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Summary. We define the category of non-associative rings. The carriers of the rings
are included in a universum. The universum is a parameter of the category.

MML Identifier: RINGCAT1.

WWW: http://mizar.org/JFM/Vol3/ringcatl.html

The articles([9],[T4],[[12],1218],[[1],[[10],02],111],05],[16],3],[8], and 7] provide the notation and
terminology for this paper.

In this pape, y are setsD is a non empty set, and, is a universal class.

Let G, H be non empty double loop structures and{die a map fronG into H. We say that;
is linear if and only if:

(Def. ZE] For all scalars, y of G holdsli(x+y) = 11(x) + 11(y) and for all scalars, y of G holds
|1(X-y) = |1(X) . Il(y) and|1(1g) =1x.

The following proposition is true

(3E] Let G1, G2, G3 be non empty double loop structurdsbe a map fronG; into G, andg
be a map fronG; into Gs. If f is linear andy is linear, therg- f is linear.

We consider ring morphisms structures as systems

(adom-map, a cod-mapfan ),
where the dom-map and the cod-map are rings andthas a map from the dom-map into the
cod-map.

In the sequef is a ring morphisms structure.

Let us considerf. The functor donf yields a ring and is defined as follows:

(Def. 3) domf =the dom-map of .

The functor cod yielding a ring is defined as follows:
(Def. 4) codf = the cod-map of.

The functor furf yielding a map from the dom-map dfinto the cod-map of is defined as follows:
(Def. 5) funf =theFun of f.

In the sequeG, H, Gy, G, Gz, G4 are rings.
Let G be a non empty double loop structure. One can check thasitinear.
LetI1 be a ring morphisms structure. We say thats morphism of rings-like if and only if:

1 The definition (Def. 1) has been removed.
2 The propositions (1) and (2) have been removed.
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(Def. 6) funly is linear.

Let us note that there exists a ring morphisms structure which is strict and morphism of rings-
like.

A morphism of rings is a morphism of rings-like ring morphisms structure.

Let us conside. The functor § yields a morphism of rings and is defined by:

(Def.7) Ig= <G7 G,id(g>.

Let us considefs. Note that § is strict.
In the sequeF is a morphism of rings.
Let us conside6, H. The predicaté& < H is defined by:

(Def. 8) There exists a morphishof rings such that dofs = G and cod= = H.

Let us note that the predica®< H is reflexive.
Let us consideG, H. Let us assume th& < H. A strict morphism of rings is said to be a
morphism fromG to H if:

(Def. 9) domit=G and codit=H.

Let us conside6, H. Observe that there exists a morphism fr@o H which is strict.
Let us conside6. Then  is a strict morphism front to G.
One can prove the following three propositions:

(Sﬂ Letg, f be morphisms of rings. Suppose dgems codf. Then there exisB1, Gy, Gz such

that
() G1<Gy,
(i) G2<Gg,

(iif)  the ring morphisms structure afis a morphism fronG, to Gz, and
(iv) the ring morphisms structure dfis a morphism fronG; to G,.

(6) For every strict morphisnfr of rings holdsF is a morphism from dorR to codF and
domF < codF.

(7) LetF be a strict morphism of rings. Then there ex@&stH and there exists a mafpfrom
G into H such thaf is a morphism fronG toH andF = (G,H, f) andf is linear.

Let G, F be morphisms of rings. Let us assume that @m codF. The functorG - F yielding
a strict morphism of rings is defined by the condition (Def. 10).

(Def. 10) Let givenGy, Gp, Gz, g be a map fronG; into G3, and f be a map fronG; into Go.
Suppose the ring morphisms structuré3of (Gy, G, g) and the ring morphisms structure of
F= <G1,Gg, f> ThenG-F = <Gl,G3,g- f>

We now state two propositions:
(8) If G1 <Gy andG; < Gg, thenG; < Gs.

