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Summary. This article is an introduction to convex analysis. In the beginning, we
have defined the concept of strictly convexity and proved some basic properties between con-
vexity and strictly convexity. Moreover, we have defined concepts of other convexity and
semicontinuity, and proved their basic properties.
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The articles([15],[[18],[[1],[[19],[5],[[2],[10],[[18],[[8],[27],[6],[7], [[11],[[3],[15],[12],[18],[T4],
and [14] provide the notation and terminology for this paper.

1. SOME USEFULPROPERTIES OM-TUPLES ONR

We adopt the following rulesa, b, r, s, Xo, X are real numberd,, g are partial functions fronR to
R, andX,Y are sets.
We now state several propositions:

(1) For all real numbera, b holds maxa,b) > min(a,b).

(2) Letn be a natural numbeR;, R, be elements oR", andry, r, be real numbers. Then
Ry (r1)e Ry ™ (ro) = (RieRy) ™~ (rq-ro).

(3) Letn be a natural number ar® be an element oR". Supposey R= 0 and for every
natural number such thai € domR holds 0< R(i). Leti be a natural number. Ife domR,
thenR(i) = 0.

(4) Letn be a natural number arld be an element oR". Suppose that for every natural
numberi such thaf € domR holds 0= R(i). ThenR= n— (0 qua real numbey.

(5) For every natural numberand for every elemerR of R" holdsn — (0 qua real number)
eR=n+ (0 quareal numbey.

2. CONVEX AND STRICTLY CONVEX FUNCTIONS

Let us considelf, X. We say thaff is strictly convex orX if and only if the conditions (Def. 1) are
satisfied.
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(Def. 1)(i) X Cdomf, and

(i)  for every real numbep such that O< p andp < 1 and for all real numbens s such that
reXandse Xandp-r+(1—p)-se X andr #sholdsf(p-r+(1—-p)-s) < p-f(r)+
(1—p)-f(9).

We now state a number of propositions:
(6) If fis strictly convex orX, thenf is convex onX.

(7) Leta, b be real numbers anfibe a partial function froniR to R. Thenf is strictly convex
on [a,b] if and only if the following conditions are satisfied:
() [ab] € domf,and
(i) for every real numbep such that O< p andp < 1 and for all real numbens s such that
r € [a,b] ands e [a,b] andr # sholdsf(p-r+(1—p)-s) < p- f(r)+(1—p)- ().
(8) LetX be asetand be a partial function fronR to R. Thenf is convex onX if and only
if the following conditions are satisfied:
(i) X Cdomf,and
(ii) for all real numbersa, b, c such that € X andb € X andc € X anda < b andb < c holds
—b b—
f(b) <=2 -f(a)+&2-f(o).
(9) LetX be a set and be a partial function fronR to R. Thenf is strictly convex onX if
and only if the following conditions are satisfied:
(i) X <Cdomf, and
(i) for all real numbers, b, c such that € X andb € X andc € X anda < b andb < c holds
—b b—
f(b) < &2 f(a)+ 22-f(c).
(20) If f is strictly convex orX andY C X, thenf is strictly convex orY.
(11) f is strictly convex orX iff f —r is strictly convex orX.
(12) If0<r, thenf is strictly convex orX iff r f is strictly convex orX.
(13) If f is strictly convex orX andg s strictly convex orX, thenf 4 gis strictly convex orX.
(14) If f is strictly convex orX andg is convex onX, thenf + g is strictly convex orx.

(15) Supposéd is strictly convex orX butg is strictly convex orX buta> 0 andb >0ora>0
andb > 0. Thena f + b gis strictly convex orX.
(16) fis convex onX if and only if the following conditions are satisfied:
(i) X Cdomf, and
f(a)

(i) forall a, b, r such thatae X andb e X andr € X anda<r andr < b holds%

a
f(b)—f(a f(b)—f(a f(b)—f

<

(17) fis strictly convex orX if and only if the following conditions are satisfied:
(i) X Cdomf, and

(i) forall a b, r suchthatae X andb € X andr € X anda<r andr <b holdsw <

f(bg:;(a) and f(bk)):;(ao < f(bt)):rf(r)'

(18) Letf be a partial function froniR to R. Suppos¢ is total. Then for every natural number
n and for all element®, E, F of R" such thaty P = 1 and for every natural numbesuch
thati € domP holdsP(i) > 0 andF (i) = f(E(i)) holdsf(3(PeE)) < S(PeF) if and only
if fis convex orR.

(19) Letf be a partial function fronR to R, | be an interval, and be a real number. Suppose
there exist real numbers, xo such thatx; € | andx, € | andx; < aanda < x; and f is
convex onl. Thenf is continuous ira.
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3. DEFINITIONS OF SEVERAL CONVEXITY AND SEMICONTINUITY CONCEPTS

Let us consideff, X. We say thatf is quasiconvex oiX if and only if the conditions (Def. 2) are
satisfied.

(Def. 2)()) X Cdomf, and

(if) for every real numbep such that O< pandp < 1 and for all real numbens s such that
reXandse Xandp-r+(1—p)-se X holdsf(p-r+(1—p)-s) <maxf(r), f(s)).

Let us considelf, X. We say thatf is strictly quasiconvex o if and only if the conditions
(Def. 3) are satisfied.

(Def. 3)()) X Cdomf, and

(i)  for every real numberp such that O< p and p < 1 and for all real numbers, s such
thatr € X andse X andp-r+ (1—p)-se X andf(r) # f(s) holdsf(p-r+(1—p)-s) <
max(f(r), f(s)).

Let us consideff, X. We say thaff is strongly quasiconvex oX if and only if the conditions
(Def. 4) are satisfied.

(Def. 4)()) X Cdomf, and

(ii) for every real numbep such that O< p andp < 1 and for all real numberns s such that
re Xandse Xandp-r+(1—p)-se X andr #sholdsf(p-r+(1—p)-s) <max(f(r), f(s)).

Let us considerf and letxy be a real number. We say thhtis upper semicontinuous iy if
and only if:

(Def. 5) xp € domf and for everyr such that O< r there existss such that O< s and for everyx
such tha € domf and|x— xp| < sholdsf(xg) — f(x) <.

Let us consideff, X. We say thaff is upper semicontinuous ofif and only if:
(Def. 6) X C domf and for everyxg such thatg € X holds f [X is upper semicontinuous ig.

Let us consideff and letxg be a real number. We say thiats lower semicontinuous ixy if and
only if:

(Def. 7) xo € domf and for everyr such that O< r there existss such that O< s and for everyx
such thak € domf and|x—xg| < sholdsf(x) — f(xg) <.

Let us consideff, X. We say thaff is lower semicontinuous oX if and only if:
(Def. 8) X C domf and for everykg such thatg € X holds f [X is lower semicontinuous iry.

Next we state several propositions:

(20) Letxg be a real number and given Thenf is upper semicontinuous iy and f is lower
semicontinuous ixg if and only if f is continuous in.

(21) LetgivenX, f. Thenf is upper semicontinuous ofiand f is lower semicontinuous oX
if and only if f is continuous orX.

(22) ForallX, f such thatf is strictly convex orX holdsf is strongly quasiconvex oX.

(23) ForallX, f such thatf is strongly quasiconvex oM holdsf is quasiconvex oix.

(24) ForallX, f such thatf is convex onX holdsf is strictly quasiconvex oiX.

(25) ForallX, f such thatf is strongly quasiconvex oX holdsf is strictly quasiconvex oiX.

(26) Let givenX, f. Supposef is strictly quasiconvex oiX and f is one-to-one. Ther is
strongly quasiconvex OX.
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