Recursive Definitions

Krzysztof Hryniewiecki Warsaw University

Summary. The text contains some schemes which allow elimination of definitions by recursion.

MML Identifier: RECDEF_1.

WWW: http://mizar.org/JFM/Vol1/recdef_1.html

The articles [6], [5], [8], [7], [1], [9], [3], [2], and [4] provide the notation and terminology for this paper.

We use the following convention: n, k denote natural numbers, x, y, z, y_1, y_2 denote sets, and p denotes a finite sequence.

Let *D* be a set, let *p* be a partial function from *D* to \mathbb{N} , and let *n* be an element of *D*. Then p(n) is a natural number.

In this article we present several logical schemes. The scheme RecEx deals with a set \mathcal{A} and a ternary predicate \mathcal{P} , and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the parameters meet the following requirements:

- For every natural number *n* and for every set *x* there exists a set *y* such that $\mathcal{P}[n, x, y]$, and
- For every natural number *n* and for all sets *x*, y_1 , y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *RecExD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the parameters have the following property:

• For every natural number *n* and for every element *x* of *A* there exists an element *y* of *A* such that $\mathcal{P}[n, x, y]$.

The scheme *LambdaRecEx* deals with a set \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every element n of \mathbb{N} holds $f(n+1) = \mathcal{F}(n, f(n))$

for all values of the parameters.

The scheme *LambdaRecExD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a binary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every element n of \mathbb{N} holds $f(n+1) = \mathcal{F}(n, f(n))$

for all values of the parameters.

The scheme *FinRecEx* deals with a set \mathcal{A} , a natural number \mathcal{B} , and a ternary predicate \mathcal{P} , and states that:

There exists a finite sequence p such that $\text{len } p = \mathcal{B}$ but $p(1) = \mathcal{A}$ or $\mathcal{B} = 0$ but for every n such that $1 \le n$ and $n < \mathcal{B}$ holds $\mathcal{P}[n, p(n), p(n+1)]$

provided the parameters meet the following conditions:

- For every natural number *n* such that $1 \le n$ and $n < \mathcal{B}$ and for every set *x* there exists a set *y* such that $\mathcal{P}[n, x, y]$, and
- For every natural number *n* such that $1 \le n$ and $n < \mathcal{B}$ and for all sets *x*, y_1 , y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *FinRecExD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

There exists a finite sequence *p* of elements of \mathcal{A} such that len $p = \mathcal{C}$ but $p(1) = \mathcal{B}$ or $\mathcal{C} = 0$ but for every *n* such that $1 \le n$ and $n < \mathcal{C}$ holds $\mathcal{P}[n, p(n), p(n+1)]$

provided the parameters have the following property:

• Let *n* be a natural number. Suppose $1 \le n$ and n < C. Let *x* be an element of \mathcal{A} . Then there exists an element *y* of \mathcal{A} such that $\mathcal{P}[n, x, y]$.

The scheme SeqBinOpEx deals with a finite sequence \mathcal{A} and a ternary predicate \mathcal{P} , and states that:

There exists *x* and there exists a finite sequence *p* such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for every *k* such that $1 \le k$ and $k < \ln A$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$

provided the following conditions are met:

- For all k, x such that $1 \le k$ and $k < \text{len } \mathcal{A}$ there exists y such that $\mathcal{P}[\mathcal{A}(k+1), x, y]$, and
- For all k, x, y_1, y_2, z such that $1 \le k$ and $k < \text{len } \mathcal{A}$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$ and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$.

The scheme *LambdaSeqBinOpEx* deals with a finite sequence \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:

There exists *x* and there exists a finite sequence *p* such that $x = p(\ln p)$ and $\ln p = \ln \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every *k* such that $1 \le k$ and $k < \ln \mathcal{A}$ holds $p(k+1) = \mathcal{A}(\mathcal{A}(k+1), p(k))$

 $\mathcal{F}(\mathcal{A}(k+1),p(k))$

for all values of the parameters.

