Partial Functions from a Domain to the Set of Real Numbers

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. Basic operations in the set of partial functions which map a domain to the set of all real numbers are introduced. They include adition, subtraction, multiplication, division, multipication by a real number and also module. Main properties of these operations are proved. A definition of the partial function bounded on a set (bounded below and bounded above) is presented. There are theorems showing the laws of conservation of totality and boundedness for operations of partial functions. The characteristic function of a subset of a domain as a partial function is redefined and a few properties are proved.

MML Identifier: RFUNCT_1.
WWW: http://mizar.org/JFM/Vol2/rfunct_1.html

The articles [9], [11], [1], [10], [5], [3], [2], [8], [12], [4], [7], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: X, Y are sets, C is a non empty set, c is an element of $C, f, f_{1}, f_{2}, f_{3}, g, g_{1}$ are partial functions from C to \mathbb{R}, and r, r_{1}, p, p_{1} are real numbers.

Next we state the proposition
(2) ${ }^{1}$ If $0 \leq p$ and $0 \leq r$ and $p \leq p_{1}$ and $r \leq r_{1}$, then $p \cdot r \leq p_{1} \cdot r_{1}$.

Let us consider C and let us consider f_{1}, f_{2}. The functor $\frac{f_{1}}{f_{2}}$ yields a partial function from C to \mathbb{R} and is defined by:
(Def. 4 $4^{2} \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)=\operatorname{dom} f_{1} \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}(\{0\})\right)$ and for every c such that $c \in \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$ holds $\left(\frac{f_{1}}{f_{2}}\right)(c)=f_{1}(c) \cdot f_{2}(c)^{-1}$.

Let us consider C and let us consider f. The functor $\frac{1}{f}$ yielding a partial function from C to \mathbb{R} is defined by:
(Def. 8$\}^{3} \operatorname{dom}\left(\frac{1}{f}\right)=\operatorname{dom} f \backslash f^{-1}(\{0\})$ and for every c such that $c \in \operatorname{dom}\left(\frac{1}{f}\right)$ holds $\left(\frac{1}{f}\right)(c)=f(c)^{-1}$.
We now state a number of propositions:
$(11)^{4} \quad \operatorname{dom}\left(\frac{1}{g}\right) \subseteq \operatorname{dom} g$ and $\operatorname{dom} g \cap\left(\operatorname{dom} g \backslash g^{-1}(\{0\})\right)=\operatorname{dom} g \backslash g^{-1}(\{0\})$.
(12) $\operatorname{dom}\left(f_{1} f_{2}\right) \backslash\left(f_{1} f_{2}\right)^{-1}(\{0\})=\left(\operatorname{dom} f_{1} \backslash f_{1}^{-1}(\{0\})\right) \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}(\{0\})\right)$.

