Relations Defined on Sets

Edmund Woronowicz
Warsaw University
Białystok

Abstract

Summary. The article includes theorems concerning properties of relations defined as a subset of the Cartesian product of two sets (mode Relation of X, Y where X, Y are sets). Some notions, introduced in [4] such as domain, codomain, field of a relation, composition of relations, image and inverse image of a set under a relation are redefined.

MML Identifier: RELSET_1.
WWW: http://mizar.org/JFM/Vol1/relset_1.html

The articles [2], [1], [3], and [4] provide the notation and terminology for this paper.
We adopt the following convention: $A, B, X, X_{1}, Y, Y_{1}, Y_{2}, Z$ denote sets and a, x, y denote sets. Let us consider X, Y. Relation between X and Y is defined by:
(Def. 1) \quad It $\subseteq[: X, Y:]$.
Let us consider X, Y. We see that the relation between X and Y is a subset of $[: X, Y:]$.
Let us consider X, Y. Note that every subset of $[: X, Y:]$ is relation-like.
In the sequel P, R denote relations between X and Y.
One can prove the following propositions:
(4) If $A \subseteq R$, then A is a relation between X and Y.
$(6)^{2}$ If $a \in R$, then there exist x, y such that $a=\langle x, y\rangle$ and $x \in X$ and $y \in Y$.
(8) If $x \in X$ and $y \in Y$, then $\{\langle x, y\rangle\}$ is a relation between X and Y.
(9) For every binary relation R such that $\operatorname{dom} R \subseteq X$ holds R is a relation between X and $\operatorname{rng} R$.
(10) For every binary relation R such that $\operatorname{rng} R \subseteq Y$ holds R is a relation between $\operatorname{dom} R$ and Y.
(11) For every binary relation R such that $\operatorname{dom} R \subseteq X$ and $\mathrm{rng} R \subseteq Y$ holds R is a relation between X and Y.
(12) $\operatorname{dom} R \subseteq X$ and $\operatorname{rng} R \subseteq Y$.
(13) If $\operatorname{dom} R \subseteq X_{1}$, then R is a relation between X_{1} and Y.
(14) If $\operatorname{rng} R \subseteq Y_{1}$, then R is a relation between X and Y_{1}.
(15) If $X \subseteq X_{1}$, then R is a relation between X_{1} and Y.
(16) If $Y \subseteq Y_{1}$, then R is a relation between X and Y_{1}.

[^0](17) If $X \subseteq X_{1}$ and $Y \subseteq Y_{1}$, then R is a relation between X_{1} and Y_{1}.

Let us consider X, Y, P, R. Then $P \cup R$ is a relation between X and Y. Then $P \cap R$ is a relation between X and Y. Then $P \backslash R$ is a relation between X and Y.

Let us consider X, Y, R. Then $\operatorname{dom} R$ is a subset of X. Then $\operatorname{rng} R$ is a subset of Y.
The following propositions are true:
$(19)^{4}$ field $R \subseteq X \cup Y$.
(22 $)^{5}$ For every x such that $x \in X$ there exists y such that $\langle x, y\rangle \in R$ iff $\operatorname{dom} R=X$.
(23) For every y such that $y \in Y$ there exists x such that $\langle x, y\rangle \in R$ iff $\operatorname{rng} R=Y$.

Let us consider X, Y, R. Then R^{\smile} is a relation between Y and X.
Let us consider X, Y_{1}, Y_{2}, Z, let P be a relation between X and Y_{1}, and let R be a relation between Y_{2} and Z. Then $P \cdot R$ is a relation between X and Z.

Next we state several propositions:
(24) $\operatorname{dom}\left(R^{\smile}\right)=\operatorname{rng} R$ and $\operatorname{rng}\left(R^{\smile}\right)=\operatorname{dom} R$.
(25) \emptyset is a relation between X and Y.
(26) If R is a relation between \emptyset and Y, then $R=\emptyset$.
(27) If R is a relation between X and \emptyset, then $R=\emptyset$.
(28) $\quad \operatorname{id}_{X} \subseteq[: X, X:]$.
(29) $\quad \mathrm{id}_{X}$ is a relation between X and X.
(30) If $\operatorname{id}_{A} \subseteq R$, then $A \subseteq \operatorname{dom} R$ and $A \subseteq \operatorname{rng} R$.
(31) If $\operatorname{id}_{X} \subseteq R$, then $X=\operatorname{dom} R$ and $X \subseteq \operatorname{rng} R$.
(32) If $\operatorname{id}_{Y} \subseteq R$, then $Y \subseteq \operatorname{dom} R$ and $Y=\operatorname{rng} R$.

