## **Linear Combinations in Real Linear Space**

## Wojciech A. Trybulec Warsaw University

**Summary.** The article is continuation of [17]. At the beginning we prove some theorems concerning sums of finite sequence of vectors. We introduce the following notions: sum of finite subset of vectors, linear combination, carrier of linear combination, linear combination of elements of a given set of vectors, sum of linear combination. We also show that the set of linear combinations is a real linear space. At the end of article we prove some auxiliary theorems that should be proved in [8], [5], [9], [2] or [10].

MML Identifier: RLVECT\_2.

WWW: http://mizar.org/JFM/Vol2/rlvect\_2.html

The articles [13], [12], [7], [19], [15], [9], [3], [20], [5], [6], [17], [10], [16], [14], [4], [18], [1], and [11] provide the notation and terminology for this paper.

In this article we present several logical schemes. The scheme LambdaSep1 deals with non empty sets  $\mathcal{A}$ ,  $\mathcal{B}$ , an element  $\mathcal{C}$  of  $\mathcal{A}$ , an element  $\mathcal{D}$  of  $\mathcal{B}$ , and a unary functor  $\mathcal{F}$  yielding an element of  $\mathcal{B}$ , and states that:

There exists a function f from  $\mathcal{A}$  into  $\mathcal{B}$  such that  $f(\mathcal{C}) = \mathcal{D}$  and for every element x of  $\mathcal{A}$  such that  $x \neq \mathcal{C}$  holds  $f(x) = \mathcal{F}(x)$ 

for all values of the parameters.

The scheme LambdaSep2 deals with non empty sets  $\mathcal{A}$ ,  $\mathcal{B}$ , elements  $\mathcal{C}$ ,  $\mathcal{D}$  of  $\mathcal{A}$ , elements  $\mathcal{E}$ ,  $\mathcal{F}$  of  $\mathcal{B}$ , and a unary functor  $\mathcal{F}$  yielding an element of  $\mathcal{B}$ , and states that:

There exists a function f from  $\mathcal{A}$  into  $\mathcal{B}$  such that  $f(\mathcal{C}) = \mathcal{E}$  and  $f(\mathcal{D}) = \mathcal{F}$  and for every element x of  $\mathcal{A}$  such that  $x \neq \mathcal{C}$  and  $x \neq \mathcal{D}$  holds  $f(x) = \mathcal{F}(x)$  provided the parameters satisfy the following condition:

•  $C \neq \mathcal{D}$ .

For simplicity, we adopt the following rules: X, Y, x are sets, i, k, n are natural numbers, V is a real linear space, v,  $v_1$ ,  $v_2$ ,  $v_3$  are vectors of V, a, b are real numbers, F, G are finite sequences of elements of the carrier of V, A, B are subsets of V, and F is a function from the carrier of V into  $\mathbb{R}$ .

Let S be a 1-sorted structure and let us consider x. Let us assume that  $x \in S$ . The functor  $x^S$  yields an element of S and is defined as follows:

(Def. 1) 
$$x^{S} = x$$
.

The following propositions are true:

- (3)<sup>1</sup> For every non empty 1-sorted structure S and for every element v of S holds  $v^S = v$ .
- (4) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and F, G, H be finite sequences of elements of the carrier of V. Suppose  $\operatorname{len} F = \operatorname{len} G$  and  $\operatorname{len} F = \operatorname{len} H$  and for every k such that  $k \in \operatorname{dom} F$  holds  $H(k) = F_k + G_k$ . Then  $\sum H = \sum F + \sum G$ .

1

© Association of Mizar Users

<sup>&</sup>lt;sup>1</sup> The propositions (1) and (2) have been removed.

