Properties of Real Functions

Jarosław Kotowicz Warsaw University Białystok

Summary. The list of theorems concerning properties of real sequences and functions is enlarged. (See e.g. [8], [5], [10]). The monotone real functions are introduced and their properties are discussed.

MML Identifier: RFUNCT_2.

WWW: http://mizar.org/JFM/Vol2/rfunct_2.html

The articles [12], [14], [1], [13], [4], [15], [2], [8], [6], [5], [16], [3], [9], [11], [10], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, X, X_1, Y are sets, g, r, r_1, r_2, p are elements of \mathbb{R} , R is a subset of \mathbb{R} , s_1 , s_2 , s_3 , s_4 are sequences of real numbers, N_1 is an increasing sequence of naturals, n is an element of \mathbb{N} , and h, h_1 , h_2 are partial functions from \mathbb{R} to \mathbb{R} .

One can prove the following propositions:

- (2)¹ For all functions F, G and for every X holds $(G \upharpoonright F \circ X) \cdot (F \upharpoonright X) = (G \cdot F) \upharpoonright X$.
- (3) For all functions F, G and for all X, X_1 holds $(G \upharpoonright X_1) \cdot (F \upharpoonright X) = (G \cdot F) \upharpoonright (X \cap F^{-1}(X_1))$.
- (4) For all functions F, G and for every X holds $X \subseteq \text{dom}(G \cdot F)$ iff $X \subseteq \text{dom} F$ and $F^{\circ}X \subseteq \text{dom} G$.
- (5) For every function F and for every X holds $(F \upharpoonright X)^{\circ} X = F^{\circ} X$.

Let us consider s_1 . Then rng s_1 is a subset of \mathbb{R} .

We now state a number of propositions:

- (6) $s_2 = s_3 s_4$ iff for every n holds $s_2(n) = s_3(n) s_4(n)$.
- (7) $\operatorname{rng}(s_1 \uparrow n) \subseteq \operatorname{rng} s_1$.
- (8) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $s_1(n) \in \operatorname{dom} h$.
- (9) $x \in \operatorname{rng} s_1$ iff there exists n such that $x = s_1(n)$.
- (10) $s_1(n) \in \text{rng } s_1$.
- (11) If s_2 is a subsequence of s_1 , then $\operatorname{rng} s_2 \subseteq \operatorname{rng} s_1$.
- (12) If s_2 is a subsequence of s_1 and s_1 is non-zero, then s_2 is non-zero.
- (13) $(s_2 + s_3) \cdot N_1 = s_2 \cdot N_1 + s_3 \cdot N_1$ and $(s_2 s_3) \cdot N_1 = s_2 \cdot N_1 s_3 \cdot N_1$ and $(s_2 s_3) \cdot N_1 = (s_2 \cdot N_1) (s_3 \cdot N_1)$.

¹ The proposition (1) has been removed.

- (14) $(p s_1) \cdot N_1 = p (s_1 \cdot N_1).$
- (15) $(-s_1) \cdot N_1 = -s_1 \cdot N_1$ and $|s_1| \cdot N_1 = |s_1 \cdot N_1|$.
- (16) $(s_1 \cdot N_1)^{-1} = s_1^{-1} \cdot N_1$.
- (17) $(s_2/s_1) \cdot N_1 = (s_2 \cdot N_1)/(s_1 \cdot N_1).$
- (18) If s_1 is convergent and for every n holds $s_1(n) \le 0$, then $\lim s_1 \le 0$.
- (19) If for every *n* holds $s_1(n) \in Y$, then rng $s_1 \subseteq Y$.

Let us consider h, s_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$. The functor $h \cdot s_1$ yielding a sequence of real numbers is defined as follows:

(Def. 1) $h \cdot s_1 = (h \text{ qua function}) \cdot (s_1)$.

