Operations on Subspaces in Real Linear Space

Wojciech A. Trybulec Warsaw University

Summary. In this article the following operations on subspaces of real linear space are intoduced: sum, intersection and direct sum. Some theorems about those notions are proved. We define linear complement of a subspace. Some theorems about decomposition of a vector onto two subspaces and onto subspace and its linear complement are proved. We also show that a set of subspaces with operations sum and intersection is a lattice. At the end of the article theorems that belong rather to [4], [8], [7] or [12] are proved.

MML Identifier: RLSUB_2.

WWW: http://mizar.org/JFM/Vol1/rlsub_2.html

The articles [6], [3], [9], [1], [10], [2], [12], [11], [8], [7], and [5] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: V is a real linear space, W, W_1 , W_2 , W_3 are subspaces of V, u, u, u, v, v, v, v, v, are vectors of V, X, Y are sets, and x is a set.

Let us consider V and let us consider W_1 , W_2 . The functor $W_1 + W_2$ yields a strict subspace of V and is defined as follows:

(Def. 1) The carrier of
$$W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$$

Let us consider V and let us consider W_1 , W_2 . The functor $W_1 \cap W_2$ yields a strict subspace of V and is defined by:

(Def. 2) The carrier of $W_1 \cap W_2 =$ (the carrier of W_1) \cap (the carrier of W_2).

Next we state a number of propositions:

- $(5)^1$ $x \in W_1 + W_2$ iff there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.
- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2 \text{ iff } x \in W_1 \text{ and } x \in W_2.$
- (8) For every strict subspace W of V holds W + W = W.
- (9) $W_1 + W_2 = W_2 + W_1$.
- (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3$.
- (11) W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$.
- (12) For every strict subspace W_2 of V holds W_1 is a subspace of W_2 iff $W_1 + W_2 = W_2$.
- (13) For every strict subspace W of V holds $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.

¹ The propositions (1)–(4) have been removed.

- (14) $\mathbf{0}_V + \mathbf{\Omega}_V = \text{the RLS structure of } V \text{ and } \mathbf{\Omega}_V + \mathbf{0}_V = \text{the RLS structure of } V.$
- (15) $\Omega_V + W = \text{the RLS structure of } V \text{ and } W + \Omega_V = \text{the RLS structure of } V.$
- (16) For every strict real linear space V holds $\Omega_V + \Omega_V = V$.
- (17) For every strict subspace W of V holds $W \cap W = W$.
- (18) $W_1 \cap W_2 = W_2 \cap W_1$.
- $(19) \quad W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$
- (20) $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 .
- (21) For every strict subspace W_1 of V holds W_1 is a subspace of W_2 iff $W_1 \cap W_2 = W_1$.
- (22) $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (23) $\mathbf{0}_V \cap \Omega_V = \mathbf{0}_V$ and $\Omega_V \cap \mathbf{0}_V = \mathbf{0}_V$.
- (24) For every strict subspace W of V holds $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (25) For every strict real linear space V holds $\Omega_V \cap \Omega_V = V$.
- (26) $W_1 \cap W_2$ is a subspace of $W_1 + W_2$.
- (27) For every strict subspace W_2 of V holds $W_1 \cap W_2 + W_2 = W_2$.
- (28) For every strict subspace W_1 of V holds $W_1 \cap (W_1 + W_2) = W_1$.
- (29) $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$.
- (30) If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (31) $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (32) If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (33) If W_1 is a strict subspace of W_3 , then $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (34) For all strict subspaces W_1 , W_2 of V holds $W_1 + W_2 = W_2$ iff $W_1 \cap W_2 = W_1$.
- (35) For all strict subspaces W_2 , W_3 of V such that W_1 is a subspace of W_2 holds $W_1 + W_3$ is a subspace of $W_2 + W_3$.
- (36) There exists W such that the carrier of W = (the carrier of W_1) \cup (the carrier of W_2) if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 .

Let us consider V. The functor Subspaces V yields a set and is defined as follows:

(Def. 3) For every x holds $x \in \text{Subspaces } V$ iff x is a strict subspace of V.

Let us consider V. Observe that Subspaces V is non empty. One can prove the following proposition

(39)² For every strict real linear space V holds $V \in \text{Subspaces } V$.

Let us consider V and let us consider W_1 , W_2 . We say that V is the direct sum of W_1 and W_2 if and only if:

(Def. 4) The RLS structure of $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

Let V be a real linear space and let W be a subspace of V. A subspace of V is called a linear complement of W if:

² The propositions (37) and (38) have been removed.

(Def. 5) V is the direct sum of it and W.

Let V be a real linear space and let W be a subspace of V. Observe that there exists a linear complement of W which is strict.

We now state several propositions:

- $(42)^3$ Let V be a real linear space and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Then W_2 is a linear complement of W_1 .
- (43) Let V be a real linear space, W be a subspace of V, and L be a linear complement of W. Then V is the direct sum of L and W and the direct sum of W and L.
- (44) Let V be a real linear space, W be a subspace of V, and L be a linear complement of W. Then W + L = the RLS structure of V and L + W = the RLS structure of V.
- (45) Let V be a real linear space, W be a subspace of V, and L be a linear complement of W. Then $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$.
- (46) If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (47) Every real linear space V is the direct sum of $\mathbf{0}_V$ and Ω_V and the direct sum of Ω_V and $\mathbf{0}_V$.
- (48) Let V be a real linear space, W be a subspace of V, and L be a linear complement of W. Then W is a linear complement of L.
- (49) For every real linear space V holds $\mathbf{0}_V$ is a linear complement of $\mathbf{\Omega}_V$ and $\mathbf{\Omega}_V$ is a linear complement of $\mathbf{0}_V$.

