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Summary. The goal of the article is to start the formalization of Knuth-Bendix com-
pletion method (see [2], [10] or [1]; see also [11],[9]), i.e. to formalize the concept of the
completion of a reduction relation. The completion of a reduction relationR is a complete
reduction relation equivalent toRsuch that convertible elements have the same normal forms.
The theory formalized in the article includes concepts and facts concerning normal forms,
terminating reductions, Church-Rosser property, and equivalence of reduction relations.

MML Identifier: REWRITE1.
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The articles [12], [15], [14], [3], [6], [16], [4], [5], [13], [7], and [8] provide the notation and
terminology for this paper.

1. FORGETTING CONCATENATION AND REDUCTION SEQUENCE

Let p, q be finite sequences. The functorp$a q yielding a finite sequence is defined by:

(Def. 1)(i) p$a q = pa q if p = /0 or q = /0,

(ii) there exists a natural numberi and there exists a finite sequencer such that lenp = i +1
andr = p�Segi andp$a q = r a q, otherwise.

In the sequelp, q denote finite sequences andx, y denote sets.
We now state several propositions:

(1) /0 $a p = p andp$a /0 = p.

(2) If q 6= /0, then(pa 〈x〉) $a q = pa q.

(3) (pa 〈x〉) $a (〈y〉a q) = pa 〈y〉a q.

(4) If q 6= /0, then〈x〉 $a q = q.

(5) If p 6= /0, then there existx, q such thatp = 〈x〉a q and lenp = lenq+1.

The schemePathCatenationdeals with finite sequencesA , B and a binary predicateP , and
states that:

Let i be a natural number. Supposei ∈ dom(A $a B) andi +1∈ dom(A $a B). Let
x, y be sets. Ifx = (A $a B)(i) andy = (A $a B)(i +1), thenP [x,y]

provided the parameters meet the following requirements:
• For every natural numberi such thati ∈domA andi+1∈domA holdsP [A(i),A(i+

1)],
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• For every natural numberi such thati ∈ domB andi+1∈ domB holdsP [B(i),B(i+
1)], and

• lenA > 0 and lenB > 0 andA(lenA) = B(1).
Let Rbe a binary relation. A finite sequence is called a reduction sequence w.r.t.R if:

(Def. 2) len it> 0 and for every natural numberi such thati ∈ domit andi +1∈ domit holds〈〈it(i),
it(i +1)〉〉 ∈ R.

Let Rbe a binary relation. One can verify that every reduction sequence w.r.t.R is non empty.
Next we state several propositions:

(7)1 For every binary relationRand for every seta holds〈a〉 is a reduction sequence w.r.t.R.

(8) For every binary relationR and for all setsa, b such that〈〈a, b〉〉 ∈ R holds〈a,b〉 is a reduc-
tion sequence w.r.t.R.

(9) LetRbe a binary relation andp, q be reduction sequences w.r.t.R. If p(lenp) = q(1), then
p$a q is a reduction sequence w.r.t.R.

(10) Let R be a binary relation andp be a reduction sequence w.r.t.R. Then Rev(p) is a
reduction sequence w.r.t.R̀ .

(11) For all binary relationsR, Q such thatR⊆ Q holds every reduction sequence w.r.t.R is a
reduction sequence w.r.t.Q.

2. REDUCIBILITY, CONVERTIBILITY AND NORMAL FORMS

Let Rbe a binary relation and leta, b be sets. We say thatR reducesa to b if and only if:

(Def. 3) There exists a reduction sequencep w.r.t. Rsuch thatp(1) = a andp(lenp) = b.

Let R be a binary relation and leta, b be sets. We say thata andb are convertible w.r.t.R if and
only if:

(Def. 4) R∪ R̀ reducesa to b.

One can prove the following propositions:

(12) LetR be a binary relation anda, b be sets. ThenR reducesa to b if and only if there exists
a finite sequencep such that lenp > 0 andp(1) = a and p(lenp) = b and for every natural
numberi such thati ∈ domp andi +1∈ domp holds〈〈p(i), p(i +1)〉〉 ∈ R.

