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Summary. The article is continuation of [17]. At the beginning we prove some theo-
rems concerning sums of finite sequence of vectors. We introduce the following notions: sum
of finite subset of vectors, linear combination, carrier of linear combination, linear combina-
tion of elements of a given set of vectors, sum of linear combination. We also show that the
set of linear combinations is a real linear space. At the end of article we prove some auxiliary
theorems that should be proved|in [8], [5], [9]} [2] br [10].
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The articles([18],[[1R],[[7],119],[115],191,.[B],[[20],[15], 16],[[17],[110], [16] [114],14],118]/11], and
[11] provide the notation and terminology for this paper.

In this article we present several logical schemes. The schemdbdaSepteals with non
empty setsq, B, an element of 4, an elementD of B, and a unary functof yielding an element
of B, and states that:

There exists a functiofi from 4 into B such thatf (C) = P and for every element
of 4 such thak # C holds f(x) = F (x)
for all values of the parameters.

The scheméambdaSep@eals with non empty set8, B, element”, D of 4, elementsE, F
of B, and a unary functof yielding an element o, and states that:

There exists a functiof from 4 into B such thatf (C) = £ andf (D) = ¥ and for
every elemenk of 4 such thak # C andx # D holds f (x) = F (x)
provided the parameters satisfy the following condition:

o C#D.

For simplicity, we adopt the following rules(, Y, x are setsi, k, n are natural numbery, is a
real linear spacey, v, Vo, V3 are vectors oV, a, b are real numbers;, G are finite sequences of
elements of the carrier &f, A, B are subsets of, andf is a function from the carrier of into R.

Let She a 1-sorted structure and let us consiletet us assume thatc S. The functorx®
yields an element dband is defined as follows:

(Def. 1) xS=x.
The following propositions are true:
(3H For every non empty 1-sorted struct@and for every elementof Sholdsv® = v.

(4) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and-, G, H be finite sequences of elements of the carrie¥ ofSuppose leR =
lenG and lerF = lenH and for everyk such thatk € domF holdsH (k) = R+ Gi. Then
SH=YF+3G.

1 The propositions (1) and (2) have been removed.
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(5) IflenF =lenG and for everyk such thak € domF holdsG(k) = a- K, thenyG=a-S F.

(6) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andr, G be finite sequences of elements of the carrierf off lenF = lenG and for
everyk such thak € domF holdsG(k) = —F, theny G= -3 F.

(7) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and-, G, H be finite sequences of elements of the carrie¥ ofSuppose leR =
lenG and lerF = lenH and for everyk such thatk € domF holdsH (k) = R, — G. Then

SH=SF-SG.

(8) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure,F, G be finite sequences of elements of the carrie¥ pand f be a permutation
of domF. If lenF = lenG and for everyi such that € domG holds G(i) = F(f(i)), then

SF=5G.

(9) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure F, G be finite sequences of elements of the carrie¥ ohndf be a permutation of
domF. If G=F-f, thenF=5G.

LetV be a 1-sorted structure. One can check that there exists a subsetroth is empty and
finite.

LetV be a 1-sorted structure and ®tT be finite subsets of. ThenSUT is a finite subset of
V. ThenSNT is a finite subset 0¥ . ThenS\ T is a finite subset 0¢. ThenS~=T is a finite subset
of V.

LetV be a non empty loop structure and Tebe a finite subset df. Let us assume that is
Abelian, add-associative, and right zeroed. The fungtdryields an element o¥ and is defined
by:

(Def. 4E] There exists a finite sequenEeof elements of the carrier &f such that rn@e = T andF
is one-to-oneany T =S F.

LetV be a non empty 1-sorted structure. Observe that there exists a subsethith is non
empty and finite.

LetV be a non empty 1-sorted structure andvibe an element of . Then{v} is a finite subset
of V.

LetV be a non empty 1-sorted structure andvgtv, be elements of . Then{vy,v,} is a finite
subset o¥/.

LetV be a non empty 1-sorted structure andvigtvy, vs be elements d¥. Then{vi,v,,v3} is
a finite subset o¥.

The following propositions are true:

(14 For every Abelian add-associative right zeroed non empty loop striéthoddss (0y) =
Ov.

(15) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and be an element of . Theny {v} =v.

(16) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, vz be elements o¥. If vi # vo, thenS {v1,vo} = vi + Vo.