Let us consider X, Y, R, A. Then $R \upharpoonright A$ is a relation between X and Y.
Let us consider X, Y, B, R. Then $B \upharpoonright R$ is a relation between X and Y.
Next we state four propositions:
(33) $\quad R \upharpoonright X_{1}$ is a relation between X_{1} and Y.
(34) If $X \subseteq X_{1}$, then $R \mid X_{1}=R$.
(35) $\quad Y_{1} \upharpoonright R$ is a relation between X and Y_{1}.
(36) If $Y \subseteq Y_{1}$, then $Y_{1} \upharpoonright R=R$.

Let us consider X, Y, R, A. Then $R^{\circ} A$ is a subset of Y. Then $R^{-1}(A)$ is a subset of X.
Next we state two propositions:
(38) $R^{\circ} X=\operatorname{rng} R$ and $R^{-1}(Y)=\operatorname{dom} R$.
(39) $\quad R^{\circ} R^{-1}(Y)=\operatorname{rng} R$ and $R^{-1}\left(R^{\circ} X\right)=\operatorname{dom} R$.

The scheme Rel On Set Ex deals with a set \mathcal{A}, a set \mathcal{B}, and a binary predicate \mathcal{P}, and states that: There exists a relation R between \mathcal{A} and \mathcal{B} such that for all x, y holds $\langle x, y\rangle \in R$ iff $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$
for all values of the parameters.
Let us consider X. A binary relation on X is a relation between X and X.
In the sequel R is a binary relation on X.
The following proposition is true

[^1](45 $]^{7} \quad R \cdot \mathrm{id}_{X}=R$ and $\mathrm{id}_{X} \cdot R=R$.
For simplicity, we adopt the following rules: D, D_{1}, D_{2}, E, F denote non empty sets, R denotes a relation between D and E, x denotes an element of D, and y denotes an element of E.

We now state several propositions:
(46) $\quad \operatorname{id}_{D} \neq 0$.
(47) For every element x of D holds $x \in \operatorname{dom} R$ iff there exists an element y of E such that $\langle x$, $y\rangle \in R$.
(48) For every element y of E holds $y \in \operatorname{rng} R$ iff there exists an element x of D such that $\langle x$, $y\rangle \in R$.
(49) For every element x of D such that $x \in \operatorname{dom} R$ there exists an element y of E such that $y \in \operatorname{rng} R$.
(50) For every element y of E such that $y \in \operatorname{rng} R$ there exists an element x of D such that $x \in \operatorname{dom} R$.
(51) Let P be a relation between D and E, R be a relation between E and F, x be an element of D, and z be an element of F. Then $\langle x, z\rangle \in P \cdot R$ if and only if there exists an element y of E such that $\langle x, y\rangle \in P$ and $\langle y, z\rangle \in R$.
(52) $y \in R^{\circ} D_{1}$ iff there exists an element x of D such that $\langle x, y\rangle \in R$ and $x \in D_{1}$.
(53) $\quad x \in R^{-1}\left(D_{2}\right)$ iff there exists an element y of E such that $\langle x, y\rangle \in R$ and $y \in D_{2}$.

The scheme Rel On Dom Ex deals with non empty sets \mathcal{A}, \mathcal{B} and a binary predicate \mathcal{P}, and states that:

There exists a relation R between \mathcal{A} and \mathcal{B} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\langle x, y\rangle \in R$ if and only if $\mathcal{P}[x, y]$
for all values of the parameters.

References

[1] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[3] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[4] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received April 14, 1989
Published January 2, 2004

[^2]
[^0]: ${ }^{1}$ The propositions (1)-(3) have been removed.
 ${ }^{2}$ The proposition (5) has been removed.
 ${ }^{3}$ The proposition (7) has been removed.

[^1]: ${ }^{4}$ The proposition (18) has been removed.
 ${ }^{5}$ The propositions (20) and (21) have been removed.
 ${ }^{6}$ The proposition (37) has been removed.

[^2]: 7 The propositions (40)-(44) have been removed.