(13) For every binary relationRand for every seta holdsR reducesa to a.

(14) For all setsa, b such that/0 reducesa to b holdsa = b.

(15) For every binary relationR and for all setsa, b such thatR reducesa to b anda /∈ fieldR
holdsa = b.

(16) For every binary relationRand for all setsa, b such that〈〈a, b〉〉 ∈ RholdsR reducesa to b.

(17) LetR be a binary relation anda, b, c be sets. SupposeR reducesa to b andR reducesb to
c. ThenR reducesa to c.

(18) LetR be a binary relation,p be a reduction sequence w.r.t.R, andi, j be natural numbers.
If i ∈ domp and j ∈ domp andi ≤ j, thenR reducesp(i) to p( j).

(19) For every binary relationR and for all setsa, b such thatR reducesa to b anda 6= b holds
a∈ fieldRandb∈ fieldR.

1 The proposition (6) has been removed.
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(20) For every binary relationR and for all setsa, b such thatR reducesa to b holdsa∈ fieldR
iff b∈ fieldR.

(21) For every binary relationR and for all setsa, b holdsR reducesa to b iff a = b or 〈〈a,
b〉〉 ∈ R∗.

(22) For every binary relationRand for all setsa, b holdsR reducesa to b iff R∗ reducesa to b.

(23) LetR, Q be binary relations. SupposeR⊆ Q. Let a, b be sets. IfR reducesa to b, thenQ
reducesa to b.

(24) LetR be a binary relation,X be a set, anda, b be sets. ThenR reducesa to b if and only if
R∪ idX reducesa to b.

(25) For every binary relationRand for all setsa, b such thatR reducesa to b holdsR̀ reduces
b to a.

(26) Let R be a binary relation anda, b be sets. SupposeR reducesa to b. Thena andb are
convertible w.r.t.Randb anda are convertible w.r.t.R.

(27) For every binary relationRand for every seta holdsa anda are convertible w.r.t.R.

(28) For all setsa, b such thata andb are convertible w.r.t./0 holdsa = b.

(29) LetRbe a binary relation anda, b be sets. Ifa andb are convertible w.r.t.Randa /∈ fieldR,
thena = b.

(30) For every binary relationR and for all setsa, b such that〈〈a, b〉〉 ∈ R holds a and b are
convertible w.r.t.R.

(31) LetR be a binary relation anda, b, c be sets. Supposea andb are convertible w.r.t.R and
b andc are convertible w.r.t.R. Thena andc are convertible w.r.t.R.

(32) LetR be a binary relation anda, b be sets. Supposea andb are convertible w.r.t.R. Then
b anda are convertible w.r.t.R.

(33) LetR be a binary relation anda, b be sets. Ifa andb are convertible w.r.t.R anda 6= b,
thena∈ fieldRandb∈ fieldR.

Let R be a binary relation and leta be a set. We say thata is a normal form w.r.t.R if and only
if:

(Def. 5) It is not true that there exists a setb such that〈〈a, b〉〉 ∈ R.

We now state two propositions:

(34) LetRbe a binary relation anda, b be sets. Ifa is a normal form w.r.t.RandR reducesa to
b, thena = b.

(35) For every binary relationRand for every seta such thata /∈ fieldRholdsa is a normal form
w.r.t. R.

Let Rbe a binary relation and leta, b be sets. We say thatb is a normal form ofa w.r.t. R if and
only if:

(Def. 6) b is a normal form w.r.t.RandR reducesa to b.

We say thata andb are convergent w.r.t.R if and only if:

(Def. 7) There exists a setc such thatR reducesa to c andR reducesb to c.

We say thata andb are divergent w.r.t.R if and only if:

(Def. 8) There exists a setc such thatR reducesc to a andR reducesc to b.



