follows:

(Def. 6) The support ofL = {v;v ranges over elements ofV: L(v) 6= 0}.

Next we state the proposition

(28)4 Let V be a non empty loop structure,L be a linear combination ofV, andv be an element
of V. ThenL(v) = 0 if and only ifv /∈ the support ofL.

Let V be a non empty loop structure. The functor0LCV yields a linear combination ofV and is
defined as follows:

(Def. 7) The support of0LCV = /0.

The following proposition is true

(30)5 For every non empty loop structureV and for every elementv of V holds0LCV (v) = 0.

Let V be a non empty loop structure and letA be a subset ofV. A linear combination ofV is
said to be a linear combination ofA if:

(Def. 8) The support of it⊆ A.

In the sequell denotes a linear combination ofA.
The following three propositions are true:

(33)6 If A⊆ B, thenl is a linear combination ofB.

(34) 0LCV is a linear combination ofA.

(35) For every linear combinationl of /0the carrier ofV holdsl = 0LCV .

Let us considerV, let us considerF , and let us considerf . The functor f F yields a finite
sequence of elements of the carrier ofV and is defined as follows:

4 The propositions (25)–(27) have been removed.
5 The proposition (29) has been removed.
6 The propositions (31) and (32) have been removed.
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(Def. 9) len( f F) = lenF and for everyi such thati ∈ dom( f F) holds( f F)(i) = f (Fi) ·Fi .

The following propositions are true:

(40)7 If i ∈ domF andv = F(i), then( f F)(i) = f (v) ·v.

(41) f ε(the carrier ofV) = ε(the carrier ofV).

(42) f 〈v〉= 〈 f (v) ·v〉.

(43) f 〈v1,v2〉= 〈 f (v1) ·v1, f (v2) ·v2〉.

(44) f 〈v1,v2,v3〉= 〈 f (v1) ·v1, f (v2) ·v2, f (v3) ·v3〉.

Let us considerV and let us considerL. The functor∑L yields an element ofV and is defined
as follows:

(Def. 10) There existsF such thatF is one-to-one and rngF = the support ofL and∑L = ∑(L F).

Next we state several propositions:

(47)8 A 6= /0 andA is linearly closed iff for everyl holds∑ l ∈ A.

(48) ∑(0LCV ) = 0V .

(49) For every linear combinationl of /0the carrier ofV holds∑ l = 0V .

(50) For every linear combinationl of {v} holds∑ l = l(v) ·v.

(51) If v1 6= v2, then for every linear combinationl of {v1,v2} holds∑ l = l(v1) ·v1 + l(v2) ·v2.

(52) If the support ofL = /0, then∑L = 0V .

(53) If the support ofL = {v}, then∑L = L(v) ·v.

(54) If the support ofL = {v1,v2} andv1 6= v2, then∑L = L(v1) ·v1 +L(v2) ·v2.

Let V be a non empty loop structure and letL1, L2 be linear combinations ofV. Let us observe
thatL1 = L2 if and only if:

(Def. 11) For every elementv of V holdsL1(v) = L2(v).

Let V be a non empty loop structure and letL1, L2 be linear combinations ofV. The functor
L1 +L2 yields a linear combination ofV and is defined as follows:

(Def. 12) For every elementv of V holds(L1 +L2)(v) = L1(v)+L2(v).

The following propositions are true:

(58)9 The support ofL1 +L2 ⊆ (the support ofL1)∪ (the support ofL2).

(59) SupposeL1 is a linear combination ofA andL2 is a linear combination ofA. ThenL1 +L2

is a linear combination ofA.

(60) For every non empty loop structureV and for all linear combinationsL1, L2 of V holds
L1 +L2 = L2 +L1.

(61) L1 +(L2 +L3) = (L1 +L2)+L3.

(62) L+0LCV = L and0LCV +L = L.