The scheme RecUn deals with a set \mathcal{A} , functions \mathcal{B} , \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters satisfy the following conditions:

- dom $\mathcal{B} = \mathbb{N}$ and $\mathcal{B}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{P}[n, \mathcal{B}(n), \mathcal{B}(n+1)]$,
- dom $C = \mathbb{N}$ and $C(0) = \mathcal{A}$ and for every *n* holds $\mathcal{P}[n, C(n), C(n+1)]$, and
- For every *n* and for all sets *x*, y_1 , y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *RecUnD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , functions \mathcal{C} , \mathcal{D} from \mathbb{N} into \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

 $\mathcal{C} = \mathcal{D}$

provided the parameters meet the following requirements:

- $C(0) = \mathcal{B}$ and for every *n* holds $\mathcal{P}[n, C(n), C(n+1)]$,
- $\mathcal{D}(0) = \mathcal{B}$ and for every *n* holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$, and
- For every natural number *n* and for all elements *x*, y_1 , y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *LambdaRecUn* deals with a set \mathcal{A} , a binary functor \mathcal{F} yielding a set, and functions \mathcal{B} , \mathcal{C} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters meet the following conditions:

- dom $\mathcal{B} = \mathbb{N}$ and $\mathcal{B}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{B}(n+1) = \mathcal{F}(n, \mathcal{B}(n))$, and
- dom $\mathcal{C} = \mathbb{N}$ and $\mathcal{C}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{C}(n+1) = \mathcal{F}(n, \mathcal{C}(n))$.

The scheme *LambdaRecUnD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a binary functor

 \mathcal{F} yielding an element of \mathcal{A} , and functions \mathcal{C} , \mathcal{D} from \mathbb{N} into \mathcal{A} , and states that: $\mathcal{C} = \mathcal{D}$

provided the following conditions are satisfied:

• $C(0) = \mathcal{B}$ and for every *n* holds $C(n+1) = \mathcal{F}(n, C(n))$, and

• $\mathcal{D}(0) = \mathcal{B}$ and for every *n* holds $\mathcal{D}(n+1) = \mathcal{F}(n, \mathcal{D}(n))$.

The scheme *LambdaRecUnR* deals with a real number \mathcal{A} , a binary functor \mathcal{F} yielding a set, and functions \mathcal{B} , \mathcal{C} from \mathbb{N} into \mathbb{R} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters meet the following conditions:

- $\mathcal{B}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{B}(n+1) = \mathcal{F}(n, \mathcal{B}(n))$, and
- $C(0) = \mathcal{A}$ and for every *n* holds $C(n+1) = \mathcal{F}(n, C(n))$.

The scheme *FinRecUn* deals with a set \mathcal{A} , a natural number \mathcal{B} , finite sequences \mathcal{C} , \mathcal{D} , and a ternary predicate \mathcal{P} , and states that:

 $\mathcal{C} = \mathcal{D}$

provided the parameters meet the following requirements:

- For every *n* such that $1 \le n$ and $n < \mathcal{B}$ and for all sets *x*, y_1 , y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len $C = \mathcal{B}$ but $C(1) = \mathcal{A}$ or $\mathcal{B} = 0$ but for every *n* such that $1 \le n$ and $n < \mathcal{B}$ holds $\mathcal{P}[n, C(n), C(n+1)]$, and
- len $\mathcal{D} = \mathcal{B}$ but $\mathcal{D}(1) = \mathcal{A}$ or $\mathcal{B} = 0$ but for every *n* such that $1 \le n$ and $n < \mathcal{B}$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.

The scheme *FinRecUnD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , finite sequences \mathcal{D} , \mathcal{E} of elements of \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

 $\mathcal{D}=\mathcal{E}$

provided the parameters meet the following requirements:

- For every *n* such that $1 \le n$ and n < C and for all elements *x*, y_1 , y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len $\mathcal{D} = \mathcal{C}$ but $\mathcal{D}(1) = \mathcal{B}$ or $\mathcal{C} = 0$ but for every *n* such that $1 \le n$ and $n < \mathcal{C}$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$, and
- len $\mathcal{E} = \mathcal{C}$ but $\mathcal{E}(1) = \mathcal{B}$ or $\mathcal{C} = 0$ but for every *n* such that $1 \le n$ and $n < \mathcal{C}$ holds $\mathcal{P}[n, \mathcal{E}(n), \mathcal{E}(n+1)]$.

The scheme SeqBinOpUn deals with a finite sequence \mathcal{A} , sets \mathcal{B} , \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the following conditions are satisfied:

- For all k, x, y_1 , y_2 , z such that $1 \le k$ and $k < \operatorname{len} \mathcal{A}$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$ and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$,
- There exists a finite sequence *p* such that $\mathcal{B} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every *k* such that $1 \le k$ and $k < \operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$, and
- There exists a finite sequence *p* such that $C = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every *k* such that $1 \le k$ and $k < \operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.

