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Summary. The list of theorems concerning properties of real sequences and functions
is enlarged. (See e.d.![8]./[5]..[10]). The monotone real functions are introduced and their
properties are discussed.
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The articles[[1P],[[14],11],[13],.[4],[[15],12],[18],06],5],116],13],19],[11],[[10], and ] 7] provide
the notation and terminology for this paper.

For simplicity, we use the following conventior; X, X3, Y are setsg, r, r1, r2, p are elements
of R, Ris a subset oR, 51, S, S3, &4 are sequences of real numbé\s,is an increasing sequence of
naturalsnis an element oN, andh, h;, hy are partial functions frorR to R.

One can prove the following propositions:

(ZH For all functions=, G and for everyX holds(G[F°X) - (F[X) = (G- F)[X.
(3) For all functions, G and for allX, X; holds(G[X;) - (F[X) = (G-F)[(XNF~1(Xy)).

(4) For all functionsF, G and for everyX holdsX C dom(G- F) iff X C domF andF°X C
domG.

(5) For every functiorF and for everyX holds(F [X)°X = F°X.

Let us consides;. Then rngs; is a subset oR.
We now state a number of propositions:

(6) s =s3— s iff for every nholdssy(n) = s3(n) —s4(n).
(7) mg(s1Tn) Crngsy.
(8) Ifrngs; C domh, thens; (n) € domh.
(9) xerngs iff there existsn such that = s;(n).
(10) si(n) € rngs;.
(11) Ifspis asubsequence sf, then rngs, C rngs;.
(12) If s; is a subsequence sf ands; is non-zero, thes; is non-zero.

(13) (24 s3)'N1=%-Ni+s3-Npand(s; —s3) Ny =Ny —s3-Np and(s283) - Np = (8-
N1) (s3-Ny).

1 The proposition (1) has been removed.
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(14) (ps)-Ni=p(st-Np).

(15) (—s1)-Ny=—s1-Ngand|sy|- Ny = |s1-Ny|.
(16) (s1-Np)t=s1-Nu.

(17) (s2/s1)-Ni=(s2-N1)/(s1-N1).

(18) If 51 is convergent and for everyholdss; (n) < 0, then lims; < 0.

(19) If for everyn holdss;(n) €Y, then rngs; C .

Let us consideh, s;. Let us assume that risg C domh. The functorh- s, yielding a sequence
of real numbers is defined as follows:

(Def. 1) h-s; = (hquafunction)-(s1).
One can prove the following propositions:
(21f] 1fmgs; C domh, then(h-s;)(n) = h(si(n)).
(22) Ifrngsy € domh, then(h-s1) Tn=h-(s.Tn).

(23) Ifrngs; € domh; ndomhy, then(hy +hy)-s1=hy-s1+hp -5 and(hy —hy)-sp =hy -5 —
hz-spand(hy hz) -s1 = (hy-s1) (h2- ).

(24) For every real numbersuch that rng; C domh holds(rh)-s; =r (h-s1).

(25) Ifrngs; C domh, then|h-s;| = |h|-sp and—h-s; = (—h) - 5.

(26) Ifrngs; C don‘(%), thenh-s; is non-zero.

(27) Ifmgs, C dom(#), then -s; = (h-s;) 72

(28) Ifrngsy € domh, then(h-s1)-Niz =h-(s1-Nyp).

(29) Ifrngs; C domh andss is a subsequence sf, thenh- sz is a subsequence bf s;.
(30) Ifhistotal, then(h-s1)(n) = h(si(n)).

(31) Ifhistotal, therh-(sp7n)=(h-s1) Th.

(32) If hyistotal andhy is total, then(h; +hy)-s1 =hy-s1+hp-spand(hy —hg) -s1 =hg 51—
hy-spand(hy hp) -5 = (hy-51) (hp-51).

(33) Ifhistotal, then(rh)-s; =r (h-s1).

(34) Ifrngsy € dom(hrX), then(h[X)-s; =h-s.

(35) Ifrngsy € dom(hX) and if rngs; € dom(h|Y) or X C Y, then(h[X)-s; = (h[Y)-s1.
(36) Ifrngs; € dom(hrX), then|(h[X)-s1| = (|h|[X)-s1

(87) Ifrngs; € dom(h[X) andh~%({0}) =0, then(%r )-s1=((h|X)-s1)7%

(38) Ifrngsy € domh, thenh®rngs; = rng(h-sp).

(39) Ifrngsy Cdom(hy-hy), thenhy-(hy-s1) = (hp-hy)-s1

Let Z be a set and let be an one-to-one function. One can verify thiéZ is one-to-one.
Next we state three propositions:

(40) For every one-to-one functidnholds(h{X)=* = h=1[h°X.

2 The proposition (20) has been removed.
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If rnghis bounded and suprig= infrngh, thenh is a constant on dom
If Y C domh andh®Y is bounded and sup°Y) = inf(h°Y), thenh is a constant ol.