REDUCTION RELATIONS 4

We say thata andb are convergent at most in 1 step w.r.t.R if and only if:

(Def. 9) There exists a setc such that〈〈a, c〉〉 ∈ Ror a = c but 〈〈b, c〉〉 ∈ Ror b = c.

We say thata andb are divergent at most in 1 step w.r.t.R if and only if:

(Def. 10) There exists a setc such that〈〈c, a〉〉 ∈ Ror a = c but 〈〈c, b〉〉 ∈ Ror b = c.

The following propositions are true:

(36) For every binary relationRand for every seta such thata /∈ fieldRholdsa is a normal form
of a w.r.t. R.

(37) LetRbe a binary relation anda, b be sets. SupposeR reducesa to b. Then

(i) a andb are convergent w.r.t.R,

(ii) a andb are divergent w.r.t.R,

(iii) b anda are convergent w.r.t.R, and

(iv) b anda are divergent w.r.t.R.

(38) LetRbe a binary relation anda, b be sets. Supposea andb are convergent w.r.t.Ror a and
b are divergent w.r.t.R. Thena andb are convertible w.r.t.R.

(39) LetR be a binary relation anda be a set. Thena anda are convergent w.r.t.R anda anda
are divergent w.r.t.R.

(40) For all setsa, b such thata andb are convergent w.r.t./0 or a andb are divergent w.r.t./0
holdsa = b.

(41) LetR be a binary relation anda, b be sets. Supposea andb are convergent w.r.t.R. Then
b anda are convergent w.r.t.R.

(42) LetR be a binary relation anda, b be sets. Supposea andb are divergent w.r.t.R. Thenb
anda are divergent w.r.t.R.

(43) LetRbe a binary relation anda, b, c be sets. Suppose that

(i) R reducesa to b andb andc are convergent w.r.t.R, or

(ii) a andb are convergent w.r.t.RandR reducesc to b.

Thena andc are convergent w.r.t.R.

(44) LetRbe a binary relation anda, b, c be sets. Suppose that

(i) R reducesb to a andb andc are divergent w.r.t.R, or

(ii) a andb are divergent w.r.t.RandR reducesb to c.

Thena andc are divergent w.r.t.R.

(45) Let R be a binary relation anda, b be sets. Supposea andb are convergent at most in 1
step w.r.t.R. Thena andb are convergent w.r.t.R.

(46) LetR be a binary relation anda, b be sets. Supposea andb are divergent at most in 1 step
w.r.t. R. Thena andb are divergent w.r.t.R.

Let Rbe a binary relation and leta be a set. We say thata has a normal form w.r.t.R if and only
if:

(Def. 11) There exists a set which is a normal form ofa w.r.t. R.

The following proposition is true

(47) For every binary relationR and for every seta such thata /∈ fieldR holdsa has a normal
form w.r.t. R.

Let Rbe a binary relation and leta be a set. Let us assume thata has a normal form w.r.t.Rand
for all setsb, c such thatb is a normal form ofa w.r.t. R andc is a normal form ofa w.r.t. R holds
b = c. The functor nfR(a) is defined by:

(Def. 12) nfR(a) is a normal form ofa w.r.t. R.
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3. TERMINATING REDUCTIONS

Let Rbe a binary relation. We say thatR is reversely well founded if and only if:

(Def. 13) R̀ is well founded.

We say thatR is weakly-normalizing if and only if:

(Def. 14) For every seta such thata∈ fieldRholdsa has a normal form w.r.t.R.

We say thatR is strongly-normalizing if and only if:

(Def. 15) For every many sorted setf indexed byN there exists a natural numberi such that〈〈 f (i),
f (i +1)〉〉 /∈ R.

Let R be a binary relation. Let us observe thatR is reversely well founded if and only if the
condition (Def. 16) is satisfied.

(Def. 16) LetY be a set. SupposeY⊆ fieldRandY 6= /0. Then there exists a seta such thata∈Y and
for every setb such thatb∈Y anda 6= b holds〈〈a, b〉〉 /∈ R.