(9) LetG be a morphism fronG; to Gz andF be a morphism front; to G,. If G; < G, and
Gy < Gz, thenG - F is a morphism fronG; to Gs.

Let us consides, Gy, Gz, let G be a morphism front, to Gz, and letF be a morphism from
G1 to Gy. Let us assume th&@; < Gy andG; < G3. The functorG* F yielding a strict morphism
from G to Gz is defined as follows:

(Def. 11) GxF=G-F.

One can prove the following propositions:

3 The proposition (4) has been removed.
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(10) Letf, g be strict morphisms of rings. Suppose dpm codf. Then there exist;, Gy, G3
and there exists a mafp from G; into G, and there exists a map from G, into Gz such
thatf = (G1, Gy, fo) andg = (Gp,G3,do) andg- f = (G1,G3,do - fo).

(11) For all strict morphismsg, g of rings such that dom = codf holds dontg- f) = domf
and codg- f) = codg.

(12) Letf be a morphism fron®; to Gy, g be a morphism front; to Gz, andh be a morphism
from G310 G4. If G1 < Gy andGy < Gz andG3 < Gg, thenh-(g-f) = (h-g) - f.

(13) For all strict morphismg, g, h of rings such that dotm= codg and dong = codf holds
h-(g-f)=(h-g)- f.

(14)(i) dom(lc) =G,
(i) cod(lg) =G,

(iif)  for every strict morphismf of rings such that cofi= G holds ks - f = f, and
(iv) for every strict morphisng of rings such that dom= G holdsg-Ig = g.

Letl; be a set. We say thét is non empty set of rings-like if and only if:
(Def. 12) Every element df is a strict ring.

Let us note that there exists a set which is non empty set of rings-like and non empty.
A non empty set of rings is a non empty set of rings-like non empty set.

In the sequeV/ is a non empty set of rings.

Let us consideY. We see that the element\éfis a ring.

Let us consideY. Note that there exists an elemendbivhich is strict.

Letl; be a set. We say thétis non empty set of morphisms of rings-like if and only if:

(Def. 13) For every set such thak € |1 holdsx is a strict morphism of rings.

Let us mention that there exists a non empty set which is non empty set of morphisms of rings-
like.

A non empty set of morphisms of rings is a non empty set of morphisms of rings-like non empty
set.

Let M be a non empty set of morphisms of rings. We see that the elem&hi©a morphism
of rings.

Let M be a non empty set of morphisms of rings. Note that there exists an elemdnibich
is strict.

We now state the proposition

(17@ For every strict morphisnf of rings holds{ f } is a non empty set of morphisms of rings.

Let us conside6, H. A non empty set of morphisms of rings is said to be a non empty set of
morphisms fronGG into H if;

(Def. 14) Every element of it is a morphism fraGito H.

Next we state two propositions:

(18) D is a non empty set of morphisms froGinto H iff every element oD is a morphism
fromGtoH.

(19) For every morphisnfi from G to H holds{ f } is a non empty set of morphisms fra&into
H.

Let us consideG, H. Let us assume th& < H. The functor Morph&G,H) yielding a non
empty set of morphisms froi@ into H is defined by:

4 The propositions (15) and (16) have been removed.
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(Def. 15) x e MorphgG,H) iff xis a morphism fronG toH.

Let us considefs, H and letM be a non empty set of morphisms fragninto H. We see that
the element oM is a morphism fronG to H.

Let us conside6, H and letM be a non empty set of morphisms fr@ainto H. One can check
that there exists an elementMfwhich is strict.

Let us considek, y. The predicate fx,y is defined by the condition (Def. 16).

(Def. 16) There exist setg, X2, X3, X4, X5, X SUch that

(I) X= ((X17X27X37X4)7 Xs, XG)a and

(ii) there exists a strict rin@ such thaty = G andx; = the carrier ofG andx, = the addition
of G andxs = compG andx4 = the zero ofG andxs = the multiplication ofG andxg = the
unity of G.

