Category of Rings

Michał Muzalewski Warsaw University Białystok

Summary. We define the category of non-associative rings. The carriers of the rings are included in a universum. The universum is a parameter of the category.

MML Identifier: RINGCAT1.

WWW: http://mizar.org/JFM/Vol3/ringcat1.html

The articles [9], [4], [12], [13], [1], [10], [2], [11], [5], [6], [3], [8], and [7] provide the notation and terminology for this paper.

In this paper x, y are sets, D is a non empty set, and U_1 is a universal class.

Let G, H be non empty double loop structures and let I_1 be a map from G into H. We say that I_1 is linear if and only if:

(Def. 2)¹ For all scalars x, y of G holds $I_1(x+y) = I_1(x) + I_1(y)$ and for all scalars x, y of G holds $I_1(x \cdot y) = I_1(x) \cdot I_1(y)$ and $I_1(\mathbf{1}_G) = \mathbf{1}_H$.

The following proposition is true

(3)² Let G_1 , G_2 , G_3 be non empty double loop structures, f be a map from G_1 into G_2 , and g be a map from G_2 into G_3 . If f is linear and g is linear, then $g \cdot f$ is linear.

We consider ring morphisms structures as systems

⟨ a dom-map, a cod-map, a Fun ⟩,

where the dom-map and the cod-map are rings and the Fun is a map from the dom-map into the cod-map.

In the sequel f is a ring morphisms structure.

Let us consider f. The functor dom f yields a ring and is defined as follows:

(Def. 3) $\operatorname{dom} f = \operatorname{the dom-map} \operatorname{of} f$.

The functor cod f yielding a ring is defined as follows:

(Def. 4) $\operatorname{cod} f = \operatorname{the cod-map} \operatorname{of} f$.

The functor fun f yielding a map from the dom-map of f into the cod-map of f is defined as follows:

(Def. 5) fun f = the Fun of f.

In the sequel G, H, G_1, G_2, G_3, G_4 are rings.

Let G be a non empty double loop structure. One can check that id_G is linear.

Let I_1 be a ring morphisms structure. We say that I_1 is morphism of rings-like if and only if:

1

¹ The definition (Def. 1) has been removed.

² The propositions (1) and (2) have been removed.

(Def. 6) $\operatorname{fun} I_1$ is linear.

Let us note that there exists a ring morphisms structure which is strict and morphism of rings-like.

A morphism of rings is a morphism of rings-like ring morphisms structure.

Let us consider G. The functor I_G yields a morphism of rings and is defined by:

(Def. 7) $I_G = \langle G, G, id_G \rangle$.

Let us consider G. Note that I_G is strict.

In the sequel F is a morphism of rings.

Let us consider G, H. The predicate $G \le H$ is defined by:

(Def. 8) There exists a morphism F of rings such that dom F = G and cod F = H.

Let us note that the predicate $G \leq H$ is reflexive.

Let us consider G, H. Let us assume that $G \le H$. A strict morphism of rings is said to be a morphism from G to H if:

(Def. 9) domit = G and codit = H.

Let us consider G, H. Observe that there exists a morphism from G to H which is strict.

Let us consider G. Then I_G is a strict morphism from G to G.

One can prove the following three propositions:

- (5)³ Let g, f be morphisms of rings. Suppose dom $g = \operatorname{cod} f$. Then there exist G_1 , G_2 , G_3 such that
- (i) $G_1 \leq G_2$,
- (ii) $G_2 \leq G_3$,
- (iii) the ring morphisms structure of g is a morphism from G_2 to G_3 , and
- (iv) the ring morphisms structure of f is a morphism from G_1 to G_2 .
- (6) For every strict morphism F of rings holds F is a morphism from dom F to cod F and $\text{dom } F \leq \text{cod } F$.
- (7) Let F be a strict morphism of rings. Then there exist G, H and there exists a map f from G into H such that F is a morphism from G to H and G in G and G is linear.
- Let G, F be morphisms of rings. Let us assume that dom $G = \operatorname{cod} F$. The functor $G \cdot F$ yielding a strict morphism of rings is defined by the condition (Def. 10).
- (Def. 10) Let given G_1 , G_2 , G_3 , g be a map from G_2 into G_3 , and f be a map from G_1 into G_2 . Suppose the ring morphisms structure of $G = \langle G_2, G_3, g \rangle$ and the ring morphisms structure of $F = \langle G_1, G_2, f \rangle$. Then $G \cdot F = \langle G_1, G_3, g \cdot f \rangle$.

We now state two propositions:

- (8) If $G_1 \le G_2$ and $G_2 \le G_3$, then $G_1 \le G_3$.
- (9) Let G be a morphism from G_2 to G_3 and F be a morphism from G_1 to G_2 . If $G_1 \le G_2$ and $G_2 \le G_3$, then $G \cdot F$ is a morphism from G_1 to G_3 .