- (5) If len F = len G and for every k such that  $k \in \text{dom } F$  holds  $G(k) = a \cdot F_k$ , then  $\sum G = a \cdot \sum F$ .
- (6) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and F, G be finite sequences of elements of the carrier of V. If len F = len G and for every k such that  $k \in \text{dom } F$  holds  $G(k) = -F_k$ , then  $\sum G = -\sum F$ .
- (7) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and F, G, H be finite sequences of elements of the carrier of V. Suppose  $\operatorname{len} F = \operatorname{len} G$  and  $\operatorname{len} F = \operatorname{len} H$  and for every k such that  $k \in \operatorname{dom} F$  holds  $H(k) = F_k G_k$ . Then  $\Sigma H = \Sigma F \Sigma G$ .
- (8) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure, F, G be finite sequences of elements of the carrier of V, and f be a permutation of dom F. If len F = len G and for every i such that  $i \in \text{dom } G$  holds G(i) = F(f(i)), then  $\sum F = \sum G$ .
- (9) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure, F, G be finite sequences of elements of the carrier of V, and f be a permutation of dom F. If G = F ⋅ f, then ∑F = ∑G.

Let V be a 1-sorted structure. One can check that there exists a subset of V which is empty and finite.

Let V be a 1-sorted structure and let S, T be finite subsets of V. Then  $S \cup T$  is a finite subset of V. Then  $S \cap T$  is a finite subset of V. Then  $S \cap T$  is a finite subset of V.

Let V be a non empty loop structure and let T be a finite subset of V. Let us assume that V is Abelian, add-associative, and right zeroed. The functor  $\sum T$  yields an element of V and is defined by:

(Def. 4)<sup>2</sup> There exists a finite sequence F of elements of the carrier of V such that  $\operatorname{rng} F = T$  and F is one-to-one and  $\sum T = \sum F$ .

Let V be a non empty 1-sorted structure. Observe that there exists a subset of V which is non empty and finite.

Let V be a non empty 1-sorted structure and let v be an element of V. Then  $\{v\}$  is a finite subset of V

Let V be a non empty 1-sorted structure and let  $v_1$ ,  $v_2$  be elements of V. Then  $\{v_1, v_2\}$  is a finite subset of V.

Let V be a non empty 1-sorted structure and let  $v_1$ ,  $v_2$ ,  $v_3$  be elements of V. Then  $\{v_1, v_2, v_3\}$  is a finite subset of V.

The following propositions are true:

- (14)<sup>3</sup> For every Abelian add-associative right zeroed non empty loop structure V holds  $\Sigma(\emptyset_V) = \emptyset_V$ .
- (15) Let *V* be an Abelian add-associative right zeroed right complementable non empty loop structure and *v* be an element of *V*. Then  $\sum \{v\} = v$ .
- (16) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and  $v_1$ ,  $v_2$  be elements of V. If  $v_1 \neq v_2$ , then  $\sum \{v_1, v_2\} = v_1 + v_2$ .
- (17) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and  $v_1$ ,  $v_2$ ,  $v_3$  be elements of V. If  $v_1 \neq v_2$  and  $v_2 \neq v_3$  and  $v_1 \neq v_3$ , then  $\Sigma\{v_1, v_2, v_3\} = v_1 + v_2 + v_3$ .
- (18) Let V be an Abelian add-associative right zeroed non empty loop structure and S, T be finite subsets of V. If T misses S, then  $\sum (T \cup S) = \sum T + \sum S$ .

<sup>&</sup>lt;sup>2</sup> The definitions (Def. 2) and (Def. 3) have been removed.

<sup>&</sup>lt;sup>3</sup> The propositions (10)–(13) have been removed.

- (19) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and S, T be finite subsets of V. Then  $\sum (T \cup S) = (\sum T + \sum S) \sum (T \cap S)$ .
- (20) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and S, T be finite subsets of V. Then  $\sum (T \cap S) = (\sum T + \sum S) \sum (T \cup S)$ .
- (21) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and S, T be finite subsets of V. Then  $\Sigma(T \setminus S) = \Sigma(T \cup S) \Sigma S$ .
- (22) Let V be an Abelian add-associative right zeroed right complementable non empty loop structure and S, T be finite subsets of V. Then  $\sum (T \setminus S) = \sum T \sum (T \cap S)$ .
- (23) Let *V* be an Abelian add-associative right zeroed right complementable non empty loop structure and *S*, *T* be finite subsets of *V*. Then  $\sum (T S) = \sum (T \cup S) \sum (T \cap S)$ .
- (24) Let *V* be an Abelian add-associative right zeroed non empty loop structure and *S*, *T* be finite subsets of *V*. Then  $\sum (T \dot{-} S) = \sum (T \setminus S) + \sum (S \setminus T)$ .