One can prove the following propositions:
(20) For all set, yi1, y2 such that ByX,y1 and RpX,y» holdsy; = y».
(21) There existg such thak € U; and RpX, Z3.
Let us considet;. The functor RingOK}J;) yields a set and is defined as follows:
(Def. 17) For every holdsy € RingObjU, ) iff there existsx such thak € U; and RpX, Y.

We now state the proposition
(22) z3 € RingObjU1).

Let us considet);. Observe that RingOHy ) is non empty.
We now state the proposition

(23) Every element of RingORy,) is a strict ring.

Let us considet);. One can verify that RingO@y)1) is non empty set of rings-like.
Let us conside¥. The functor Morph¥ yields a non empty set of morphisms of rings and is
defined by:

(Def. 18) x e MorphsV iff there exist element&, H of V such thatc < H andx is a morphism from
GtoH.

Let us conside¥ and letF be an element of Morphé Then donf is an element of/. Then
codF is an element o¥/.

Let us consideV and letG be an element of. The functor § yielding a strict element of
MorphsV is defined by:

(Def. 19) ks =lg.

Let us conside¥. The functor donV yielding a function from Morph¥ intoV is defined as
follows:

(Def. 20) For every elemerift of MorphsV holds(domV)(f) = domf.

The functor co¥ yields a function from Morphg intoV and is defined by:
(Def. 21) For every elemerift of MorphsV holds(codV)(f) = codf.

The functor \, yielding a function fronV into MorphsV is defined by:
(Def. 22) For every elemet@ of V holds I/(G) = lg.

Next we state two propositions:
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(24) Letg, f be elements of Morphs Suppose domg = codf. Then there exist elemen;,
Gg, Gz of V such thatG; < G; andG;, < Gs andg is a morphism fronG, to Gz andf is a
morphism fromG; to G,.

(25) For all elementg, f of MorphsV such that dorg = codf holdsg- f € Morphsv.

Let us conside¥. The functor comy' yields a partial function froni MorphsV, MorphsV ] to
MorphsV and is defined by the conditions (Def. 23).
(Def. 23)(i)) For all elementg, f of MorphsV holds{g, f} € domcomp iff domg = codf, and
(i) for all elementsg, f of MorphsV such that{(g, f) € domcomp/ holds (compV)({g,
f))=g-f.
Let us considet);. The functor RingC4U1) yields a category structure and is defined as
follows:
(Def. 24) RingCatU;) = (RingObjU1), Morphs RingObjU; ),dom RingObjU; ), cod RingOb{U; ),
compRingOb{U1), Iringobju,)) -

Let us considet);. Observe that RingCg@t,) is strict.
Next we state several propositions:

(26) For all morphismsf, g of RingCatU;) holds (g, f) € dom(the composition of
RingCatU,)) iff domg = codf.

(27) Letf be a morphism of RingCét,), f’ be an element of MorphsRingGb}; ), b be an
object of RingCafU1), andly be an element of RingOfj1). Then
(i) fisastrict element of MorphsRingQh; ),
(i)  f’is a morphism of RingCét),
(i)  bis a strict element of RingORy;), and
(iv) b isan object of RingCét;).

(28) For every objedt of RingCatU; ) and for every elemerf of RingObjU;) such thab=1b’
holds id, = Iyy.

(29) For every morphisni of RingCafU1) and for every element’ of Morphs RingOhjU;)
such thatf = f’ holds domf = domf’ and codf = codf’.

(30) Letf, gbe morphisms of RingCét1) andf’, g’ be elements of Morphs RingQhl;) such
thatf = f’ andg=gd'. Then
(i) domg= codf iff domg’ = codf’,
(i) domg= codf iff (¢, f') € domcompRingOKY;),
(i) ifdomg=codf,theng-f =¢ - f/,
(iv) domf = domgiff dom f’ = domg’, and
(v) codf = codgiff cod f' = codg'.

Let us considet;. Note that RingCdtJ;) is category-like.
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