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The articlesl[6],5],8], 171, [1], [9], [3], [2], and([4] provide the notation and terminology for this
paper.
We use the following conventiom, k denote natural numbers,y, z, y1, y» denote sets, angd
denotes a finite sequence.
Let D be a set, lep be a partial function fronD to N, and letn be an element db. Thenp(n)
is a natural number.
In this article we present several logical schemes. The sclirenExdeals with a sefd and a
ternary predicate?, and states that:
There exists a functiofi such that doni = N and f(0) = 4 and for every element
nof N holds®[n, f(n), f(n+1)]
provided the parameters meet the following requirements:
e For every natural numberand for every set there exists a sgtsuch that?[n, x,y|,

and
e For every natural numberand for all sets, y1, y2 such thatP[n,x, y1] and®[n, X, y»]
holdsy; = y».

The schem&ecExDdeals with a non empty set, an elementB of 4, and a ternary predicate
P, and states that:
There exists a functiof from N into 4 such thatf (0) = B and for every elememt
of N holds®|n, f(n), f(n+1)]
provided the parameters have the following property:
e For every natural numberand for every elementof 4 there exists an elemenbf
A4 such thatP[n, x,y].
The schemé&ambdaRecEreals with a sef and a binary functoff yielding a set, and states
that:
There exists a functiofi such that doni = N and f(0) = 4 and for every element
nof N holdsf(n+1) = ¥ (n, f(n))
for all values of the parameters.
The schemdé.ambdaRecEx@eals with a non empty set, an elementB of 4, and a binary
functor ¥ yielding an element ofl, and states that:
There exists a functiof from N into 4 such thatf (0) = B and for every element
of Nholdsf(n+1) = F(n, f(n))
for all values of the parameters.
The schemé-inRecExdeals with a sefd, a natural numbef, and a ternary predicatg, and
states that:
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There exists a finite sequenpesuch that lep = B but p(1) = 4 or B = 0 but for
everyn such that < nandn < B holds2?[n, p(n), p(n+ 1)]
provided the parameters meet the following conditions:
e For every natural numbersuch that I< nandn < B and for every set there exists
a sety such thatP[n, x,y], and
e For every natural numbersuch that 1< n andn < 8 and for all set;, y1, y2 such
that?[n,x,y1] andP[n, X, y»] holdsy; = ys.
The schemé&inRecExDdeals with a non empty set, an elementB of 4, a natural numbec,
and a ternary predicat2, and states that:
There exists a finite sequenpeof elements of4 such that lep = C but p(1) = B
or C = 0 but for everyn such that I< nandn < ¢ holds®|n, p(n), p(n+ 1)]
provided the parameters have the following property:
e Letnbe a natural number. Supposehandn < C. Letx be an element ofl. Then
there exists an elemendf 4 such thatP[n, X, y|.
The schemé&egBinOpExieals with a finite sequence and a ternary predicatg, and states
that:
There existx and there exists a finite sequerneeuch tha = p(lenp) and lemp =
len4 andp(1) = A4(1) and for evenk such that I< k andk < len2 holds?[4(k+
1), p(k), p(k-+1)]
provided the following conditions are met:
e For allk, x such that 1< k andk < len4 there existy such thatP[4(k+ 1),X,Y],
and
e For allk, x, y1, Y2, zsuch that I< k andk < len4 andz= 4(k+ 1) andP[z, X, y1]
and?[z x,y.] holdsy; = y,.
The scheméambdaSeqBinOpEieals with a finite sequence&and a binary functoft yielding
a set, and states that:
There existx and there exists a finite sequerneeuch tha = p(lenp) and lemp =
len4 andp(1) = A4(1) and for everk such that K kandk < len holdsp(k+1) =
F(Ak+1),p(k))
for all values of the parameters.