One can prove the following propositions:

- $(21)^2$ If rng $s_1 \subseteq \text{dom } h$, then $(h \cdot s_1)(n) = h(s_1(n))$.
- (22) If rng $s_1 \subseteq \text{dom } h$, then $(h \cdot s_1) \uparrow n = h \cdot (s_1 \uparrow n)$.
- (23) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = h_1 \cdot s_1 h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = (h_1 \cdot s_1) (h_2 \cdot s_1)$.
- (24) For every real number r such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$ holds $(rh) \cdot s_1 = r(h \cdot s_1)$.
- (25) If rng $s_1 \subseteq \text{dom } h$, then $|h \cdot s_1| = |h| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.
- (26) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(\frac{1}{h})$, then $h \cdot s_1$ is non-zero.
- (27) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(\frac{1}{h})$, then $\frac{1}{h} \cdot s_1 = (h \cdot s_1)^{-1}$.
- (28) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $(h \cdot s_1) \cdot N_1 = h \cdot (s_1 \cdot N_1)$.
- (29) If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h$ and s_3 is a subsequence of s_2 , then $h \cdot s_3$ is a subsequence of $h \cdot s_2$.
- (30) If *h* is total, then $(h \cdot s_1)(n) = h(s_1(n))$.
- (31) If *h* is total, then $h \cdot (s_1 \uparrow n) = (h \cdot s_1) \uparrow n$.
- (32) If h_1 is total and h_2 is total, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = h_1 \cdot s_1 h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = (h_1 \cdot s_1) (h_2 \cdot s_1)$.
- (33) If *h* is total, then $(rh) \cdot s_1 = r(h \cdot s_1)$.
- (34) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h \upharpoonright X)$, then $(h \upharpoonright X) \cdot s_1 = h \cdot s_1$.
- (35) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h \upharpoonright X)$ and if $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h \upharpoonright Y)$ or $X \subseteq Y$, then $(h \upharpoonright X) \cdot s_1 = (h \upharpoonright Y) \cdot s_1$.
- (36) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h \upharpoonright X)$, then $|(h \upharpoonright X) \cdot s_1| = (|h| \upharpoonright X) \cdot s_1$.
- (37) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h \upharpoonright X)$ and $h^{-1}(\{0\}) = \emptyset$, then $(\frac{1}{h} \upharpoonright X) \cdot s_1 = ((h \upharpoonright X) \cdot s_1)^{-1}$.
- (38) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $h^{\circ} \operatorname{rng} s_1 = \operatorname{rng}(h \cdot s_1)$.
- (39) If $\operatorname{rng} s_1 \subseteq \operatorname{dom}(h_2 \cdot h_1)$, then $h_2 \cdot (h_1 \cdot s_1) = (h_2 \cdot h_1) \cdot s_1$.

Let Z be a set and let f be an one-to-one function. One can verify that $f \upharpoonright Z$ is one-to-one. Next we state three propositions:

(40) For every one-to-one function h holds $(h \upharpoonright X)^{-1} = h^{-1} \upharpoonright h^{\circ} X$.

² The proposition (20) has been removed.

- (41) If rng h is bounded and sup rng $h = \inf \text{rng } h$, then h is a constant on dom h.
- (42) If $Y \subseteq \text{dom } h$ and $h^{\circ}Y$ is bounded and $\sup(h^{\circ}Y) = \inf(h^{\circ}Y)$, then h is a constant on Y.

Let us consider h, Y. We say that h is increasing on Y if and only if:

- (Def. 2) For all r_1 , r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_1) < h(r_2)$. We say that h is decreasing on Y if and only if:
- (Def. 3) For all r_1 , r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_2) < h(r_1)$. We say that h is non-decreasing on Y if and only if:
- (Def. 4) For all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_1) \le h(r_2)$. We say that h is non increasing on Y if and only if:
- (Def. 5) For all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_2) \le h(r_1)$. Let us consider h, Y. We say that h is monotone on Y if and only if:
- (Def. 6) h is non-decreasing on Y and non increasing on Y.

