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Operations on Subspaces in Real Linear Space
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Summary. In this article the following operations on subspaces of real linear space
are intoduced: sum, intersection and direct sum. Some theorems about those notions are
proved. We define linear complement of a subspace. Some theorems about decomposition of
a vector onto two subspaces and onto subspace and its linear complement are proved. We also
show that a set of subspaces with operations sum and intersection is a lattice. At the end of
the article theorems that belong ratherito [4], [8], [7]lori[12] are proved.

MML Identifier: RLSUB_2.
WWW: http://mizar.org/JFM/Voll/rlsub_2.html

The articles|[8],[13], 19], 1], [10], 12], [12], [11], 8], [7], andL[5] provide the notation and termi-
nology for this paper.

For simplicity, we adopt the following conventioN: is a real linear spac®y, W;, W, W5 are
subspaces d&f, u, up, Up, V, V1, Vo are vectors of/, X, Y are sets, angis a set.

Let us consideY and let us considef), Ws. The functoMy +Ws yields a strict subspace of
and is defined as follows:

(Def. 1) The carrier oV +Wo = {v+u:veW, A ueWo}.

Let us consideY and let us considef), Wo. The functoMh "W, yields a strict subspace wf
and is defined by:

(Def. 2) The carrier of\y "W, = (the carrier oMy N (the carrier of\b).
Next we state a number of propositions:
(SE] x € Wy + W iff there existvy, vo such thatr; € Wy andv, € Wo andx = v + V.
(6) IfveW; orveW,, thenve Wy +Ws.
(7)) xeWNWs iff xe Wy andx € Wo.
(8) For every strict subspat® of V holdsW +W =W.
(9) WA+Wo =W +Wy.
(10) Wi+ (We+Ws) = (Wi +Wo) +Ws.
(11) W, is a subspace &4 +Ws andW, is a subspace &l +Ws.
(12) For every strict subspaé of V holdsW; is a subspace &% iff Wi +Wo =W
(13) For every strict subspaé of V holdsOy +W =W andW + 0y =W.

1 The propositions (1)-(4) have been removed.
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(14) Oy + Qy =the RLS structure of andQy + Oy = the RLS structure o¥.
(15) Qv +W =the RLS structure a¥ andW + Qy = the RLS structure o¥.
(16) For every strict real linear spadeholdsQy + Qy = V.

(17) For every strict subspaté of V holdsW nW =W.

(18) WinWse =WoNW.

(19) Win(WonWs) = (WA NW,) NWA.

(20) WiNWs is a subspace &4 andWy NWs is a subspace afb.

(21) For every strict subspaé of V holdsW, is a subspace &b iff Wi NWo =W,
(22) OyNW =0y andW N Oy = Oy.

(23) Oy NQy =0y andQy N0y = 0y.

(24) For every strict subspaté of V holdsQy "W =W andW N Qy =W.
(25) For every strict real linear spa?eholdsQy NQy = V.

(26) WiNW, is a subspace &f4 +Ws.

(27) For every strict subspab®é of V holdsWy NWs +Wo = Wb,

(28) For every strict subspaté of V holdsWy N (Wi +Ws) = Wi

(29) WinWo +WoNWs is a subspace &fb N (W +W5).

(30) IfW; is a subspace &fb, thenWo N (Wh +W5) = Wi NWs +Wo NWA.

(31) Wo+WiNWsis a subspace diV; +Wa) N (Wh +W5).

(32) IfWj is a subspace &b, thenWs +Wh W5 = (W +Wa) N (Wa +W5).
(33) IfW is a strict subspace 9%, thenW, +Wo NW5 = (W4 +Wh) N,
(34) For all strict subspac&¥;, W, of V holdsWy +Ws = W5 iff Wi NWs =W,

(35) For all strict subspacés,, W5 of V such thaW is a subspace dfb holdsWy +W5 is a
subspace o\, +W5.

(36) There exist¥V such that the carrier W = (the carrier oW, ) U (the carrier oMb) if and
only if Wy is a subspace &f or W, is a subspace 4.

Let us consideY. The functor Subspac¥syields a set and is defined as follows:
(Def. 3) For every holdsx € Subspaceg iff x is a strict subspace ®f.

Let us consideY. Observe that Subspadéss non empty.
One can prove the following proposition

(39E] For every strict real linear spateholdsV € Subspaceg.

Let us conside¥ and let us considah, Wo. We say thaV is the direct sum oV, andW if
and only if:

(Def. 4) The RLS structure &f =W +W, andWy N\W, = Oy.

LetV be a real linear space and &tbe a subspace &f. A subspace oY is called a linear
complement oWV if:

2 The propositions (37) and (38) have been removed.
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(Def. 5) V is the direct sum of it anw/.

LetV be a real linear space and &t be a subspace &f. Observe that there exists a linear
complement ofV which is strict.
We now state several propositions:

(42 LetV be areal linear space aWd, W, be subspaces &. Suppos#/ is the direct sum of
W, andWs. ThenW, is a linear complement 4.

(43) LetV be areal linear spacky be a subspace &f, andL be a linear complement &f.
ThenV is the direct sum of andW and the direct sum & andL.

(44) LetV be areal linear spacky be a subspace &f, andL be a linear complement &f.
ThenW + L = the RLS structure df andL +W = the RLS structure o¥.

(45) LetV be areal linear spacky be a subspace &f, andL be a linear complement &f.
ThenWNL =0y andLNW = 0y.

(46) IfV is the direct sum ofVy andWs, thenV is the direct sum o\, andWj.
(47) Every real linear spadgis the direct sum o®, andQy and the direct sum d@y andOy.