The schemdrecUndeals with a sefd, functionsB, C, and a ternary predicaté, and states
that:
B=C
provided the parameters satisfy the following conditions:
e domB = N andB(0) = 4 and for everyn holds?[n, B(n), B(n+1)],
e dom(C =N and((0) = 4 and for everyn holds®[n, C(n), C(n+1)], and
e For everyn and for all sets, y1, y2 such thatP[n,x, y1] andP[n, X, y»] holdsy; = y.
The schem&ecUnDdeals with a non empty sét, an elementB of 4, functionsC, D from N
into A4, and a ternary predicat2, and states that:
C=9D
provided the parameters meet the following requirements:
e ((0) = B and for everyn holds®[n, C(n), C(n+ 1)],
e D(0) = B and for everyn holds?[n, D(n), D(n+1)], and
e For every natural number and for all elements, yi, y» of 4 such that?[n,x, y1]
and?n,x,y,] holdsy; = y».
The scheméambdaRecUleals with a sefd, a binary functorf yielding a set, and functions
B, C, and states that:
B=C_C
provided the parameters meet the following conditions:
e domB = N andB(0) = 4 and for everyn holdsB(n+1) = #(n,B(n)), and
e dom(C =Nand((0) = 4 and for everyn holdsC(n+ 1) = F(n,C(n)).
The scheméambdaRecUn@eals with a non empty set, an elementB of 4, a binary functor
F yielding an element off, and functiong”, D from N into 4, and states that:
C=9D
provided the following conditions are satisfied:
e ((0) = B and for everyn holdsC(n+1) = ¥ (n,C(n)), and
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e D(0) = B and for everyn holdsD(n+1) = F(n,D(n)).
The scheméambdaRecUnHeals with a real numbet, a binary functorf yielding a set, and
functionsB, C from N into R, and states that:
B=C
provided the parameters meet the following conditions:
e B(0) = 4 and for everyn holdsB(n+1) = ¥ (n,B(n)), and
e ((0) = 4 and for everyn holdsC(n+1) = ¥ (n, C(n)).
The schemd-inRecUndeals with a sefd, a natural numbe, finite sequenceg’, D, and a
ternary predicate?, and states that:
C=97
provided the parameters meet the following requirements:
e For everyn such that 1< n andn < ‘B and for all sets, yi, y» such that?[n, x, y1]
and?[n,x,y»] holdsy; = y»,
e lenC =B butC(1) = 4 or B =0 but for everyn such that < n andn < B holds
P[n,C(n),C(n+1)], and
e lenD = B butD(1) = 4 or B =0 but for everyn such that 1< n andn < B holds
P[n, D(n), D(n+1)].
The schem&inRecUnDdeals with a non empty set, an elementB of 4, a natural numbe¢,
finite sequence®, £ of elements of4, and a ternary predicat®, and states that:
D=E
provided the parameters meet the following requirements:
e For everyn such that I< nandn < C and for all elements, yi, y» of 4 such that
P[n,x,y1] and?[n, X, y»] holdsy; = y»,
e lenD = C butD(1) = B or C = 0 but for everyn such that 1< nandn < C holds
P[n,D(n), D(n+1)], and
e lenE = C butE(1) = B or C = 0 but for everyn such that 1< nandn < ¢ holds
P[n, £(n), £(n+1)].
The schem&eqBinOpUrdeals with a finite sequencg, setsB, C, and a ternary predicatg,
and states that:
B=C
provided the following conditions are satisfied:
e Forallk, x, y1, y2, zsuch that I< k andk < len4 andz= 4(k+ 1) andP[z X, y1]
and?[z x,y.] holdsy; =y,
e There exists a finite sequenpesuch thatB = p(lenp) and lerp = len4 andp(1) =
A4(1) and for evenk such that K< k andk < len4 holds?[4(k+ 1), p(k), p(k+ 1)],
and
e There exists a finite sequenpesuch thaiC = p(lenp) and lerp=1lenA4 andp(1) =
A4(1) and for evenk such that I< k andk < len4 holds?[A4(k+ 1), p(k), p(k+ 1)].
The scheméambdaSegBinOpUdeals with a finite sequenc®, a binary functorf yielding a
set, and set®, C, and states that:
B=C
provided the parameters meet the following conditions:
e There exists a finite sequenpeuch that3 = p(lenp) and lerp =len4 andp(1)