We now state a number of propositions:

- (48)³ h is non-decreasing on Y iff for all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 \leq r_2$ holds $h(r_1) \leq h(r_2)$.
- (49) h is non increasing on Y iff for all r_1 , r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 \leq r_2$ holds $h(r_2) \leq h(r_1)$.
- (50) h is increasing on X iff $h \mid X$ is increasing on X.
- (51) h is decreasing on X iff $h \upharpoonright X$ is decreasing on X.
- (52) h is non-decreasing on X iff $h \mid X$ is non-decreasing on X.
- (53) h is non increasing on X iff $h \mid X$ is non increasing on X.
- (54) Suppose Y misses dom h. Then h is increasing on Y, decreasing on Y, non-increasing on Y, and monotone on Y.
- (55) If h is increasing on Y, then h is non-decreasing on Y.
- (56) If h is decreasing on Y, then h is non increasing on Y.
- (57) If h is a constant on Y, then h is non-decreasing on Y.
- (58) If h is a constant on Y, then h is non increasing on Y.
- (59) If h is non-decreasing on Y and non increasing on X, then h is a constant on $Y \cap X$.
- (60) If $X \subseteq Y$ and h is increasing on Y, then h is increasing on X.
- (61) If $X \subseteq Y$ and h is decreasing on Y, then h is decreasing on X.
- (62) If $X \subseteq Y$ and h is non-decreasing on Y, then h is non-decreasing on X.
- (63) If $X \subseteq Y$ and h is non increasing on Y, then h is non increasing on X.
- (64)(i) If h is increasing on Y and 0 < r, then r h is increasing on Y,
- (ii) if r = 0, then rh is a constant on Y, and
- (iii) if h is increasing on Y and r < 0, then r h is decreasing on Y.

³ The propositions (43)–(47) have been removed.

- (65)(i) If h is decreasing on Y and 0 < r, then r h is decreasing on Y, and
- (ii) if h is decreasing on Y and r < 0, then r h is increasing on Y.
- (66)(i) If h is non-decreasing on Y and $0 \le r$, then r h is non-decreasing on Y, and
- (ii) if *h* is non-decreasing on *Y* and $r \le 0$, then *r h* is non increasing on *Y*.
- (67)(i) If h is non increasing on Y and $0 \le r$, then r h is non increasing on Y, and
- (ii) if h is non-increasing on Y and $r \le 0$, then r h is non-decreasing on Y.
- (68) If $r \in X \cap Y \cap \text{dom}(h_1 + h_2)$, then $r \in X \cap \text{dom}(h_1)$ and $r \in Y \cap \text{dom}(h_2)$.
- (69)(i) If h_1 is increasing on X and h_2 is increasing on Y, then $h_1 + h_2$ is increasing on $X \cap Y$,
- (ii) if h_1 is decreasing on X and h_2 is decreasing on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$,
- (iii) if h_1 is non-decreasing on X and h_2 is non-decreasing on Y, then $h_1 + h_2$ is non-decreasing on $X \cap Y$, and
- (iv) if h_1 is non increasing on X and h_2 is non increasing on Y, then $h_1 + h_2$ is non increasing on $X \cap Y$.
- (70)(i) If h_1 is increasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is increasing on $X \cap Y$, and
- (ii) if h_1 is decreasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$.
- (71) If h_1 is increasing on X and h_2 is non-decreasing on Y, then $h_1 + h_2$ is increasing on $X \cap Y$.
- (72) If h_1 is non increasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is non increasing on $X \cap Y$.
- (73) If h_1 is decreasing on X and h_2 is non increasing on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$.
- (74) If h_1 is non-decreasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is non-decreasing on $X \cap Y$.
- (75) h is increasing on $\{x\}$.
- (76) h is decreasing on $\{x\}$.
- (77) h is non-decreasing on $\{x\}$.
- (78) h is non increasing on $\{x\}$.
- (79) id_R is increasing on R.
- (80) If h is increasing on X, then -h is decreasing on X.
- (81) If h is non-decreasing on X, then -h is non increasing on X.
- (82) If h is increasing on [p,g] and decreasing on [p,g], then $h \upharpoonright [p,g]$ is one-to-one.
- (83) Let h be an one-to-one partial function from \mathbb{R} to \mathbb{R} . If h is increasing on [p,g], then $(h \upharpoonright [p,g])^{-1}$ is increasing on $h^{\circ}[p,g]$.
- (84) Let h be an one-to-one partial function from \mathbb{R} to \mathbb{R} . If h is decreasing on [p,g], then $(h | [p,g])^{-1}$ is decreasing on $h^{\circ}[p,g]$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [9] Jarosław Kotowicz. Partial functions from a domain to a domain. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/ JFM/Vol2/partfun2.html.
- [10] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [13] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [16] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received June 18, 1990

Published January 2, 2004