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Vectors in Real Linear Space
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Summary. In this article we introduce a notion of real linear space, operations on
vectors: addition, multiplication by real number, inverse vector, subtraction. The sum of finite
sequence of the vectors is also defined. Theorems that belong rather td [1] or [4] are proved.

MML Identifier: RLVECT_1.

WWW: http://mizar.org/JFM/Voll/rlvect_1.html

The articles[[11],[[8],[[13],[12],[[8],[[12],[[10],[114][16],17],15],09],14], and]1] provide the notation
and terminology for this paper.

We introduce loop structures which are extensions of zero structure and are systems

( a carrier, an addition, a zelo
where the carrier is a set, the addition is a binary operation on the carrier, and the zero is an element
of the carrier.

We consider RLS structures as extensions of loop structure as systems

( a carrier, a zero, an addition, an external multiplication
where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on
the carrier, and the external multiplication is a function frobR the carrier]:into the carrier.

Let us note that there exists an RLS structure which is non empty.

In the sequeV is a non empty RLS structure amds a set.

LetV be an RLS structure. A vector bfis an element of/.

LetV be a 1-sorted structure and let us considerhe predicata € V is defined by:

(Def. 1) xe€ the carrier olv.
The following proposition is true
(3H For every non empty 1-sorted structiend for every elementof V holdsv € V.
LetV be a zero structure. The functoy Qielding an element of is defined by:

(Def. 2) @G, =the zero olv.

In the sequeV denotes a vector &f anda, b denote real numbers.

Let us observe that there exists a loop structure which is strict and non empty.

LetV be a non empty loop structure and¥etv be elements 0f. The functorv+ w yields an
element oV and is defined as follows:

(Def. 3) v+w = (the addition o) ({v, w)).

Let us consideY, let us considey, and let us considex. The functora- v yields an element of
V and is defined as follows:

1 The propositions (1) and (2) have been removed.
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(Def. 4) a-v= (the external multiplication o¥)((a, v)).
We now state the proposition

(SE] For every non empty loop structuxeand for all elements, w of V holdsv+w = (the
addition ofV) (v, w).

Let Z; be a non empty set, I€ be an element af;, let F be a binary operation of, and let
G be a function fronf: R, Z; ] into Z;. Observe tha{Z;, O, F,G) is non empty.
Let I be a non empty loop structure. We say thas Abelian if and only if:

(Def. 5) For all elements, w of |11 holdsv+w =w+ V.
We say that; is add-associative if and only if:
(Def. 6) For all elements, v, w of 11 holds(u+ V) +w = u+ (v+w).
We say that; is right zeroed if and only if:
(Def. 7)  For every elementof I holdsv+0,) = v.
We say that; is right complementable if and only if:
(Def. 8) For every elementof I; there exists an elemewntof I; such that+w = 0y,).

Let 13 be a non empty RLS structure. We say thais real linear space-like if and only if the
conditions (Def. 9) are satisfied.

(Def. 9)(i) For everya and for all vectory, wof I; holdsa- (v+w) =a-v+a-w,
(i) forall a, band for every vectov of I; holds(a+b)-v=a-v+Db-v,
(i)  forall a, band for every vectov of I; holds(a-b)-v=a- (b-v), and

(iv) for every vectow of I; holds 1: v=.

Let us note that there exists a non empty loop structure which is strict, Abelian, add-associative,
right zeroed, and right complementable.

Let us observe that there exists a non empty RLS structure which is non empty, strict, Abelian,
add-associative, right zeroed, right complementable, and real linear space-like.

A real linear space is an Abelian add-associative right zeroed right complementable real linear
space-like non empty RLS structure.

LetV be an Abelian non empty loop structure anddet be elements df . Let us note that the
functorv+w is commutative.

The following proposition is true

(7E] Suppose that for all vectoks w of V holdsv+w = w+ v and for all vectorsy, v, w of V
holds (u+Vv) +w = u+ (v+w) and for every vectov of V holdsv+ 0y = v and for every
vectorv of V there exists a vector of V such thatv+w = 0y and for everya and for all
vectorsv, wofV holdsa- (v+w) =a-v+a-wand for alla, b and for every vectov of V holds
(a+b)-v=a-v+Db-vand for alla, b and for every vectov of V holds(a-b)-v=a- (b-v)
and for every vectov of V holds 1: v=v. ThenV is a real linear space.

In the sequeY is a real linear space aww are vectors of/.
The following proposition is true

(10@ LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element df. Thenv+0y =vand @ +v=v.