In the sequel C is a coset of W, C_1 is a coset of W_1 , and C_2 is a coset of W_2 . The following propositions are true:

- (50) If C_1 meets C_2 , then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (51) Let V be a real linear space and W_1 , W_2 be subspaces of V. Then V is the direct sum of W_1 and W_2 if and only if for every coset C_1 of W_1 and for every coset C_2 of W_2 there exists a vector v of V such that $C_1 \cap C_2 = \{v\}$.
- (52) Let V be a real linear space and W_1 , W_2 be subspaces of V. Then $W_1 + W_2 =$ the RLS structure of V if and only if for every vector v of V there exist vectors v_1 , v_2 of V such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (53) If *V* is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$, then $v_1 = u_1$ and $v_2 = u_2$.
- (54) Suppose $V = W_1 + W_2$ and there exists v such that for all v_1 , v_2 , u_1 , u_2 such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

Let us consider V, let us consider v, and let us consider W_1 , W_2 . Let us assume that V is the direct sum of W_1 and W_2 . The functor v_{W_1,W_2} yielding an element of [: the carrier of V, the carrier of V:] is defined as follows:

(Def. 6)
$$v = (v_{\langle W_1, W_2 \rangle})_1 + (v_{\langle W_1, W_2 \rangle})_2$$
 and $(v_{\langle W_1, W_2 \rangle})_1 \in W_1$ and $(v_{\langle W_1, W_2 \rangle})_2 \in W_2$.

The following propositions are true:

- (59)⁴ If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_1 = (v_{\langle W_2, W_1 \rangle})_2$.
- (60) If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_2 = (v_{\langle W_2, W_1 \rangle})_1$.

³ The propositions (40) and (41) have been removed.

⁴ The propositions (55)–(58) have been removed.

- (61) Let V be a real linear space, W be a subspace of V, L be a linear complement of W, v be a vector of V, and t be an element of [the carrier of V, the carrier of V:]. If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v_{\{W, L\}}$.
- (62) Let V be a real linear space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v_{\langle W,L \rangle})_1 + (v_{\langle W,L \rangle})_2 = v$.
- (63) Let V be a real linear space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v_{\langle W,L \rangle})_1 \in W$ and $(v_{\langle W,L \rangle})_2 \in L$.
- (64) Let V be a real linear space, W be a subspace of V, L be a linear complement of W, and V be a vector of V. Then $(v_{\{W,L\}})_1 = (v_{\{L,W\}})_2$.
- (65) Let V be a real linear space, W be a subspace of V, L be a linear complement of W, and V be a vector of V. Then $(v_{\langle W,L \rangle})_2 = (v_{\langle L,W \rangle})_1$.

In the sequel A_1 , A_2 denote elements of Subspaces V.

Let us consider V. The functor SubJoin V yielding a binary operation on Subspaces V is defined as follows:

(Def. 7) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoin V) $(A_1, A_2) = W_1 + W_2$.

Let us consider V. The functor SubMeet V yields a binary operation on Subspaces V and is defined by:

(Def. 8) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

Let X be a non empty set and let m, u be binary operations on X. Note that $\langle X, m, u \rangle$ is non empty.

The following proposition is true

(70)⁵ $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lattice.

Let us consider V. Observe that $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is lattice-like. The following propositions are true:

- (71) For every real linear space V holds (Subspaces V, SubJoin V, SubMeet V) is lower-bounded.
- (72) For every real linear space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is upper-bounded.
- (73) For every real linear space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is a bound lattice.
- (74) For every real linear space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is modular.

In the sequel l is a lattice and a, b are elements of l. One can prove the following proposition

(75) For every real linear space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is complemented.

Let us consider V. One can verify that $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is lower-bounded, upper-bounded, modular, and complemented.

One can prove the following propositions:

- (76) Let *V* be a real linear space and W_1 , W_2 , W_3 be strict subspaces of *V*. If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$.
- (77) If $X \subset Y$, then there exists x such that $x \in Y$ and $x \notin X$.

⁵ The propositions (66)–(69) have been removed.

- (78) Let *V* be an add-associative right zeroed right complementable non empty loop structure and v, v_1 , v_2 be elements of *V*. Then $v = v_1 + v_2$ if and only if $v_1 = v v_2$.
- (79) Let V be a real linear space and W be a strict subspace of V. If for every vector v of V holds $v \in W$, then W = the RLS structure of V.
- (80) There exists C such that $v \in C$.
- (84)⁶ If for every a holds $a \sqcap b = b$, then $b = \bot_l$.
- (85) If for every a holds $a \sqcup b = b$, then $b = \top_l$.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [4] Library Committee. Boolean properties of sets requirements. Journal of Formalized Mathematics, EMM, 2002. http://mizar.org/JFM/EMM/boole.html.
- [5] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlsub_1.html.
- [8] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- $[9] \begin{tabular}{ll} {\bf Zinaida\ Trybulec.\ Properties\ of\ subsets.} \begin{tabular}{ll} {\it Journal\ of\ Formalized\ Mathematics}, 1, 1989. \ \tt http://mizar.org/JFM/Vol1/subset_l.html. \end{tabular}$
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [12] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received September 20, 1989

Published January 2, 2004

⁶ The propositions (81)–(83) have been removed.