The schemecoNoetherianInductiondeals with a binary relationA and a unary predicateP , and
states that:

For every seta such thata∈ fieldA holdsP [a]
provided the following conditions are met:

• A is reversely well founded, and
• For every seta such that for every setb such that〈〈a, b〉〉 ∈ A anda 6= b holdsP [b]

holdsP [a].
Let us note that every binary relation which is strongly-normalizing is also irreflexive and re-

versely well founded and every binary relation which is reversely well founded and irreflexive is
also strongly-normalizing.

Let us observe that every binary relation which is empty is also weakly-normalizing and strongly-
normalizing.

Let us note that there exists a binary relation which is empty.
Next we state the proposition

(48) LetQ be a reversely well founded binary relation andRbe a binary relation. IfR⊆Q, then
R is reversely well founded.

Let us note that every binary relation which is strongly-normalizing is also weakly-normalizing.

4. CHURCH-ROSSER PROPERTY

Let R, Q be binary relations. We say thatR commutes-weakly withQ if and only if the condition
(Def. 17) is satisfied.

(Def. 17) Leta, b, c be sets. Suppose〈〈a, b〉〉 ∈Rand〈〈a, c〉〉 ∈Q. Then there exists a setd such thatQ
reducesb to d andR reducesc to d.

Let us note that the predicateR commutes-weakly withQ is symmetric. We say thatR commutes
with Q if and only if the condition (Def. 18) is satisfied.

(Def. 18) Leta, b, c be sets. SupposeR reducesa to b andQ reducesa to c. Then there exists a setd
such thatQ reducesb to d andR reducesc to d.

Let us note that the predicateRcommutes withQ is symmetric.
Next we state the proposition

(49) For all binary relationsR, Q such thatRcommutes withQ holdsRcommutes-weakly with
Q.
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Let R be a binary relation. We say thatR has unique normal form property if and only if the
condition (Def. 19) is satisfied.

(Def. 19) Leta, b be sets. Supposea is a normal form w.r.t.R andb is a normal form w.r.t.R anda
andb are convertible w.r.t.R. Thena = b.

We say thatRhas normal form property if and only if the condition (Def. 20) is satisfied.

(Def. 20) Leta, b be sets. Supposea is a normal form w.r.t.R anda andb are convertible w.r.t.R.
ThenR reducesb to a.

We say thatR is subcommutative if and only if:

(Def. 21) For all setsa, b, c such that〈〈a, b〉〉 ∈ R and〈〈a, c〉〉 ∈ R holdsb andc are convergent at most
in 1 step w.r.t.R.

We introduceR has diamond property as a synonym ofR is subcommutative. We say thatR is
confluent if and only if:

(Def. 22) For all setsa, b such thata andb are divergent w.r.t.R holdsa andb are convergent w.r.t.
R.

We say thatRhas Church-Rosser property if and only if:

(Def. 23) For all setsa, b such thata andb are convertible w.r.t.Rholdsa andb are convergent w.r.t.
R.

We say thatR is locally-confluent if and only if:

(Def. 24) For all setsa, b, c such that〈〈a, b〉〉 ∈Rand〈〈a, c〉〉 ∈Rholdsb andc are convergent w.r.t.R.

We introduceRhas weak Church-Rosser property as a synonym ofR is locally-confluent.
The following four propositions are true:

(50) LetR be a binary relation. SupposeR is subcommutative. Leta, b, c be sets. SupposeR
reducesa to b and〈〈a, c〉〉 ∈ R. Thenb andc are convergent w.r.t.R.

(51) For every binary relationRholdsR is confluent iffRcommutes withR.

(52) LetR be a binary relation. ThenR is confluent if and only if for all setsa, b, c such thatR
reducesa to b and〈〈a, c〉〉 ∈ Rholdsb andc are convergent w.r.t.R.

(53) For every binary relationRholdsR is locally-confluent iffRcommutes-weakly withR.

