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Summary. The text contains some schemes which allow elimination of definitions by
recursion.
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The articles [6], [5], [8], [7], [1], [9], [3], [2], and [4] provide the notation and terminology for this
paper.

We use the following convention:n, k denote natural numbers,x, y, z, y1, y2 denote sets, andp
denotes a finite sequence.

Let D be a set, letp be a partial function fromD to N, and letn be an element ofD. Thenp(n)
is a natural number.

In this article we present several logical schemes. The schemeRecExdeals with a setA and a
ternary predicateP , and states that:

There exists a functionf such that domf = N and f (0) = A and for every element
n of N holdsP [n, f (n), f (n+1)]

provided the parameters meet the following requirements:
• For every natural numbern and for every setx there exists a sety such thatP [n,x,y],

and
• For every natural numbern and for all setsx, y1, y2 such thatP [n,x,y1] andP [n,x,y2]

holdsy1 = y2.
The schemeRecExDdeals with a non empty setA , an elementB of A , and a ternary predicate

P , and states that:
There exists a functionf from N into A such thatf (0) = B and for every elementn
of N holdsP [n, f (n), f (n+1)]

provided the parameters have the following property:
• For every natural numbern and for every elementx of A there exists an elementy of

A such thatP [n,x,y].
The schemeLambdaRecExdeals with a setA and a binary functorF yielding a set, and states

that:
There exists a functionf such that domf = N and f (0) = A and for every element
n of N holds f (n+1) = F (n, f (n))

for all values of the parameters.
The schemeLambdaRecExDdeals with a non empty setA , an elementB of A , and a binary

functorF yielding an element ofA , and states that:
There exists a functionf from N into A such thatf (0) = B and for every elementn
of N holds f (n+1) = F (n, f (n))

for all values of the parameters.
The schemeFinRecExdeals with a setA , a natural numberB, and a ternary predicateP , and

states that:
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There exists a finite sequencep such that lenp = B but p(1) = A or B = 0 but for
everyn such that 1≤ n andn < B holdsP [n, p(n), p(n+1)]

provided the parameters meet the following conditions:
• For every natural numbern such that 1≤ n andn< B and for every setx there exists

a sety such thatP [n,x,y], and
• For every natural numbern such that 1≤ n andn < B and for all setsx, y1, y2 such

thatP [n,x,y1] andP [n,x,y2] holdsy1 = y2.
The schemeFinRecExDdeals with a non empty setA , an elementB of A , a natural numberC ,

and a ternary predicateP , and states that:
There exists a finite sequencep of elements ofA such that lenp = C but p(1) = B
or C = 0 but for everyn such that 1≤ n andn < C holdsP [n, p(n), p(n+1)]

provided the parameters have the following property:
• Let n be a natural number. Suppose 1≤ n andn< C . Let x be an element ofA . Then

there exists an elementy of A such thatP [n,x,y].
The schemeSeqBinOpExdeals with a finite sequenceA and a ternary predicateP , and states

that:
There existsx and there exists a finite sequencep such thatx = p(lenp) and lenp =
lenA andp(1) = A(1) and for everyk such that 1≤ k andk < lenA holdsP [A(k+
1), p(k), p(k+1)]

provided the following conditions are met:
• For all k, x such that 1≤ k andk < lenA there existsy such thatP [A(k+ 1),x,y],

and
• For all k, x, y1, y2, z such that 1≤ k andk < lenA andz= A(k+ 1) andP [z,x,y1]

andP [z,x,y2] holdsy1 = y2.
The schemeLambdaSeqBinOpExdeals with a finite sequenceA and a binary functorF yielding

a set, and states that:
There existsx and there exists a finite sequencep such thatx = p(lenp) and lenp =
lenA andp(1) = A(1) and for everyk such that 1≤ k andk< lenA holdsp(k+1) =
F (A(k+1), p(k))

for all values of the parameters.
The schemeRecUndeals with a setA , functionsB, C , and a ternary predicateP , and states

that:
B = C

provided the parameters satisfy the following conditions:
• domB = N andB(0) = A and for everyn holdsP [n,B(n),B(n+1)],
• domC = N andC (0) = A and for everyn holdsP [n,C (n),C (n+1)], and
• For everyn and for all setsx, y1, y2 such thatP [n,x,y1] andP [n,x,y2] holdsy1 = y2.