Let us consideh, Y. We say thah is increasing otY if and only if:

(Def. 2) For allrq, rp such that, € YNndomh andr, € Y Nndomh andry < ry holdsh(r1) < h(rs).

We say thah is decreasing ol if and only if:

(Def. 3) For allry, rp such that; € Y ndomh andrz € Y ndomh andr; < rp holdsh(rz) < h(r1).

We say thah is non-decreasing ovi if and only if:

(Def. 4) For allrq, rz such that, € Yndomh andry € Y ndomh andr; < rp holdsh(ri) < h(ry).

We say that is non increasing oN if and only if:

(Def.5) For allrq, rp such that, € YNndomh andry € Y ndomh andr; < rp holdsh(rz) < h(ry).

Let us consideh, Y. We say thah is monotone ofY if and only if:

(Def. 6) his non-decreasing ovi and non increasing oxi.

We now state a number of propositions:

(48 h is non-decreasing ovi iff for all rq, rp such thar; € Y ndomh andr; € Y ndomh and
ri<ro hO|dSh(I’1) < h(rz).

(49)

h is non increasing ol iff for all ry, rp such thatr; € Y ndomh andr, € Y ndomh and

r1 <rz holdsh(rz) <h(rq).

(50)
(51)
(52)
(53)
(54)

his increasing orX iff h[X is increasing orX.

his decreasing oX iff h[X is decreasing oiX.

his non-decreasing oX iff h|X is non-decreasing oX.
his non increasing oX iff h{X is non increasing oiX.

Supposé& misses dorh. Thenh is increasing orY, decreasing olY, non-decreasing on

Y, non increasing olf, and monotone oM.

(59)
(56)
(67)
(58)
(59)
(60)
(61)
(62)
(63)

(64)(i)

(i)
(iii)

If his increasing orY, thenh is non-decreasing ov.

If his decreasing oM, thenh is non increasing oM.

If his a constant olY, thenh is non-decreasing on.

If his a constant olY, thenh is non increasing oM.

If his non-decreasing o¥i and non increasing o, thenh is a constant ol N X.
If X CY andhis increasing orY, thenh is increasing orX.

If X CY andhis decreasing oM, thenh is decreasing oiX.

If X CY andh is non-decreasing o¥j, thenh is non-decreasing oX.

If X CY andhis non increasing oM, thenh is non increasing oiX.

If his increasing orY and 0< r, thenr h is increasing otY,
if r =0, thenr his a constant oly, and
if hisincreasing ofy andr < 0O, thenr h is decreasing oN.

3 The propositions (43)—(47) have been removed.
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(65)(i) If his decreasing ol and O< r, thenr h is decreasing oM, and
(i) if his decreasing ol andr < O, thenr h is increasing orY.

(66)(i) If his non-decreasing ori and 0< r, thenr h is non-decreasing o, and
(i) if his non-decreasing ovi andr < O, thenr h is non increasing oN.

(67)(1) If his non increasing ol and O< r, thenr h is non increasing oN, and
(i) if his non increasing o andr < 0, thenr h is non-decreasing on.

(68) Ifr e XNnYNdom(hy +hy), thenr € Xndomh; andr € Y Nndomhy.

(69)(i) If hy is increasing orX andh; is increasing oY, thenh; + h is increasing oiX N,
(i) if hy is decreasing o andh; is decreasing ol, thenh; + h; is decreasing oXNY,

(i) if hy is non-decreasing oX andh; is non-decreasing o, thenh; + hy is non-decreasing
onXnNY, and

(iv) if hy is non increasing oiX andh; is non increasing olf, thenh; + hy is non increasing
onXny.

(70)(i) If hy is increasing orX andh; is a constant olY, thenh; + hy is increasing orX NY,
and

(i) if hy is decreasing oX andh; is a constant oY, thenh; + h; is decreasing oX NY.
(71) If hyisincreasing oX andh; is non-decreasing oY, thenh; + hy is increasing orX NY.

(72) If hy is non increasing oX andh; is a constant olY, thenh; + h is non increasing on
xXnNY.

(73) If hy is decreasing oX andh; is non increasing oM, thenh; + hy is decreasing oXNY.

(74) If hy is non-decreasing od andh; is a constant olY, thenh; + hy is non-decreasing on
XNY.

(75) hisincreasing orfx}.

(76) his decreasing ofix}.

(77) his non-decreasing ofx}.

(78) his non increasing ofix}.

(79) idrisincreasing ofR.

(80) If hisincreasing orX, then—his decreasing oiX.

(81) If his non-decreasing oM, then—h is non increasing oiX.

(82) If hisincreasing orip,g] and decreasing ojp, g, thenh![p, g] is one-to-one.

(83) Leth be an one-to-one partial function frol to R. If h is increasing or[p,g], then
(h[[p,g]) ! is increasing om°[p, g].

(84) Leth be an one-to-one partial function frofa to R. If h is decreasing ofp,g], then
(h[[p,g]) ! is decreasing oh°[p,g].
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