One can verify the following observations:

∗ every binary relation which has Church-Rosser property is also confluent,

∗ every binary relation which is confluent is also locally-confluent and has Church-Rosser
property,

∗ every binary relation which is subcommutative is also confluent,

∗ every binary relation which has Church-Rosser property has also normal form property,

∗ every binary relation which has normal form property has also unique normal form prop-
erty, and

∗ every binary relation which is weakly-normalizing and has unique normal form property
has also Church-Rosser property.

One can verify that every binary relation which is empty is also subcommutative.
Let us mention that there exists a binary relation which is empty.
Next we state three propositions:
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(54) LetRbe a binary relation with unique normal form property anda, b, c be sets. Supposeb
is a normal form ofa w.r.t. Randc is a normal form ofa w.r.t. R. Thenb = c.

(55) LetR be a weakly-normalizing binary relation with unique normal form property anda be
a set. Then nfR(a) is a normal form ofa w.r.t. R.

(56) LetR be a weakly-normalizing binary relation with unique normal form property anda, b
be sets. Ifa andb are convertible w.r.t.R, then nfR(a) = nfR(b).

Let us mention that every binary relation which is strongly-normalizing and locally-confluent is
also confluent.

Let Rbe a binary relation. We say thatR is complete if and only if:

(Def. 25) R is confluent and strongly-normalizing.

Let us mention that every binary relation which is complete is also confluent and strongly-
normalizing and every binary relation which is confluent and strongly-normalizing is also complete.

Let us observe that there exists a binary relation which is empty.
Let us note that there exists a non empty binary relation which is complete.
The following three propositions are true:

(57) Let R, Q be binary relations with Church-Rosser property. IfR commutes withQ, then
R∪Q has Church-Rosser property.

(58) For every binary relationRholdsR is confluent iffR∗ has weak Church-Rosser property.

(59) For every binary relationRholdsR is confluent iffR∗ is subcommutative.

5. COMPLETION METHOD

Let R, Q be binary relations. We say thatRandQ are equivalent if and only if the condition (Def. 26)
is satisfied.

(Def. 26) Leta, b be sets. Thena andb are convertible w.r.t.R if and only if a andb are convertible
w.r.t. Q.

Let us note that the predicateRandQ are equivalent is symmetric.
Let Rbe a binary relation and leta, b be sets. We say thata andb are critical w.r.t.R if and only

if:

(Def. 27) a andb are divergent at most in 1 step w.r.t.Randa andb are not convergent w.r.t.R.

The following propositions are true:

(60) LetRbe a binary relation anda, b be sets. Supposea andb are critical w.r.t.R. Thena and
b are convertible w.r.t.R.

(61) LetR be a binary relation. Suppose that it is not true that there exist setsa, b such thata
andb are critical w.r.t.R. ThenR is locally-confluent.

(62) LetR, Q be binary relations. Suppose that for all setsa, b such that〈〈a, b〉〉 ∈Q holdsa and
b are critical w.r.t.R. ThenRandR∪Q are equivalent.

(63) LetRbe a binary relation. Then there exists a complete binary relationQ such that

(i) fieldQ⊆ fieldR, and

(ii) for all setsa, b holdsa andb are convertible w.r.t.R iff a andb are convergent w.r.t.Q.

Let Rbe a binary relation. A complete binary relation is said to be a completion ofR if it satisfies
the condition (Def. 28).
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(Def. 28) Leta, b be sets. Thena andb are convertible w.r.t.R if and only if a andb are convergent
w.r.t. it.

We now state three propositions:

(64) For every binary relationRand for every completionC of RholdsRandC are equivalent.

(65) LetR be a binary relation andQ be a complete binary relation. IfR andQ are equivalent,
thenQ is a completion ofR.

(66) Let R be a binary relation,C be a completion ofR, anda, b be sets. Thena andb are
convertible w.r.t.R if and only if nfC(a) = nfC(b).
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