Let V be a non empty zero structure. An element of  $\mathbb{R}^{\text{the carrier of }V}$  is said to be a linear combination of V if:

(Def. 5) There exists a finite subset T of V such that for every element v of V such that  $v \notin T$  holds it(v) = 0.

In the sequel L,  $L_1$ ,  $L_2$ ,  $L_3$  denote linear combinations of V.

Let V be a non empty loop structure and let L be a linear combination of V. The support of L yielding a finite subset of V is defined as follows:

(Def. 6) The support of  $L = \{v; v \text{ ranges over elements of } V: L(v) \neq 0\}.$ 

Next we state the proposition

(28)<sup>4</sup> Let V be a non empty loop structure, L be a linear combination of V, and v be an element of V. Then L(v) = 0 if and only if  $v \notin$  the support of L.

Let V be a non empty loop structure. The functor  $\mathbf{0}_{LC_V}$  yields a linear combination of V and is defined as follows:

(Def. 7) The support of  $\mathbf{0}_{LC_V} = \emptyset$ .

The following proposition is true

(30)<sup>5</sup> For every non empty loop structure V and for every element v of V holds  $\mathbf{0}_{LC_V}(v) = 0$ .

Let V be a non empty loop structure and let A be a subset of V. A linear combination of V is said to be a linear combination of A if:

(Def. 8) The support of it  $\subseteq A$ .

In the sequel l denotes a linear combination of A. The following three propositions are true:

- $(33)^6$  If  $A \subseteq B$ , then *l* is a linear combination of *B*.
- (34)  $\mathbf{0}_{LC_V}$  is a linear combination of A.
- (35) For every linear combination l of  $\emptyset_{\text{the carrier of }V}$  holds  $l = \mathbf{0}_{LC_V}$ .

Let us consider V, let us consider F, and let us consider f. The functor f F yields a finite sequence of elements of the carrier of V and is defined as follows:

<sup>&</sup>lt;sup>4</sup> The propositions (25)–(27) have been removed.

<sup>&</sup>lt;sup>5</sup> The proposition (29) has been removed.

<sup>&</sup>lt;sup>6</sup> The propositions (31) and (32) have been removed.

(Def. 9)  $\operatorname{len}(f F) = \operatorname{len} F$  and for every i such that  $i \in \operatorname{dom}(f F)$  holds  $(f F)(i) = f(F_i) \cdot F_i$ .

The following propositions are true:

- $(40)^7$  If  $i \in \text{dom } F$  and v = F(i), then  $(f F)(i) = f(v) \cdot v$ .
- (41)  $f \, \varepsilon_{\text{(the carrier of } V)} = \varepsilon_{\text{(the carrier of } V)}.$
- (42)  $f\langle v\rangle = \langle f(v) \cdot v\rangle$ .
- (43)  $f\langle v_1, v_2 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2 \rangle.$
- $(44) \quad f\langle v_1, v_2, v_3 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2, f(v_3) \cdot v_3 \rangle.$

Let us consider V and let us consider L. The functor  $\sum L$  yields an element of V and is defined as follows:

(Def. 10) There exists F such that F is one-to-one and rng F = the support of L and  $\sum L = \sum (LF)$ .

Next we state several propositions:

- (47)<sup>8</sup>  $A \neq \emptyset$  and A is linearly closed iff for every l holds  $\sum l \in A$ .
- $(48) \quad \Sigma(\mathbf{0}_{\mathrm{LC}_V}) = 0_V.$
- (49) For every linear combination l of  $\emptyset_{\text{the carrier of }V}$  holds  $\sum l = 0_V$ .
- (50) For every linear combination l of  $\{v\}$  holds  $\sum l = l(v) \cdot v$ .
- (51) If  $v_1 \neq v_2$ , then for every linear combination l of  $\{v_1, v_2\}$  holds  $\sum l = l(v_1) \cdot v_1 + l(v_2) \cdot v_2$ .
- (52) If the support of  $L = \emptyset$ , then  $\sum L = 0_V$ .
- (53) If the support of  $L = \{v\}$ , then  $\sum L = L(v) \cdot v$ .
- (54) If the support of  $L = \{v_1, v_2\}$  and  $v_1 \neq v_2$ , then  $\sum L = L(v_1) \cdot v_1 + L(v_2) \cdot v_2$ .

