Relations Defined on Sets

Edmund Woronowicz Warsaw University Białystok

Summary. The article includes theorems concerning properties of relations defined as a subset of the Cartesian product of two sets (mode Relation of *X*,*Y* where *X*,*Y* are sets). Some notions, introduced in [4] such as domain, codomain, field of a relation, composition of relations, image and inverse image of a set under a relation are redefined.

MML Identifier: RELSET_1.
WWW: http://mizar.org/JFM/Vol1/relset_1.html

The articles [2], [1], [3], and [4] provide the notation and terminology for this paper. We adopt the following convention: *A*, *B*, *X*, *X*₁, *Y*, *Y*₁, *Y*₂, *Z* denote sets and *a*, *x*, *y* denote sets. Let us consider *X*, *Y*. Relation between *X* and *Y* is defined by:

(Def. 1) It $\subseteq [:X, Y:]$.

Let us consider X, Y. We see that the relation between X and Y is a subset of [:X, Y:]. Let us consider X, Y. Note that every subset of [:X, Y:] is relation-like. In the sequel P, R denote relations between X and Y. One can prove the following propositions:

- (4)¹ If $A \subseteq R$, then A is a relation between X and Y.
- (6)² If $a \in R$, then there exist x, y such that $a = \langle x, y \rangle$ and $x \in X$ and $y \in Y$.
- (8)³ If $x \in X$ and $y \in Y$, then $\{\langle x, y \rangle\}$ is a relation between X and Y.
- (9) For every binary relation R such that dom $R \subseteq X$ holds R is a relation between X and rng R.
- (10) For every binary relation R such that $\operatorname{rng} R \subseteq Y$ holds R is a relation between dom R and Y.
- (11) For every binary relation R such that dom $R \subseteq X$ and rng $R \subseteq Y$ holds R is a relation between X and Y.
- (12) dom $R \subseteq X$ and rng $R \subseteq Y$.
- (13) If dom $R \subseteq X_1$, then *R* is a relation between X_1 and *Y*.
- (14) If $\operatorname{rng} R \subseteq Y_1$, then *R* is a relation between *X* and *Y*₁.
- (15) If $X \subseteq X_1$, then *R* is a relation between X_1 and *Y*.
- (16) If $Y \subseteq Y_1$, then *R* is a relation between *X* and *Y*₁.

¹ The propositions (1)–(3) have been removed.

 $^{^{2}}$ The proposition (5) has been removed.

³ The proposition (7) has been removed.

(17) If $X \subseteq X_1$ and $Y \subseteq Y_1$, then *R* is a relation between X_1 and Y_1 .

Let us consider X, Y, P, R. Then $P \cup R$ is a relation between X and Y. Then $P \cap R$ is a relation between X and Y. Then $P \setminus R$ is a relation between X and Y.

Let us consider X, Y, R. Then dom R is a subset of X. Then rng R is a subset of Y. The following propositions are true:

- (19)⁴ field $R \subseteq X \cup Y$.
- (22)⁵ For every x such that $x \in X$ there exists y such that $\langle x, y \rangle \in R$ iff dom R = X.
- (23) For every *y* such that $y \in Y$ there exists *x* such that $\langle x, y \rangle \in R$ iff rng R = Y.

Let us consider X, Y, R. Then R^{\sim} is a relation between Y and X.

Let us consider X, Y_1 , Y_2 , Z, let P be a relation between X and Y_1 , and let R be a relation between Y_2 and Z. Then $P \cdot R$ is a relation between X and Z.

Next we state several propositions:

- (24) $\operatorname{dom}(R^{\sim}) = \operatorname{rng} R$ and $\operatorname{rng}(R^{\sim}) = \operatorname{dom} R$.
- (25) \emptyset is a relation between *X* and *Y*.
- (26) If *R* is a relation between \emptyset and *Y*, then $R = \emptyset$.
- (27) If *R* is a relation between *X* and \emptyset , then $R = \emptyset$.
- (28) $\operatorname{id}_X \subseteq [:X, X:].$
- (29) id_X is a relation between X and X.
- (30) If $id_A \subseteq R$, then $A \subseteq dom R$ and $A \subseteq rng R$.
- (31) If $id_X \subseteq R$, then $X = \operatorname{dom} R$ and $X \subseteq \operatorname{rng} R$.
- (32) If $id_Y \subseteq R$, then $Y \subseteq dom R$ and Y = rng R.