2 The proposition (4) has been removed.
3 The proposition (6) has been removed.
4 The propositions (8) and (9) have been removed.
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LetV be a non empty loop structure and lebe an element of/. Let us assume that is
add-associative, right zeroed, and right complementable. The funetgrelds an element o¥
and is defined as follows:

(Def. 10) v+ —v=0y.

LetV be a non empty loop structure and \etv be elements of. The functorv — w yielding
an element o¥ is defined as follows:

(Def. 11) v—w=v+—Ww.
We now state a number of propositions:

(16E] LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element df . Thenv+ —v=0y and—v+v=0y.

(19E] LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements o¥. If v4+w = 0y, thenv= —w.

(20) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, u be elements d¥. Then there exists an elemembfV such that+w = u.

(21) LetV be an add-associative right zeroed right complementable non empty loop structure
andw, u, v1, v» be elements d¥. If w+viy =w-+ Vo or vi +W = Vo +Ww, thenvy = vs.

(22) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements of. If v+w=vorw+v =y, thenw=0y.

(23) Ifa=0o0rv=_0y,thena-v=_0y.
(24) Ifa-v=0y,thena=0o0rv=0y.

(25) For every add-associative right zeroed right complementable non empty loop stkicture
holds—0y = Oy .

(26) LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element of . Thenv—0y = v.

(27) LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element of. Then@ —v=—v.

(28) LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element of . Thenv—v = 0y.

29) —v=(-1)-v

(30) LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element of . Then——v=v.

(81) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements o¥. If —v= —w, thenv=w.

(33)] 1f v=—v, thenv=0y.
(34) Ifv4+v=0y,thenv=0y.

(85) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements o¥. If v—w =0y, thenv=w.

(36) LetV be an add-associative right zeroed right complementable non empty loop structure
andu, v be elements df . Then there exists an elemembdf V such that —w = u.

5 The propositions (11)—(15) have been removed.
6 The propositions (17) and (18) have been removed.
" The proposition (32) has been removed.
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(37) LetV be an add-associative right zeroed right complementable non empty loop structure
andw, vi, Vo be elements of. If w—vy =w— vy, thenvy = v,.

(38) a-—-v=(-a)-v
(39) a-—v=-a-v.
(40) (—a)-—-v=a-v

(41) LetV be an add-associative right zeroed right complementable non empty loop structure
andyv, u, wbe elements of. Thenv— (u+w) =v—w—u.

(42) For every add-associative hon empty loop structund for all elements, u, w of V
holds(v+u) —w= v+ (U—w).

(43) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, u, w be elements d¥. Thenv— (u—w) = (v—u) +w.

(44) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements of. Then—(v+w) = —w—Vv.

(45) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements 0f . Then—(v+w) = —w+ —V.

(46) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, w be elements of . Then—v—w=—-w-—v.

(47) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, w be elements of . Then—(v—w) =w+ —v.

(48) a-(v—w)=a-v—a-w
(49) (a—b)-v=a-v—b-v.
(50) Ifa#0anda-v=a-w, thenv=w.
(51) Ifv#0y anda-v=Db-v,thena=h.

LetV be a non empty 1-sorted structure andveti be elements of/. Then(v,u) is a finite
sequence of elements of the carrielMof

LetV be a non empty 1-sorted structure and/et, w be elements of . Then(v,u,w) is a finite
sequence of elements of the carrieNof

For simplicity, we adopt the following ruled/ is a non empty loop structur€,, G are finite
sequences of elements of the carrievof is a function fromN into the carrier o¥, vis an element
of V, andj, k, n are natural numbers.

Let us conside¥ and let us considdf. The functory F yields an element of and is defined

by:

(Def. 12) There exist$ such thaty F = f(lenF) and f(0) = Oy and for all j, v such thatj < lenF
andv=F(j+1)holdsf(j+1)=f(j)+wv

The following two propositions are true:
(54 If ke Segnand lerF = n, thenF (k) is an element oY'.
(55) IflenF =lenG+1 andG = F[domG andv = F(lenF), theny F =5 G+V.

Inthe sequeV is a real linear space,is a vector ol/, andF, G are finite sequences of elements
of the carrier olv.
The following three propositions are true:

8 The propositions (52) and (53) have been removed.
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(56) If lenF = lenG and for allk, v such thak € domF andv = G(k) holdsF (k) = a-v, then
SF=a-yG.