The scheme *LambdaSeqBinOpUn* deals with a finite sequence \mathcal{A} , a binary functor \mathcal{F} yielding a set, and sets \mathcal{B} , \mathcal{C} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters meet the following conditions:

- There exists a finite sequence p such that $\mathcal{B} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k < \operatorname{len} \mathcal{A}$ holds $p(k+1) = \mathcal{F}(\mathcal{A}(k+1), p(k))$, and
- There exists a finite sequence p such that $C = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k < \operatorname{len} \mathcal{A}$ holds $p(k+1) = \mathcal{F}(\mathcal{A}(k+1), p(k))$.

The scheme *DefRec* deals with a set \mathcal{A} , a natural number \mathcal{B} , and a ternary predicate \mathcal{P} , and states that:

(i) There exists a set y and there exists a function f such that $y = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$, and (ii) for all sets y_1, y_2 such that there exists a function f such that $y_1 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists a function f such that $y_2 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_1 = y_2$ provided the following conditions are satisfied:

- For all *n*, *x* there exists *y* such that $\mathcal{P}[n, x, y]$, and
- For all n, x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *LambdaDefRec* deals with a set \mathcal{A} , a natural number \mathcal{B} , and a binary functor \mathcal{F} yielding a set, and states that:

(i) There exists a set y and there exists a function f such that $y = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $f(n+1) = \mathcal{F}(n, f(n))$, and (ii) for all sets y_1, y_2 such that there exists a function f such that $y_1 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $f(n+1) = \mathcal{F}(n, f(n))$ and there exists a function f such that $y_2 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $f(n+1) = \mathcal{F}(n, f(n))$ holds $y_1 = y_2$

for all values of the parameters.

The scheme DefRecD deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

(i) There exists an element y of \mathcal{A} and there exists a function f from \mathbb{N} into \mathcal{A} such that $y = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$, and (ii) for all elements y_1, y_2 of \mathcal{A} such that there exists a function f from \mathbb{N} into \mathcal{A} such that $y_1 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists a function f from \mathbb{N} into \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists a function f from \mathbb{N} into \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_1 = y_2$

provided the following conditions are met:

- For every natural number *n* and for every element *x* of *A* there exists an element *y* of *A* such that *P*[*n*,*x*,*y*], and
- For every natural number *n* and for all elements *x*, y_1 , y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme *LambdaDefRecD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a binary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

(i) There exists an element y of \mathcal{A} and there exists a function f from \mathbb{N} into \mathcal{A} such that $y = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n holds $f(n+1) = \mathcal{F}(n, f(n))$, and

(ii) for all elements y_1 , y_2 of \mathcal{A} such that there exists a function f from \mathbb{N} into \mathcal{A} such that $y_1 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n holds $f(n+1) = \mathcal{F}(n, f(n))$ and there exists a function f from \mathbb{N} into \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n holds $f(n+1) = \mathcal{F}(n, f(n))$ holds $y_1 = y_2$ for all values of the parameters.

The scheme *SeqBinOpDef* deals with a finite sequence \mathcal{A} and a ternary predicate \mathcal{P} , and states that:

(i) There exists x and there exists a finite sequence p such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for every k such that $1 \le k$ and $k < \ln A$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$, and

(ii) for all x, y such that there exists a finite sequence p such that $x = p(\ln p)$ and $\ln p = \ln \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k < \ln \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ and there exists a finite sequence p such that $y = p(\ln p)$ and $\ln p = \ln \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k < \ln \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ holds x = y

provided the following conditions are satisfied:

• For all k, y such that $1 \le k$ and $k < \text{len } \mathcal{A}$ there exists z such that $\mathcal{P}[\mathcal{A}(k+1), y, z]$, and

• For all k, x, y_1 , y_2 , z such that $1 \le k$ and $k < \text{len } \mathcal{A}$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$

and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$.

The scheme *LambdaSeqBinOpDef* deals with a finite sequence \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:

(i) There exists x and there exists a finite sequence p such that $x = p(\ln p)$ and $\ln p = \ln \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k < \ln \mathcal{A}$ holds $p(k+1) = \mathcal{F}(\mathcal{A}(k+1), p(k))$, and

(ii) for all x, y such that there exists a finite sequence p such that $x = p(\ln p)$ and $\ln p = \ln \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k < \ln \mathcal{A}$ holds $p(k+1) = \mathcal{F}(\mathcal{A}(k+1), p(k))$ and there exists a finite sequence p such that $y = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k < \operatorname{len} \mathcal{A}$ holds $p(k+1) = \mathcal{F}(\mathcal{A}(k+1), p(k))$ holds x = y

for all values of the parameters.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received September 4, 1989

Published January 2, 2004