[^0](13) If $c \in \operatorname{dom}\left(\frac{1}{f}\right)$, then $f(c) \neq 0$.
(14) $\left(\frac{1}{f}\right)^{-1}(\{0\})=\emptyset$.
(15) $|f|^{-1}(\{0\})=f^{-1}(\{0\})$ and $(-f)^{-1}(\{0\})=f^{-1}(\{0\})$.
(16) $\operatorname{dom}\left(\frac{1}{\frac{1}{f}}\right)=\operatorname{dom}\left(f \upharpoonright \operatorname{dom}\left(\frac{1}{f}\right)\right)$.
(17) If $r \neq 0$, then $(r f)^{-1}(\{0\})=f^{-1}(\{0\})$.
$(19)^{5}\left(f_{1}+f_{2}\right)+f_{3}=f_{1}+\left(f_{2}+f_{3}\right)$.
$(21)^{6}\left(f_{1} f_{2}\right) f_{3}=f_{1}\left(f_{2} f_{3}\right)$.
(22) $\left(f_{1}+f_{2}\right) f_{3}=f_{1} f_{3}+f_{2} f_{3}$.
(23) $f_{3}\left(f_{1}+f_{2}\right)=f_{3} f_{1}+f_{3} f_{2}$.
(24) $r\left(f_{1} f_{2}\right)=\left(r f_{1}\right) f_{2}$.
(25) $r\left(f_{1} f_{2}\right)=f_{1}\left(r f_{2}\right)$.
(26) $\left(f_{1}-f_{2}\right) f_{3}=f_{1} f_{3}-f_{2} f_{3}$.
(27) $f_{3} f_{1}-f_{3} f_{2}=f_{3}\left(f_{1}-f_{2}\right)$.
(28) $r\left(f_{1}+f_{2}\right)=r f_{1}+r f_{2}$.
(29) $(r \cdot p) f=r(p f)$.
(30) $r\left(f_{1}-f_{2}\right)=r f_{1}-r f_{2}$.
(31) $f_{1}-f_{2}=(-1)\left(f_{2}-f_{1}\right)$.
(32) $f_{1}-\left(f_{2}+f_{3}\right)=f_{1}-f_{2}-f_{3}$.
(33) $1 f=f$.
(34) $f_{1}-\left(f_{2}-f_{3}\right)=\left(f_{1}-f_{2}\right)+f_{3}$.
(35) $f_{1}+\left(f_{2}-f_{3}\right)=\left(f_{1}+f_{2}\right)-f_{3}$.
(36) $\quad\left|f_{1} f_{2}\right|=\left|f_{1}\right|\left|f_{2}\right|$.
(37) $\quad|r f|=|r||f|$.
(38) $-f=(-1) f$.
(39) $--f=f$.
(40) $f_{1}-f_{2}=f_{1}+-f_{2}$.
(41) $f_{1}--f_{2}=f_{1}+f_{2}$.
(42) $\frac{1}{\frac{1}{f}}=f \upharpoonright \operatorname{dom}\left(\frac{1}{f}\right)$.
(43) $\frac{1}{f_{1} f_{2}}=\frac{1}{f_{1}} \frac{1}{f_{2}}$.
(44) If $r \neq 0$, then $\frac{1}{r f}=r^{-1} \frac{1}{f}$.
(45) $\frac{1}{-f}=(-1) \frac{1}{f}$.