(57) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure andr, G be finite sequences of elements of the carrier oSuppose leR = lenG
and for everyk and for every elementof V such thak € domF andv = G(k) holdsF (k) =
—Vv.Theny F =-5G.

(58) LetV be an add-associative right zeroed non empty loop structuré a@dbe finite se-
quences of elements of the carriendfTheny (F~G)=SF+ 3 G.

For simplicity, we use the following conventiod: denotes an add-associative right zeroed right
complementable non empty loop structufejenotes a finite sequence of elements of the carrier of
V, Vv, vi, V2, U, w denote elements &f, andp, q denote finite sequences.

We now state a number of propositions:

(59) LetV be an Abelian add-associative right zeroed non empty loop structur& a@de
finite sequences of elements of the carrie¥ofif rngF = rngG andF is one-to-one an
is one-to-one, thel F = 5 G.

(60) For every non empty loop structweholdsy (€une carrier otv)) = Ov-

(61) LetV be an add-associative right zeroed right complementable non empty loop structure
andv be an element of. Theny (v) =v.

(62) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, u be elements df. Theny (v,u) = v+ u.

(63) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, u, w be elements of. Theny (v,u,w) = v+ u+w.

(64) For every real linear spatveand for every real numberholdsa- ¥ (€ne carrier otv)) = Ov-

(66 For every real linear spadkand for every real numberand for all vectors, u of V holds
a-Svu=a-v+a-u

(67) LetV be areal linear spaca,be a real number, ang u, w be vectors o¥. Thena- 3 (v,
u,w) =a-v+a-u+a-w.

(68) _Z(E(the carrier of\/)) =0Ov.
(69) —3{v)=-

(70) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, u be elements o¥. Then—3 (v,u) = —v—u.

(71) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, u, w be elements of. Then—5 (v,u,w) = —v—u—w.

(72) LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, w be elements of . Theny (v,w) = S (W, V).

(73) T(ww) =3V +3W).
(74) 3(0v,0v) =0v.

(75) S(Ov,v) =vandy(v,0y) =V
(76) 3 (v—v) =0y andy(-V,v) = Oy.
(77) S(%-w) =v-w.

9 The proposition (65) has been removed.
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3 (—V,—W) = —(W+V).

For every real linear spatkand for every vectov of V holdsy (v,v) = 2-v.

For every real linear spateand for every vectov of V holdsy (—v, —v) = (=2) - v.
YU V,W) = 3 (U) + 3 (V) + F(W).

3 (U, v, W) = 3 (U,V) +W.

LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, u, w be elements 0. Theny (u,v,w) = 5 (v,w) +u.

(84)

LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, u, w be elements of. Theny (u,v,w) = ¥ (u,w) + V.

(89)

LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, u, w be elements o¥. Theny (u,v,w) = 3 (U, W, V).

(86)

LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, u, w be elements of. Theny (u,v,w) = 3 (v,u,w).

(87)

LetV be an Abelian add-associative right zeroed right complementable non empty loop

structure and, u, w be elements of. Theny (u,v,w) = ¥ (v,w, u).

(89@ LetV be an Abelian add-associative right zeroed right complementable non empty loop
structure and, u, w be elements o¥. Theny (u,v,w) = 3 (W, v, u).

(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)

5 (Ov,0v,0v) =Oy.

3 (Ov,0v,v) =vandy (Oy,v,0vy) =vandy (v,0y,0/) = V.

3 (Ov,u,v) =u+vandy(u,v,0y) =u+vandy(u,0v/,v) =u+v.

For every real linear spatkand for every vectov of V holdsy (v,v,v) = 3-.
IflenF =0, theny F =0y.

IflenF =1, theny F = F(1).

IflenF = 2 andvy = F(1) andv, = F(2), theny F = v1 +v».

IflenF = 3 andvy = F(1) andv> = F(2) andv=F(3),thenS F = vy +Vvo+V.

Let R be a non empty zero structure andadte an element dR. We say that is non-zero if
and only if:

(Def. 13) a#0R.

In the sequel, k, n denote natural numbers.
One can prove the following propositions:

(98)
(99)

If j <1, thenj=0.
1<kiff k#£0.

(102f] If k# 0, thenn < n+k.

(103)
(104)
(105)
(106)

k<k+niff1 <n.
Sek = Sedk+1)\ {k+1}.
p=(p~q)[domp.

If rngp = rngg andp is one-to-one and is one-to-one, then lgm= leng.

10 The proposition (88) has been removed.
11 The propositions (100) and (101) have been removed.
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