Let us consider X, Y, R, A. Then $R \upharpoonright A$ is a relation between X and Y. Let us consider X, Y, B, R. Then $B \upharpoonright R$ is a relation between X and Y. Next we state four propositions:

- (33) $R \upharpoonright X_1$ is a relation between X_1 and Y.
- (34) If $X \subseteq X_1$, then $R \upharpoonright X_1 = R$.
- (35) $Y_1 \upharpoonright R$ is a relation between X and Y_1 .
- (36) If $Y \subseteq Y_1$, then $Y_1 \upharpoonright R = R$.

Let us consider X, Y, R, A. Then $R^{\circ}A$ is a subset of Y. Then $R^{-1}(A)$ is a subset of X. Next we state two propositions:

- $(38)^6$ $R^{\circ}X = \operatorname{rng} R$ and $R^{-1}(Y) = \operatorname{dom} R$.
- (39) $R^{\circ}R^{-1}(Y) = \operatorname{rng} R$ and $R^{-1}(R^{\circ}X) = \operatorname{dom} R$.

The scheme *Rel On Set Ex* deals with a set \mathcal{A} , a set \mathcal{B} , and a binary predicate \mathcal{P} , and states that: There exists a relation *R* between \mathcal{A} and \mathcal{B} such that for all *x*, *y* holds $\langle x, y \rangle \in R$ iff $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$

for all values of the parameters.

Let us consider *X*. A binary relation on *X* is a relation between *X* and *X*. In the sequel *R* is a binary relation on *X*. The following proposition is true

⁴ The proposition (18) has been removed.

⁵ The propositions (20) and (21) have been removed.

⁶ The proposition (37) has been removed.

 $(45)^7$ $R \cdot id_X = R$ and $id_X \cdot R = R$.

For simplicity, we adopt the following rules: D, D_1, D_2, E, F denote non empty sets, R denotes a relation between D and E, x denotes an element of D, and y denotes an element of E. We now state several propositions:

- (46) $\operatorname{id}_D \neq \emptyset$.
- (47) For every element x of D holds $x \in \text{dom } R$ iff there exists an element y of E such that $\langle x, y \rangle \in R$.
- (48) For every element y of E holds $y \in \operatorname{rng} R$ iff there exists an element x of D such that $\langle x, y \rangle \in R$.
- (49) For every element x of D such that $x \in \text{dom } R$ there exists an element y of E such that $y \in \text{rng } R$.
- (50) For every element y of E such that $y \in \operatorname{rng} R$ there exists an element x of D such that $x \in \operatorname{dom} R$.
- (51) Let *P* be a relation between *D* and *E*, *R* be a relation between *E* and *F*, *x* be an element of *D*, and *z* be an element of *F*. Then $\langle x, z \rangle \in P \cdot R$ if and only if there exists an element *y* of *E* such that $\langle x, y \rangle \in P$ and $\langle y, z \rangle \in R$.
- (52) $y \in R^{\circ}D_1$ iff there exists an element x of D such that $\langle x, y \rangle \in R$ and $x \in D_1$.
- (53) $x \in R^{-1}(D_2)$ iff there exists an element y of E such that $\langle x, y \rangle \in R$ and $y \in D_2$.

The scheme *Rel On Dom Ex* deals with non empty sets \mathcal{A} , \mathcal{B} and a binary predicate \mathcal{P} , and states that:

There exists a relation *R* between \mathcal{A} and \mathcal{B} such that for every element *x* of \mathcal{A} and for every element *y* of \mathcal{B} holds $\langle x, y \rangle \in R$ if and only if $\mathcal{P}[x, y]$

for all values of the parameters.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [3] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [4] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received April 14, 1989

Published January 2, 2004

⁷ The propositions (40)–(44) have been removed.