Let V be a non empty loop structure and let  $L_1$ ,  $L_2$  be linear combinations of V. Let us observe that  $L_1 = L_2$  if and only if:

(Def. 11) For every element v of V holds  $L_1(v) = L_2(v)$ .

Let V be a non empty loop structure and let  $L_1$ ,  $L_2$  be linear combinations of V. The functor  $L_1 + L_2$  yields a linear combination of V and is defined as follows:

(Def. 12) For every element v of V holds  $(L_1 + L_2)(v) = L_1(v) + L_2(v)$ .

The following propositions are true:

- (58)<sup>9</sup> The support of  $L_1 + L_2 \subseteq$  (the support of  $L_1$ )  $\cup$  (the support of  $L_2$ ).
- (59) Suppose  $L_1$  is a linear combination of A and  $L_2$  is a linear combination of A. Then  $L_1 + L_2$  is a linear combination of A.
- (60) For every non empty loop structure V and for all linear combinations  $L_1$ ,  $L_2$  of V holds  $L_1 + L_2 = L_2 + L_1$ .
- (61)  $L_1 + (L_2 + L_3) = (L_1 + L_2) + L_3$ .
- (62)  $L + \mathbf{0}_{LC_V} = L$  and  $\mathbf{0}_{LC_V} + L = L$ .

<sup>&</sup>lt;sup>7</sup> The propositions (36)–(39) have been removed.

<sup>&</sup>lt;sup>8</sup> The propositions (45) and (46) have been removed.

<sup>&</sup>lt;sup>9</sup> The propositions (55)–(57) have been removed.

Let us consider V, a and let us consider L. The functor  $a \cdot L$  yielding a linear combination of V is defined as follows:

(Def. 13) For every v holds  $(a \cdot L)(v) = a \cdot L(v)$ .

The following propositions are true:

- $(65)^{10}$  If  $a \neq 0$ , then the support of  $a \cdot L$  = the support of L.
- (66)  $0 \cdot L = \mathbf{0}_{LC_V}$ .
- (67) If L is a linear combination of A, then  $a \cdot L$  is a linear combination of A.
- (68)  $(a+b) \cdot L = a \cdot L + b \cdot L$ .
- (69)  $a \cdot (L_1 + L_2) = a \cdot L_1 + a \cdot L_2$ .
- (70)  $a \cdot (b \cdot L) = (a \cdot b) \cdot L$ .
- (71)  $1 \cdot L = L$ .

Let us consider V, L. The functor -L yields a linear combination of V and is defined by:

(Def. 14)  $-L = (-1) \cdot L$ .

One can prove the following propositions:

- $(73)^{11}$  (-L)(v) = -L(v).
- (74) If  $L_1 + L_2 = \mathbf{0}_{LC_V}$ , then  $L_2 = -L_1$ .
- (75) The support of -L = the support of L.
- (76) If L is a linear combination of A, then -L is a linear combination of A.
- (77) --L = L.

Let us consider V and let us consider  $L_1$ ,  $L_2$ . The functor  $L_1 - L_2$  yields a linear combination of V and is defined as follows:

(Def. 15)  $L_1 - L_2 = L_1 + -L_2$ .

The following four propositions are true:

- $(79)^{12} \quad (L_1 L_2)(v) = L_1(v) L_2(v).$
- (80) The support of  $L_1 L_2 \subseteq$  (the support of  $L_1$ )  $\cup$  (the support of  $L_2$ ).
- (81) Suppose  $L_1$  is a linear combination of A and  $L_2$  is a linear combination of A. Then  $L_1 L_2$  is a linear combination of A.
- $(82) \quad L L = \mathbf{0}_{LC_V}.$

Let us consider V. The functor  $LC_V$  yielding a set is defined as follows:

(Def. 16)  $x \in LC_V$  iff x is a linear combination of V.