(17) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andvy, vo, vz be elements oV. If vi # v and v, # vz and vy # vs, then
S{V1, V2, Va3} = V1 + V2 + V3.

(18) LetV be an Abelian add-associative right zeroed non empty loop structur& ahdbe
finite subsets o¥. If T missesS, theny (TUS) =3T+35S

2 The definitions (Def. 2) and (Def. 3) have been removed.
3 The propositions (10)—(13) have been removed.
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(19) LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, T be finite subsets &f. Then3(TUS) = (3T+39 —-3(TNY).

(20) LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure andg, T be finite subsets &f. Theny (TN =(3T+35S —-S(TUS).

(21) LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, T be finite subsets &f. Theny (T\S =5(TUS -3 S

(22) LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure ands, T be finite subsets &f. ThenJ (T\S =5T-5(TNS).

(23) LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, T be finite subsets &f. Theny (T=9) =5(TUS —-3F(TNS).

(24) LetV be an Abelian add-associative right zeroed non empty loop structur& ahdbe
finite subsets of. Theny (T=9) =3 (T\ S +J(S\T).

LetV be a non empty zero structure. An elemenR8E camer oV is said to be a linear combi-
nation ofV if:

(Def. 5) There exists a finite subsef V such that for every elememtof V such thaw ¢ T holds
it(v) =0.

In the sequel, L1, L, L3 denote linear combinations wf
LetV be a non empty loop structure and lebe a linear combination &f. The support ot
yielding a finite subset df is defined as follows:

(Def. 6) The support of = {v;v ranges over elements ¥f L(v) # 0}.

Next we state the proposition

(28@ LetV be a non empty loop structure be a linear combination &f, andv be an element
of V. ThenL(v) =0 if and only ifv ¢ the support ot..

LetV be a non empty loop structure. The func@pe, yields a linear combination of and is
defined as follows:

(Def. 7) The support 0d ¢, = 0.
The following proposition is true
(SOE For every non empty loop structuveand for every elementof V holdsO, ¢, (v) = 0.

LetV be a non empty loop structure and Febe a subset df. A linear combination oV is
said to be a linear combination Afif:

(Def. 8) The support of it A.

In the sequel denotes a linear combination Af
The following three propositions are true:

(33@ If AC B, thenl is a linear combination dB.
(34) O.c, is alinear combination oA.
(35) For every linear combinatidrof Qe carrier ot holdsl = 0.c,, .

Let us consideW, let us consideF, and let us considef. The functorf F yields a finite
sequence of elements of the carrieio&nd is defined as follows:

4 The propositions (25)—(27) have been removed.
5 The proposition (29) has been removed.
6 The propositions (31) and (32) have been removed.
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(Def. 9) len(f F) =lenF and for everyi such thai € dom(f F) holds(f F)(i) = f(F)-F.
The following propositions are true:
(40)] If i € domF andv = F(i), then(f F)(i) = f(v)-v.
(41) T €the carrier ofv) = E(the carrier ofv)-
42) f(v)=({f(v)-v).
(43) f (vi,v2) = (f(v1)-vy, F(v2)-vo).
(44) 1 (vi,va,v3) = (f(v1) vy, f(v) Vo, f(v3)-vg).

Let us conside¥ and let us considdr. The functory L yields an element of and is defined
as follows:

(Def. 10) There exists such thaF is one-to-one and rrfg = the support ol andy L = S (LF).
Next we state several propositions:
(47 A+ D0andAis linearly closed iff for every holdsy | € A.
(48) 3(Oc,) =0v.
(49) For every linear combinatidrof Oine carrier ofv hOlASS | = 0y .
(50) For every linear combinatidrof {v} holdsy | =1(v) - v
(51) If vo # vo, then for every linear combinatidrof {vi, v} holdsS | =1(v1) - v1+1(v2) - va.
(52) If the support of. =0, theny L =0y.
(53) If the support of. = {v}, theny L =L(v)-V.
(54) If the support of. = {vq,Vv2} andvy # Vo, theny L = L(v1) - vq +L(v2) - vo.

LetV be a non empty loop structure and gt L, be linear combinations &f. Let us observe
thatL; = L, if and only if:

(Def. 11) For every elemenmtof V holdsL1(v) = La(v).

