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Summary. The article includes theorems concerning properties of relations defined
as a subset of the Cartesian product of two sets (mode Relation ofX,Y whereX,Y are sets).
Some notions, introduced in [4] such as domain, codomain, field of a relation, composition of
relations, image and inverse image of a set under a relation are redefined.

MML Identifier: RELSET_1.
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The articles [2], [1], [3], and [4] provide the notation and terminology for this paper.
We adopt the following convention:A, B, X, X1, Y, Y1, Y2, Z denote sets anda, x, y denote sets.
Let us considerX, Y. Relation betweenX andY is defined by:

(Def. 1) It⊆ [:X, Y :].

Let us considerX, Y. We see that the relation betweenX andY is a subset of[:X, Y :].
Let us considerX, Y. Note that every subset of[:X, Y :] is relation-like.
In the sequelP, Rdenote relations betweenX andY.
One can prove the following propositions:

(4)1 If A⊆ R, thenA is a relation betweenX andY.

(6)2 If a∈ R, then there existx, y such thata = 〈〈x, y〉〉 andx∈ X andy∈Y.

(8)3 If x∈ X andy∈Y, then{〈〈x, y〉〉} is a relation betweenX andY.

(9) For every binary relationRsuch that domR⊆ X holdsR is a relation betweenX and rngR.

(10) For every binary relationRsuch that rngR⊆Y holdsR is a relation between domRandY.

(11) For every binary relationRsuch that domR⊆X and rngR⊆Y holdsR is a relation between
X andY.

(12) domR⊆ X and rngR⊆Y.

(13) If domR⊆ X1, thenR is a relation betweenX1 andY.

(14) If rngR⊆Y1, thenR is a relation betweenX andY1.

(15) If X ⊆ X1, thenR is a relation betweenX1 andY.

(16) If Y ⊆Y1, thenR is a relation betweenX andY1.

1 The propositions (1)–(3) have been removed.
2 The proposition (5) has been removed.
3 The proposition (7) has been removed.
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(17) If X ⊆ X1 andY ⊆Y1, thenR is a relation betweenX1 andY1.

Let us considerX, Y, P, R. ThenP∪R is a relation betweenX andY. ThenP∩R is a relation
betweenX andY. ThenP\R is a relation betweenX andY.

Let us considerX, Y, R. Then domR is a subset ofX. Then rngR is a subset ofY.
The following propositions are true:

(19)4 fieldR⊆ X∪Y.

(22)5 For everyx such thatx∈ X there existsy such that〈〈x, y〉〉 ∈ R iff domR= X.

(23) For everyy such thaty∈Y there existsx such that〈〈x, y〉〉 ∈ R iff rng R= Y.

Let us considerX, Y, R. ThenR̀ is a relation betweenY andX.
Let us considerX, Y1, Y2, Z, letP be a relation betweenX andY1, and letRbe a relation between

Y2 andZ. ThenP·R is a relation betweenX andZ.
Next we state several propositions:

(24) dom(R̀ ) = rngRand rng(R̀ ) = domR.

(25) /0 is a relation betweenX andY.

(26) If R is a relation between/0 andY, thenR= /0.

(27) If R is a relation betweenX and /0, thenR= /0.

(28) idX ⊆ [:X, X :].

(29) idX is a relation betweenX andX.

(30) If idA ⊆ R, thenA⊆ domRandA⊆ rngR.

(31) If idX ⊆ R, thenX = domRandX ⊆ rngR.

(32) If idY ⊆ R, thenY ⊆ domRandY = rngR.

Let us considerX, Y, R, A. ThenR�A is a relation betweenX andY.
Let us considerX, Y, B, R. ThenB�R is a relation betweenX andY.
Next we state four propositions:

(33) R�X1 is a relation betweenX1 andY.

(34) If X ⊆ X1, thenR�X1 = R.

(35) Y1�R is a relation betweenX andY1.

(36) If Y ⊆Y1, thenY1�R= R.

Let us considerX, Y, R, A. ThenR◦A is a subset ofY. ThenR−1(A) is a subset ofX.
Next we state two propositions:

(38)6 R◦X = rngRandR−1(Y) = domR.

(39) R◦R−1(Y) = rngRandR−1(R◦X) = domR.

The schemeRel On Set Exdeals with a setA , a setB, and a binary predicateP , and states that:
There exists a relationR betweenA andB such that for allx, y holds〈〈x, y〉〉 ∈ R iff
x∈ A andy∈ B andP [x,y]

for all values of the parameters.
Let us considerX. A binary relation onX is a relation betweenX andX.
In the sequelR is a binary relation onX.
The following proposition is true

4 The proposition (18) has been removed.
5 The propositions (20) and (21) have been removed.
6 The proposition (37) has been removed.
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(45)7 R· idX = Rand idX ·R= R.

For simplicity, we adopt the following rules:D, D1, D2, E, F denote non empty sets,R denotes
a relation betweenD andE, x denotes an element ofD, andy denotes an element ofE.

We now state several propositions:

(46) idD 6= /0.

(47) For every elementx of D holdsx∈ domR iff there exists an elementy of E such that〈〈x,
y〉〉 ∈ R.

(48) For every elementy of E holdsy ∈ rngR iff there exists an elementx of D such that〈〈x,
y〉〉 ∈ R.

(49) For every elementx of D such thatx ∈ domR there exists an elementy of E such that
y∈ rngR.

(50) For every elementy of E such thaty ∈ rngR there exists an elementx of D such that
x∈ domR.

(51) LetP be a relation betweenD andE, R be a relation betweenE andF , x be an element of
D, andz be an element ofF . Then〈〈x, z〉〉 ∈ P ·R if and only if there exists an elementy of E
such that〈〈x, y〉〉 ∈ P and〈〈y, z〉〉 ∈ R.

(52) y∈ R◦D1 iff there exists an elementx of D such that〈〈x, y〉〉 ∈ Randx∈ D1.

(53) x∈ R−1(D2) iff there exists an elementy of E such that〈〈x, y〉〉 ∈ Randy∈ D2.

The schemeRel On Dom Exdeals with non empty setsA , B and a binary predicateP , and states
that:

There exists a relationR betweenA andB such that for every elementx of A and
for every elementy of B holds〈〈x, y〉〉 ∈ R if and only if P [x,y]

for all values of the parameters.
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[1] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/zfmisc_
1.html.

[2] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[3] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[4] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received April 14, 1989

Published January 2, 2004

7 The propositions (40)–(44) have been removed.

http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	relations defined on sets By edmund woronowicz