7 The propositions (36)–(39) have been removed.
8 The propositions (45) and (46) have been removed.
9 The propositions (55)–(57) have been removed.
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Let us considerV, a and let us considerL. The functora ·L yielding a linear combination ofV
is defined as follows:

(Def. 13) For everyv holds(a·L)(v) = a·L(v).

The following propositions are true:

(65)10 If a 6= 0, then the support ofa·L = the support ofL.

(66) 0·L = 0LCV .

(67) If L is a linear combination ofA, thena·L is a linear combination ofA.

(68) (a+b) ·L = a·L+b·L.

(69) a· (L1 +L2) = a·L1 +a·L2.

(70) a· (b·L) = (a·b) ·L.

(71) 1·L = L.

Let us considerV, L. The functor−L yields a linear combination ofV and is defined by:

(Def. 14) −L = (−1) ·L.

One can prove the following propositions:

(73)11 (−L)(v) =−L(v).

(74) If L1 +L2 = 0LCV , thenL2 =−L1.

(75) The support of−L = the support ofL.

(76) If L is a linear combination ofA, then−L is a linear combination ofA.

(77) −−L = L.

Let us considerV and let us considerL1, L2. The functorL1−L2 yields a linear combination of
V and is defined as follows:

(Def. 15) L1−L2 = L1 +−L2.

The following four propositions are true:

(79)12 (L1−L2)(v) = L1(v)−L2(v).

(80) The support ofL1−L2 ⊆ (the support ofL1)∪ (the support ofL2).

(81) SupposeL1 is a linear combination ofA andL2 is a linear combination ofA. ThenL1−L2

is a linear combination ofA.

(82) L−L = 0LCV .

Let us considerV. The functor LCV yielding a set is defined as follows:

(Def. 16) x∈ LCV iff x is a linear combination ofV.

Let us considerV. Note that LCV is non empty.
In the sequele, e1, e2 denote elements of LCV .
Let us considerV and let us considere. The functor@e yielding a linear combination ofV is

defined as follows:
10 The propositions (63) and (64) have been removed.
11 The proposition (72) has been removed.
12 The proposition (78) has been removed.
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(Def. 17) @e= e.

Let us considerV and let us considerL. The functor@L yields an element of LCV and is defined
as follows:

(Def. 18) @L = L.

Let us considerV. The functor+LCV yields a binary operation on LCV and is defined by:

(Def. 19) For alle1, e2 holds+LCV (e1, e2) = (@e1)+ @e2.

Let us considerV. The functor·LCV yielding a function from[:R, LCV :] into LCV is defined as
follows:

(Def. 20) For alla, eholds·LCV (〈〈a, e〉〉) = a· (@e).

Let us considerV. The functorLCV yields a real linear space and is defined as follows:

(Def. 21) LCV = 〈LCV ,@(0LCV ),+LCV , ·LCV 〉.

Let us considerV. One can verify thatLCV is strict and non empty.
The following propositions are true:

(92)13 The carrier ofLCV = LCV .

(93) The zero ofLCV = 0LCV .

(94) The addition ofLCV = +LCV .

(95) The external multiplication ofLCV = ·LCV .

(96) L1
LCV +L2

LCV = L1 +L2.

(97) a·LLCV = a·L.

(98) −LLCV =−L.

(99) L1
LCV −L2

LCV = L1−L2.

Let us considerV and let us considerA. The functorLCA yielding a strict subspace ofLCV is
defined by:

(Def. 22) The carrier ofLCA = {l}.

Next we state three propositions:

(103)14 If k < n, thenn−1 is a natural number.

(107)15 If X is finite andY is finite, thenX−. Y is finite.

(108) For every functionf such thatf−1(X) = f−1(Y) andX ⊆ rng f andY⊆ rng f holdsX =Y.

13 The propositions (83)–(91) have been removed.
14 The propositions (100)–(102) have been removed.
15 The propositions (104)–(106) have been removed.
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