Let us consider G_1 , G_2 , G_3 , let G be a morphism from G_2 to G_3 , and let F be a morphism from G_1 to G_2 . Let us assume that $G_1 \leq G_2$ and $G_2 \leq G_3$. The functor G * F yielding a strict morphism from G_1 to G_3 is defined as follows:

(Def. 11)
$$G * F = G \cdot F$$
.

One can prove the following propositions:

³ The proposition (4) has been removed.

- (10) Let f, g be strict morphisms of rings. Suppose dom $g = \operatorname{cod} f$. Then there exist G_1 , G_2 , G_3 and there exists a map f_0 from G_1 into G_2 and there exists a map g_0 from G_2 into G_3 such that $f = \langle G_1, G_2, f_0 \rangle$ and $g = \langle G_2, G_3, g_0 \rangle$ and $g \cdot f = \langle G_1, G_3, g_0 \cdot f_0 \rangle$.
- (11) For all strict morphisms f, g of rings such that dom g = cod f holds $dom(g \cdot f) = dom f$ and $cod(g \cdot f) = cod g$.
- (12) Let f be a morphism from G_1 to G_2 , g be a morphism from G_2 to G_3 , and h be a morphism from G_3 to G_4 . If $G_1 \leq G_2$ and $G_2 \leq G_3$ and $G_3 \leq G_4$, then $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.
- (13) For all strict morphisms f, g, h of rings such that dom h = cod g and dom g = cod f holds $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.
- $(14)(i) \quad dom(I_G) = G,$
- (ii) $cod(I_G) = G$,
- (iii) for every strict morphism f of rings such that cod f = G holds $I_G \cdot f = f$, and
- (iv) for every strict morphism g of rings such that dom g = G holds $g \cdot I_G = g$.

Let I_1 be a set. We say that I_1 is non empty set of rings-like if and only if:

(Def. 12) Every element of I_1 is a strict ring.

Let us note that there exists a set which is non empty set of rings-like and non empty.

A non empty set of rings is a non empty set of rings-like non empty set.

In the sequel V is a non empty set of rings.

Let us consider V. We see that the element of V is a ring.

Let us consider V. Note that there exists an element of V which is strict.

Let I_1 be a set. We say that I_1 is non empty set of morphisms of rings-like if and only if:

(Def. 13) For every set x such that $x \in I_1$ holds x is a strict morphism of rings.

Let us mention that there exists a non empty set which is non empty set of morphisms of ringslike.

A non empty set of morphisms of rings is a non empty set of morphisms of rings-like non empty set.

Let M be a non empty set of morphisms of rings. We see that the element of M is a morphism of rings.

Let M be a non empty set of morphisms of rings. Note that there exists an element of M which is strict.

We now state the proposition

 $(17)^4$ For every strict morphism f of rings holds $\{f\}$ is a non empty set of morphisms of rings.

Let us consider G, H. A non empty set of morphisms of rings is said to be a non empty set of morphisms from G into H if:

(Def. 14) Every element of it is a morphism from G to H.

Next we state two propositions:

- (18) D is a non empty set of morphisms from G into H iff every element of D is a morphism from G to H.
- (19) For every morphism f from G to H holds $\{f\}$ is a non empty set of morphisms from G into H.

Let us consider G, H. Let us assume that $G \le H$. The functor Morphs(G,H) yielding a non empty set of morphisms from G into H is defined by:

⁴ The propositions (15) and (16) have been removed.

(Def. 15) $x \in \text{Morphs}(G, H)$ iff x is a morphism from G to H.

Let us consider G, H and let M be a non empty set of morphisms from G into H. We see that the element of M is a morphism from G to H.

Let us consider G, H and let M be a non empty set of morphisms from G into H. One can check that there exists an element of M which is strict.

Let us consider x, y. The predicate $P_{ob}x$, y is defined by the condition (Def. 16).

- (Def. 16) There exist sets $x_1, x_2, x_3, x_4, x_5, x_6$ such that
 - (i) $x = \langle \langle x_1, x_2, x_3, x_4 \rangle, x_5, x_6 \rangle$, and
 - (ii) there exists a strict ring G such that y = G and $x_1 =$ the carrier of G and $x_2 =$ the addition of G and $x_3 =$ comp G and $x_4 =$ the zero of G and $x_5 =$ the multiplication of G and $x_6 =$ the unity of G.

One can prove the following propositions:

- (20) For all sets x, y_1 , y_2 such that $P_{ob}x$, y_1 and $P_{ob}x$, y_2 holds $y_1 = y_2$.
- (21) There exists x such that $x \in U_1$ and $P_{ob} x, Z_3$.

Let us consider U_1 . The functor RingObj (U_1) yields a set and is defined as follows:

(Def. 17) For every y holds $y \in \text{RingObj}(U_1)$ iff there exists x such that $x \in U_1$ and $P_{ob}x, y$.

We now state the proposition

(22) $Z_3 \in \text{RingObj}(U_1)$.