+

A4(1) and for everyk such that 1< k andk < len4 holds p(k+ 1) = F(A4(k
1), p(k)), and

e There exists a finite sequenpeuch thatC = p(lenp) and lerp =len4 andp(1) =
A(1) and for everyk such that 1< k andk < len4 holds p(k+1) = F(A(k+

1), p(k).
The schem®efRedeals with a sefl, a natural numbeB, and a ternary predicat® and states
that:
(i) There exists a sef and there exists a functiof such thaty = f(3) and
domf =N andf(0) = 4 and for everyn holds®|n, f(n), f(n+1)], and
(i) for all setsyi, y2 such that there exists a functidnsuch thaty; = f(8) and
domf = Nandf(0) = 4 and for everyn holds?n, f(n), f(n+ 1)] and there exists
afunctionf such that, = f(8) and domf = N and f (0) = 4 and for everyn holds
P[n, f(n), f(n+1)] holdsy; = y»
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provided the following conditions are satisfied:

e For alln, x there existy such that?[n, x,y|, and

e Foralln, x, y1, y2 such thatP[n,x,y1] andP[n, X, y2] holdsy; = y».

The schemdé.ambdaDefRedeals with a se#, a natural numbefB, and a binary functorF
yielding a set, and states that:

(i) There exists a sef and there exists a functioh such thaty = f(8) and
domf =N andf(0) = 4 and for everyn holdsf (n+1) = #(n, f(n)), and

(i) for all setsys, y» such that there exists a functidnsuch thaty; = f(B) and
domf = N and f(0) = 4 and for everyn holds f(n+ 1) = #(n, f(n)) and there
exists a functionf such that, = f(8) and domf = N and f(0) = 4 and for every
nholdsf(n+1) = #(n, f(n)) holdsy, =y»

for all values of the parameters.
The schemé&efRecDdeals with a non empty set, an elementB of A4, a natural number,
and a ternary predicat®, and states that:

(i) There exists an elementof 4 and there exists a functiohfrom N into 4
such thay = f(C) and f (0) = B and for everyn holds®|n, f(n), f(n+1)], and

(i) for all elementsys, y» of 4 such that there exists a functidnfrom N into
4 such thay; = f(C) and f(0) = B and for everyn holds?[n, f(n), f(n+1)] and
there exists a functior from N into 4 such thaty, = f(C) and f(0) = B and for
everyn holds®[n, f(n), f(n+ 1)] holdsy; = y»

provided the following conditions are met:
e For every natural numberand for every elementof 4 there exists an elemenbf
A4 such thatP[n,x,y], and
e For every natural number and for all elements;, yi, y2 of 4 such that?[n,x, y1]
and?®[n,x,y»] holdsy; = y,.
The schemd.ambdaDefRecRieals with a non empty set, an elementB of 4, a natural
numberC, and a binary functoff yielding an element ofd, and states that:

(i) There exists an elemegtof 4 and there exists a functiohfrom N into 4
such thaty = f(C) and f(0) = B and for every natural numberholds f(n+ 1) =
F(n,f(n)), and
(iiy for all elementsy,, y» of 4 such that there exists a functidrfrom N into 2
such thaty; = f(C) and f(0) = B and for every natural numberholds f(n+1) =
F(n,f(n)) and there exists a functiof from N into 4 such thaty, = f(C) and
f(0) = B and for every natural numberholds f (n+1) = F(n, f(n)) holdsy; =y»

for all values of the parameters.
The schem&eqBinOpDetleals with a finite sequence and a ternary predicatg, and states
that:

(i) There existsx and there exists a finite sequenzsuch thatx = p(lenp) and
lenp =len4 andp(1) = A4(1) and for everyk such that I< k andk < len4 holds
P[A(k+ 1), p(k), p(k+1)], and
(i) for all x, y such that there exists a finite sequepcich thak = p(lenp) and
lenp =lenA4 andp(1) = A(1) and for everyk such that 1< k andk < len4 holds
P[A(k+1), p(k), p(k+ 1)] and there exists a finite sequernzsuch thay = p(lenp)
and lenp = len4 and p(1) = 4(1) and for everyk such that 1< k andk < len4
holds®[4(k+ 1), p(k), p(k+ 1)] holdsx =y

provided the following conditions are satisfied:
e Forallk, y such that K k andk < len4 there existz such that?[4(k+1),y, 7], and
e Forallk, X, y1, y2, zsuch that I< k andk < len4 andz= 4(k+ 1) andP[z X, 1]
and?[z x,y.] holdsy; = y».
The scheméambdaSeqBinOpDeleals with a finite sequence and a binary functof yield-
ing a set, and states that:

(i) There existx and there exists a finite sequengsuch thak = p(lenp) and
lenp =len4 andp(1) = A(1) and for everyk such that 1< k andk < len4 holds
p(k+1) = 7 (A(k+1), p(k))., and
(i) for all x, y such that there exists a finite sequemcsuch thatx = p(lenp)
and lernp = len4 and p(1) = 4(1) and for everyk such that 1< k andk < len4
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holds p(k+ 1) = F(4(k+ 1), p(k)) and there exists a finite sequengesuch that
y = p(lenp) and lerp = len2 andp(1) = 4(1) and for everyk such that 1< k and
k <len4 holdsp(k+1) = F(A4(k+1),p(k)) holdsx =y

for all values of the parameters.
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