Let us consider V. Note that  $LC_V$  is non empty.

In the sequel e,  $e_1$ ,  $e_2$  denote elements of  $LC_V$ .

Let us consider V and let us consider e. The functor e yielding a linear combination of V is defined as follows:

<sup>&</sup>lt;sup>10</sup> The propositions (63) and (64) have been removed.

<sup>&</sup>lt;sup>11</sup> The proposition (72) has been removed.

<sup>&</sup>lt;sup>12</sup> The proposition (78) has been removed.

(Def. 17)  $^{@}e = e$ .

Let us consider V and let us consider L. The functor  ${}^{@}L$  yields an element of  $LC_{V}$  and is defined as follows:

(Def. 18)  $^{@}L = L$ .

Let us consider V. The functor  $+_{LC_V}$  yields a binary operation on  $LC_V$  and is defined by:

(Def. 19) For all  $e_1$ ,  $e_2$  holds  $+_{LC_V}(e_1, e_2) = (^{@}e_1) + ^{@}e_2$ .

Let us consider V. The functor  $\cdot_{LC_V}$  yielding a function from  $[:\mathbb{R}, LC_V:]$  into  $LC_V$  is defined as follows:

(Def. 20) For all a, e holds  $\cdot_{LC_V}(\langle a, e \rangle) = a \cdot ({}^{@}e)$ .

Let us consider V. The functor  $\mathbb{LC}_V$  yields a real linear space and is defined as follows:

(Def. 21) 
$$\mathbb{LC}_V = \langle LC_V, {}^{@}(\mathbf{0}_{LC_V}), +_{LC_V}, \cdot_{LC_V} \rangle$$
.

Let us consider V. One can verify that  $\mathbb{LC}_V$  is strict and non empty.

The following propositions are true:

- $(92)^{13}$  The carrier of  $\mathbb{LC}_V = LC_V$ .
- (93) The zero of  $\mathbb{LC}_V = \mathbf{0}_{LC_V}$ .
- (94) The addition of  $\mathbb{LC}_V = +_{LC_V}$ .
- (95) The external multiplication of  $\mathbb{LC}_V = \cdot_{\mathrm{LC}_V}$ .
- (96)  $L_1^{\mathbb{LC}_V} + L_2^{\mathbb{LC}_V} = L_1 + L_2$ .
- (97)  $a \cdot L^{\mathbb{LC}_V} = a \cdot L$ .
- $(98) \quad -L^{\mathbb{LC}_V} = -L.$
- $(99) \quad L_1^{\mathbb{LC}_V} L_2^{\mathbb{LC}_V} = L_1 L_2.$

Let us consider V and let us consider A. The functor  $\mathbb{LC}_A$  yielding a strict subspace of  $\mathbb{LC}_V$  is defined by:

(Def. 22) The carrier of  $\mathbb{LC}_A = \{l\}$ .

Next we state three propositions:

- $(103)^{14}$  If k < n, then n 1 is a natural number.
- $(107)^{15}$  If X is finite and Y is finite, then X Y is finite.
- (108) For every function f such that  $f^{-1}(X) = f^{-1}(Y)$  and  $X \subseteq \operatorname{rng} f$  and  $Y \subseteq \operatorname{rng} f$  holds X = Y.

<sup>&</sup>lt;sup>13</sup> The propositions (83)–(91) have been removed.

<sup>&</sup>lt;sup>14</sup> The propositions (100)–(102) have been removed.

<sup>&</sup>lt;sup>15</sup> The propositions (104)–(106) have been removed.

## REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card\_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat\_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg\_1.html.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop\_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct\_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [8] Library Committee. Boolean properties of sets requirements. Journal of Formalized Mathematics, EMM, 2002. http://mizar.org/JFM/EMM/boole.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset\_1.html.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real 1.html.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre\_topc.html.
- [12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlsub\_1.html.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect\_1.html.
- [18] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq\_4.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.

Received April 8, 1990

Published January 2, 2004