Let us consider U_1 . Observe that RingObj (U_1) is non empty. We now state the proposition

(23) Every element of RingObj(U_1) is a strict ring.

Let us consider U_1 . One can verify that RingObj (U_1) is non empty set of rings-like.

Let us consider V. The functor Morphs V yields a non empty set of morphisms of rings and is defined by:

(Def. 18) $x \in \text{Morphs } V$ iff there exist elements G, H of V such that $G \leq H$ and x is a morphism from G to H.

Let us consider V and let F be an element of Morphs V. Then dom F is an element of V. Then cod F is an element of V.

Let us consider V and let G be an element of V. The functor I_G yielding a strict element of Morphs V is defined by:

(Def. 19) $I_G = I_G$.

Let us consider V. The functor dom V yielding a function from Morphs V into V is defined as follows:

(Def. 20) For every element f of Morphs V holds (dom V)(f) = dom f.

The functor cod V yields a function from Morphs V into V and is defined by:

(Def. 21) For every element f of Morphs V holds $(\operatorname{cod} V)(f) = \operatorname{cod} f$.

The functor I_V yielding a function from V into Morphs V is defined by:

(Def. 22) For every element G of V holds $I_V(G) = I_G$.

Next we state two propositions:

- (24) Let g, f be elements of Morphs V. Suppose dom $g = \operatorname{cod} f$. Then there exist elements G_1 , G_2 , G_3 of V such that $G_1 \leq G_2$ and $G_2 \leq G_3$ and g is a morphism from G_2 to G_3 and f is a morphism from G_1 to G_2 .
- (25) For all elements g, f of Morphs V such that dom $g = \operatorname{cod} f$ holds $g \cdot f \in \operatorname{Morphs} V$.

Let us consider V. The functor comp V yields a partial function from [: Morphs V, Morphs V:] to Morphs V and is defined by the conditions (Def. 23).

- (Def. 23)(i) For all elements g, f of Morphs V holds $\langle g, f \rangle \in \text{dom comp } V$ iff dom g = cod f, and
 - (ii) for all elements g, f of MorphsV such that $\langle g, f \rangle \in \text{dom comp } V$ holds $(\text{comp } V)(\langle g, f \rangle) = g \cdot f$.

Let us consider U_1 . The functor RingCat(U_1) yields a category structure and is defined as follows:

(Def. 24) $\operatorname{RingCat}(U_1) = \langle \operatorname{RingObj}(U_1), \operatorname{Morphs\,RingObj}(U_1), \operatorname{dom\,RingObj}(U_1), \operatorname{cod\,RingObj}(U_1), \operatorname{cod\,RingObj}(U_1), \operatorname{I}_{\operatorname{RingObj}(U_1)} \rangle.$

Let us consider U_1 . Observe that RingCat (U_1) is strict.

Next we state several propositions:

- (26) For all morphisms f, g of RingCat (U_1) holds $\langle g, f \rangle \in \text{dom}$ (the composition of RingCat (U_1)) iff dom g = cod f.
- (27) Let f be a morphism of RingCat (U_1) , f' be an element of MorphsRingObj (U_1) , b be an object of RingCat (U_1) , and b' be an element of RingObj (U_1) . Then
 - (i) f is a strict element of Morphs RingObj (U_1) ,
- (ii) f' is a morphism of RingCat(U_1),
- (iii) b is a strict element of RingObj(U_1), and
- (iv) b' is an object of RingCat(U_1).
- (28) For every object b of RingCat (U_1) and for every element b' of RingObj (U_1) such that b = b' holds $\mathrm{id}_b = \mathrm{I}_{b'}$.
- (29) For every morphism f of RingCat (U_1) and for every element f' of MorphsRingObj (U_1) such that f = f' holds dom f = dom f' and cod f = cod f'.
- (30) Let f, g be morphisms of RingCat (U_1) and f', g' be elements of Morphs RingObj (U_1) such that f = f' and g = g'. Then
 - (i) $\operatorname{dom} g = \operatorname{cod} f \text{ iff } \operatorname{dom} g' = \operatorname{cod} f'$,
- (ii) $\operatorname{dom} g = \operatorname{cod} f \text{ iff } \langle g', f' \rangle \in \operatorname{dom} \operatorname{comp} \operatorname{RingObj}(U_1),$
- (iii) if dom $g = \operatorname{cod} f$, then $g \cdot f = g' \cdot f'$,
- (iv) $\operatorname{dom} f = \operatorname{dom} g \text{ iff } \operatorname{dom} f' = \operatorname{dom} g', \text{ and }$
- (v) $\operatorname{cod} f = \operatorname{cod} g \text{ iff } \operatorname{cod} f' = \operatorname{cod} g'.$

Let us consider U_1 . Note that RingCat (U_1) is category-like.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.

- [4] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [6] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html.
- [7] Michał Muzalewski. Rings and modules part II. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/mod_
- [8] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/classes2.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/meart_1.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received December 5, 1991

Published January 2, 2004