(48) LetV be areal linear spac®y be a subspace &f, andL be a linear complement &¥.
ThenW is a linear complement df.

(49) For every real linear spateholdsOy is a linear complement dy andQy is a linear
complement of,.

In the sequeC is a coset ofV, C; is a coset 0¥V, andC; is a coset ofi\L.
The following propositions are true:

(50) If C; meetC,, thenCy NC; is a coset 0¥V, NWs.

(51) LetV be areal linear space aiWdé, W> be subspaces &f. ThenV is the direct sum of
W, andW if and only if for every cose€; of Wy and for every coset, of W, there exists a
vectorv of V such thaC; NCp = {v}.

(52) LetV be a real linear space avd, W, be subspaces &f. ThenW; +W, = the RLS
structure ol if and only if for every vectow of V there exist vectors;, v, of V such that
vi € W andvo € Wo andv = vy + V.

(53) IfVisthe direct sum dfV; andW, andv = v1 + Vv, andv = up + Uy andvy € Wi andu; € Wy
andv, € W, andu, € W, thenvy = up andv, = Us.

(54) Suppos®¥ =W +W, and there existg such that for allvy, v, ug, Uz such thav = vy +v»
andv = u; + up andvy; € Wy andu; € Wy andv, € Wo andu, € Wo holdsvy = up andvs = us.
ThenV is the direct sum of\; andWs.

Let us consideW, let us considew, and let us considéM;, Wo. Let us assume that is the
direct sum oAy, andWsb. The functon/(Wl_WZ) yielding an element offthe carrier oV, the carrier

of V] is defined as follows:
(Def.6) v= (V(Wl.,vvz))l + (V(WLWZ) )2 and(v<W1W2))1 eWy a”d(V(wl,wz))Z eWo.
The following propositions are true:
(59ﬂ If V is the direct sum of\, andW\b, then(v(wl)wz))l - (v(%wl>)2.

(60) IfV is the direct sum ofvy andwWs, then(v<WlW2))2 = (V(W2 Wl))l'

3 The propositions (40) and (41) have been removed.
4 The propositions (55)—(58) have been removed.
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(61) LetV be areal linear spac®y be a subspace &f, L be a linear complement &%, v be
a vector ofV, andt be an element ofthe carrier olV, the carrier oV J. If t; +t, = v and
t1 e Wandt; € L, thent = v(W L)

(62) LetV be areal linear spac®/ be a subspace &f, L be a linear complement &Y, andv
be a vector oV. Then(v(W_L) )1+ (v(W 1) Jo=V.

(63) LetV be areal linear spac®/ be a subspace &f, L be a linear complement &Y, andv
be a vector o¥/. Then(v(W_L) )1 €W and(v(W L>)2 eL.

(64) LetV be areal linear spac®/ be a subspace &f, L be a linear complement &Y, andv
be a vector oV. Then(v(W L)>1 = (V(L_W))Z'

(65) LetV be areal linear spack/ be a subspace &f, L be a linear complement &Y, andv
be a vector oV. Then(v(W L))Z = (V(L.W))l'

In the sequeh, A, denote elements of Subspades
Let us consideY. The functor SubJoi yielding a binary operation on Subspaveis defined
as follows:

(Def. 7)  For allAg, Ay, Wi, W, such thath; =W, andAz; =W, holds (SubJoiV ) (Ag, Ay) =W +
W5

Let us consideV. The functor SubMe&t yields a binary operation on Subspadeand is
defined by:

(Def. 8) For allAg, Ay, Wi, W such thatA; =W; and A, = W, holds (SubMeeV) (A, Ay) =
Wi NW.

Let X be a non empty set and let, u be binary operations oK. Note that(X,m,u) is non
empty.
The following proposition is true

(70F] (Subspaceg, SubJoiv, SubMeeV) is a lattice.

Let us consideY. Observe thatSubspaceg, SubJoirv, SubMeeV) is lattice-like.
The following propositions are true:

(71) For every real linear spa¥kholds(Subspaceg, SubJoitV, SubMeeV) is lower-bounded.
(72) For every real linear spa¥eholds(Subspaceg, SubJoitV, SubMeeV) is upper-bounded.

(73) For every real linear spavtholds (Subspaceg, SubJoitV, SubMeeV) is a bound lattice.
(74) For every real linear spabtholds(Subspaceg, SubJoirv, SubMeeV) is modular.

In the sequel is a lattice andh, b are elements df.
One can prove the following proposition

(75) For every real linear spabtholds(Subspaces, SubJoilV, SubMeeV) is complemented.

Let us conside¥. One can verify thatSubspaceg, SubJoiV, SubMeeV) is lower-bounded,
upper-bounded, modular, and complemented.
One can prove the following propositions:

(76) LetV be areal linear space amd, W», W5 be strict subspaces ¥f. If Wy is a subspace of
Ws, thenWy NW4 is a subspace afb NW5.

(77) If X CY,then there exists such thakk € Y andx ¢ X.

5 The propositions (66)—(69) have been removed.
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(78) LetV be an add-associative right zeroed right complementable non empty loop structure
andv, vy, V> be elements of. Thenv= vy + Vv, if and only if vy = v—vs.

(79) LetV be areal linear space akdbe a strict subspace ¥f If for every vectow of V holds
v eW, thenW = the RLS structure o¥ .

(80) There exist€ such thaw € C.
(84f] 1 for everyaholdsarib=b, thenb = 1;.
(85) If for everyaholdsalLib= b, thenb=T;.
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