[^1](46) $\frac{1}{|f|}=\left|\frac{1}{f}\right|$.
(47) $\frac{f}{g}=f \frac{1}{g}$.
(48) $r \frac{g}{f}=\frac{r g}{f}$.
(49) $\frac{f}{g} g=f \upharpoonright \operatorname{dom}\left(\frac{1}{g}\right)$.
(50) $\frac{f}{g} \frac{f_{1}}{g_{1}}=\frac{f f_{1}}{g g_{1}}$.
(51) $\frac{1}{\frac{f_{1}}{f_{2}}}=\frac{f_{2} \backslash \operatorname{dom}\left(\frac{1}{f_{2}}\right)}{f_{1}}$.
(52) $g \frac{f_{1}}{f_{2}}=\frac{g f_{1}}{f_{2}}$.
(53) $\frac{g}{\frac{f}{f_{1}}}=\frac{g\left(f_{2} \backslash \operatorname{dom}\left(\frac{1}{f_{2}}\right)\right)}{f_{1}}$.
(54) $-\frac{f}{g}=\frac{-f}{g}$ and $\frac{f}{-g}=-\frac{f}{g}$.
(55) $\frac{f_{1}}{f}+\frac{f_{2}}{f}=\frac{f_{1}+f_{2}}{f}$ and $\frac{f_{1}}{f}-\frac{f_{2}}{f}=\frac{f_{1}-f_{2}}{f}$.
(56) $\frac{f_{1}}{f}+\frac{g_{1}}{g}=\frac{f_{1} g+g_{1} f}{f g}$.
(57) $\frac{\frac{f}{g}}{\frac{f_{1}}{g_{1}}}=\frac{f\left(g_{1} \upharpoonright \operatorname{dom}\left(\frac{1}{g_{1}}\right)\right)}{g f_{1}}$.
(58) $\frac{f_{1}}{f}-\frac{g_{1}}{g}=\frac{f_{1} g-g_{1} f}{f g}$.
(59) $\quad\left|\frac{f_{1}}{f_{2}}\right|=\frac{\left|f_{1}\right|}{\left|f_{2}\right|}$.
(60) $\quad\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2} \upharpoonright X$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2}$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1}+f_{2} \upharpoonright X$.
(61) $\quad\left(f_{1} f_{2}\right) \mid X=\left(f_{1} \mid X\right)\left(f_{2} \mid X\right)$ and $\left(f_{1} f_{2}\right) \upharpoonright X=\left(f_{1} \mid X\right) f_{2}$ and $\left(f_{1} f_{2}\right) \upharpoonright X=f_{1}\left(f_{2} \mid X\right)$.
(62) $\quad(-f) \upharpoonright X=-f \upharpoonright X$ and $\frac{1}{f} \upharpoonright X=\frac{1}{f\lceil X}$ and $|f|\lceil X=\mid f\lceil X \mid$.
(63) $\quad\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1}\left|X-f_{2}\right| X$ and $\left(f_{1}-f_{2}\right)\left|X=f_{1}\right| X-f_{2}$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1}-f_{2} \upharpoonright X$.
(64) $\frac{f_{1}}{f_{2}} \left\lvert\, X=\frac{f_{1} \mid X}{f_{2} \backslash X}\right.$ and $\frac{f_{1}}{f_{2}} \left\lvert\, X=\frac{f_{1} \backslash X}{f_{2}}\right.$ and $\frac{f_{1}}{f_{2}} \left\lvert\, X=\frac{f_{1}}{f_{2} \backslash X}\right.$.
(65) $\quad(r f) \mid X=r(f \upharpoonright X)$.
(66)(i) $\quad f_{1}$ is total and f_{2} is total iff $f_{1}+f_{2}$ is total,
(ii) $\quad f_{1}$ is total and f_{2} is total iff $f_{1}-f_{2}$ is total, and
(iii) $\quad f_{1}$ is total and f_{2} is total iff $f_{1} f_{2}$ is total.
(67) f is total iff $r f$ is total.
(68) f is total iff $-f$ is total.
(69) f is total iff $|f|$ is total.
(70) $\frac{1}{f}$ is total iff $f^{-1}(\{0\})=0$ and f is total.
(71) $\quad f_{1}$ is total and $f_{2}^{-1}(\{0\})=\emptyset$ and f_{2} is total iff $\frac{f_{1}}{f_{2}}$ is total.
(72) If f_{1} is total and f_{2} is total, then $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$ and $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-$ $f_{2}(c)$ and $\left(f_{1} f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
(73) If f is total, then $(r f)(c)=r \cdot f(c)$.
(74) If f is total, then $(-f)(c)=-f(c)$ and $|f|(c)=|f(c)|$.
(75) If $\frac{1}{f}$ is total, then $\left(\frac{1}{f}\right)(c)=f(c)^{-1}$.
(76) If f_{1} is total and $\frac{1}{f_{2}}$ is total, then $\left(\frac{f_{1}}{f_{2}}\right)(c)=f_{1}(c) \cdot f_{2}(c)^{-1}$.

Let X, C be sets. Then $\chi_{X, C}$ is a partial function from C to \mathbb{R}.
The following propositions are true:
(77) $f=\chi_{X, C}$ iff $\operatorname{dom} f=C$ and for every c holds if $c \in X$, then $f(c)=1$ and if $c \notin X$, then $f(c)=0$.
(78) $\chi_{X, C}$ is total.
(79) $c \in X$ iff $\chi_{X, C}(c)=1$.
(80) $c \notin X$ iff $\chi_{X, C}(c)=0$.
(81) $c \in C \backslash X$ iff $\chi_{X, C}(c)=0$.
$(83)^{7} \chi_{C, C}(c)=1$.
(84) $\chi_{X, C}(c) \neq 1$ iff $\chi_{X, C}(c)=0$.
(85) If X misses Y, then $\chi_{X, C}+\chi_{Y, C}=\chi_{X \cup Y, C}$.
(86) $\chi_{X, C} \chi_{Y, C}=\chi_{X \cap Y, C}$.