LetV be a non empty loop structure and lat, L, be linear combinations &f. The functor
L1 + L yields a linear combination &f and is defined as follows:

(Def. 12) For every elementof V holds(L1 + L2)(v) = L1(v) 4+ La(V).
The following propositions are true:
(58 The support of.1 + L, C (the support of.1) U (the support of.y).

(59) Suppost; is a linear combination oA andL; is a linear combination 0A. ThenL; +L>
is a linear combination oA.

(60) For every non empty loop structuveand for all linear combinationk;, L, of V holds
L1+ Ly=Ly+Lj.

(61) Li+(Lo+L3)=(L1+L2)+Ls.
(62) L+0LCV =L andOLcV +L=L.

7 The propositions (36)—(39) have been removed.
8 The propositions (45) and (46) have been removed.
9 The propositions (55)—-(57) have been removed.
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Let us conside¥, a and let us considdr. The functora- L yielding a linear combination &f
is defined as follows:

(Def. 13) Forevery holds(a-L)(v) =a-L(v).
The following propositions are true:
(GSB If a=£ 0, then the support cdi- L = the support of..
(66) 0-L=0.g,.
(67) If Lis alinear combination oA, thena-L is a linear combination oA.
(68) (a+b)-L=a-L+b-L.
(69) a-(Li+Llz)=a-Li+a-Ls.
(70) a-(b-L)=(a-b)-L.
(71) 1-L=L.
Let us consideY, L. The functor—L yields a linear combination &f and is defined by:
(Def. 14) —L=(-1)-L.
One can prove the following propositions:
73 (-1 =-LV).
(74) IfLi+Ly=0.c,, thenly = —L;.
(75) The support of-L = the support of..
(76) If Lis alinear combination oA, then—L is a linear combination oA.
(77) ——L=L.

Let us consideY and let us considdry, L,. The functorl; — L, yields a linear combination of
V and is defined as follows:

(Def. 15) Li—Lo=L1+—Lo.
The following four propositions are true:
797 (L1 —L2)(v) = La(v) — Lo(V).
(80) The support of; — Ly C (the support of.1) U (the support ot.,).

(81) Suppost; is alinear combination oA andL; is a linear combination oA. ThenL; — L
is a linear combination oA.

(82) L-L=0.,.
Let us consideY. The functor LG yielding a set is defined as follows:
(Def. 16) x e LCy iff xis a linear combination of .

Let us consideY. Note that LG is hon empty.

In the sequeg, e1, e; denote elements of LC

Let us conside¥ and let us considez. The functor@e yielding a linear combination of is
defined as follows:

10 The propositions (63) and (64) have been removed.
11 The proposition (72) has been removed.
12 The proposition (78) has been removed.
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(Def. 17) @e=e.

Let us consideY and let us considdr. The functor@L yields an element of L and is defined
as follows:

(Def. 18) @L =L.
Let us consideY. The functor+_c, yields a binary operation on Cand is defined by:
(Def. 19) For alley, e holds+¢, (e1, &) = (@ey) + Ce.

Let us conside¥. The functor- ¢, yielding a function from: R, LCy ] into LCy is defined as
follows:

(Def. 20) For alla, e holds- ¢, ({a, €)) = a- (®e).
Let us consideY. The functorLCy yields a real linear space and is defined as follows:
(Def. 21) LCy = (LCy,®(0ic, ), +1cy, Loy )-

Let us consideY. One can verify that.Cy is strict and non empty.
The following propositions are true:

(92 The carrier ofLCy = LCy .

(93) The zero of.Cy =Oyc, .

(94) The addition oLCy = +(c, .

(95) The external multiplication diCy = -.c, .
(96) L™V + LM =1L +Lo.

(97) a-L*™ =a.L.

(98) —LM&v =_L.

(99) LM — LM =1y L.

Let us conside¥ and let us consideh. The functor.Cpa yielding a strict subspace &fCy is
defined by:

(Def. 22) The carrier oLCa = {1}.
Next we state three propositions:
(103@ If k < n, thenn—1is a natural number.
(1079 If X is finite andY is finite, thenX =Y is finite.
(108) For every functiori such thatf ~1(X) = f~1(Y) andX C rngf andY C rngf holdsX =Y.

13 The propositions (83)—(91) have been removed.
14 The propositions (100)—(102) have been removed.
15 The propositions (104)—(106) have been removed.
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