Let us consider C and let us consider f, Y. We say that f is upper bounded on Y if and only if:
(Def. 9) There exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $f(c) \leq r$.
We say that f is lower bounded on Y if and only if:
(Def. 10) There exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $r \leq f(c)$.
Let us consider C and let us consider f, Y. We say that f is bounded on Y if and only if:
(Def. 11) f is upper bounded on Y and lower bounded on Y.
One can prove the following propositions:
(90 $]^{8} f$ is bounded on Y iff there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $|f(c)| \leq r$.
(91)(i) If $Y \subseteq X$ and f is upper bounded on X, then f is upper bounded on Y,
(ii) if $Y \subseteq X$ and f is lower bounded on X, then f is lower bounded on Y, and
(iii) if $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
(92) If f is upper bounded on X and lower bounded on Y, then f is bounded on $X \cap Y$.
(93) If X misses $\operatorname{dom} f$, then f is bounded on X.
(94) If $0=r$, then $r f$ is bounded on Y.
(95)(i) If f is upper bounded on Y and $0 \leq r$, then $r f$ is upper bounded on Y, and
(ii) if f is upper bounded on Y and $r \leq 0$, then $r f$ is lower bounded on Y.

[^2](96)(i) If f is lower bounded on Y and $0 \leq r$, then $r f$ is lower bounded on Y, and
(ii) if f is lower bounded on Y and $r \leq 0$, then $r f$ is upper bounded on Y.
(97) If f is bounded on Y, then $r f$ is bounded on Y.
(98) $|f|$ is lower bounded on X.
(99) If f is bounded on Y, then $|f|$ is bounded on Y and $-f$ is bounded on Y.
(100)(i) If f_{1} is upper bounded on X and f_{2} is upper bounded on Y, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$,
(ii) if f_{1} is lower bounded on X and f_{2} is lower bounded on Y, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$, and
(iii) if f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(101) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1} f_{2}$ is bounded on $X \cap Y$ and $f_{1}-f_{2}$ is bounded on $X \cap Y$.
(102) If f is upper bounded on X and upper bounded on Y, then f is upper bounded on $X \cup Y$.
(103) If f is lower bounded on X and lower bounded on Y, then f is lower bounded on $X \cup Y$.
(104) If f is bounded on X and bounded on Y, then f is bounded on $X \cup Y$.
(105) Suppose f_{1} is a constant on X and f_{2} is a constant on Y. Then $f_{1}+f_{2}$ is a constant on $X \cap Y$ and $f_{1}-f_{2}$ is a constant on $X \cap Y$ and $f_{1} f_{2}$ is a constant on $X \cap Y$.
(106) If f is a constant on Y, then $p f$ is a constant on Y.
(107) If f is a constant on Y, then $|f|$ is a constant on Y and $-f$ is a constant on Y.
(108) If f is a constant on Y, then f is bounded on Y.
(109) If f is a constant on Y, then for every r holds $r f$ is bounded on Y and $-f$ is bounded on Y and $|f|$ is bounded on Y.
(110)(i) If f_{1} is upper bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$,
(ii) if f_{1} is lower bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$, and
(iii) if f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(111)(i) If f_{1} is upper bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is upper bounded on $X \cap Y$,
(ii) if f_{1} is lower bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is lower bounded on $X \cap Y$, and
(iii) if f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$ and $f_{2}-f_{1}$ is bounded on $X \cap Y$ and $f_{1} f_{2}$ is bounded on $X \cap Y$.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/ JFM/Vol2/partfun2.html
[8] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (1) has been removed.
 ${ }^{2}$ The definitions (Def. 1)-(Def. 3) have been removed.
 ${ }^{3}$ The definitions (Def. 5)-(Def. 7) have been removed.
 ${ }^{4}$ The propositions (3)-(10) have been removed.

[^1]: ${ }^{5}$ The proposition (18) has been removed.
 ${ }^{6}$ The proposition (20) has been removed.

[^2]: ${ }^{7}$ The proposition (82) has been removed.
 ${ }^{8}$ The propositions (87)-(89) have been removed.