The schemeRecUnDdeals with a non empty setA , an elementB of A , functionsC , D from N
into A , and a ternary predicateP , and states that:

C = D
provided the parameters meet the following requirements:

• C (0) = B and for everyn holdsP [n,C (n),C (n+1)],
• D(0) = B and for everyn holdsP [n,D(n),D(n+1)], and
• For every natural numbern and for all elementsx, y1, y2 of A such thatP [n,x,y1]

andP [n,x,y2] holdsy1 = y2.
The schemeLambdaRecUndeals with a setA , a binary functorF yielding a set, and functions

B, C , and states that:
B = C

provided the parameters meet the following conditions:
• domB = N andB(0) = A and for everyn holdsB(n+1) = F (n,B(n)), and
• domC = N andC (0) = A and for everyn holdsC (n+1) = F (n,C (n)).

The schemeLambdaRecUnDdeals with a non empty setA , an elementB of A , a binary functor
F yielding an element ofA , and functionsC , D from N into A , and states that:

C = D
provided the following conditions are satisfied:

• C (0) = B and for everyn holdsC (n+1) = F (n,C (n)), and
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• D(0) = B and for everyn holdsD(n+1) = F (n,D(n)).
The schemeLambdaRecUnRdeals with a real numberA , a binary functorF yielding a set, and

functionsB, C from N into R, and states that:
B = C

provided the parameters meet the following conditions:
• B(0) = A and for everyn holdsB(n+1) = F (n,B(n)), and
• C (0) = A and for everyn holdsC (n+1) = F (n,C (n)).

The schemeFinRecUndeals with a setA , a natural numberB, finite sequencesC , D, and a
ternary predicateP , and states that:

C = D
provided the parameters meet the following requirements:

• For everyn such that 1≤ n andn < B and for all setsx, y1, y2 such thatP [n,x,y1]
andP [n,x,y2] holdsy1 = y2,

• lenC = B but C (1) = A or B = 0 but for everyn such that 1≤ n andn < B holds
P [n,C (n),C (n+1)], and

• lenD = B but D(1) = A or B = 0 but for everyn such that 1≤ n andn < B holds
P [n,D(n),D(n+1)].

The schemeFinRecUnDdeals with a non empty setA , an elementB of A , a natural numberC ,
finite sequencesD, E of elements ofA , and a ternary predicateP , and states that:

D = E
provided the parameters meet the following requirements:

• For everyn such that 1≤ n andn < C and for all elementsx, y1, y2 of A such that
P [n,x,y1] andP [n,x,y2] holdsy1 = y2,

• lenD = C but D(1) = B or C = 0 but for everyn such that 1≤ n andn < C holds
P [n,D(n),D(n+1)], and

• lenE = C but E(1) = B or C = 0 but for everyn such that 1≤ n andn < C holds
P [n,E(n),E(n+1)].

The schemeSeqBinOpUndeals with a finite sequenceA , setsB, C , and a ternary predicateP ,
and states that:

B = C
provided the following conditions are satisfied:

• For all k, x, y1, y2, z such that 1≤ k andk < lenA andz= A(k+ 1) andP [z,x,y1]
andP [z,x,y2] holdsy1 = y2,

• There exists a finite sequencep such thatB = p(lenp) and lenp= lenA andp(1) =
A(1) and for everyk such that 1≤ k andk < lenA holdsP [A(k+1), p(k), p(k+1)],
and

• There exists a finite sequencep such thatC = p(lenp) and lenp= lenA andp(1) =
A(1) and for everyk such that 1≤ k andk < lenA holdsP [A(k+1), p(k), p(k+1)].

The schemeLambdaSeqBinOpUndeals with a finite sequenceA , a binary functorF yielding a
set, and setsB, C , and states that:

B = C
provided the parameters meet the following conditions:

• There exists a finite sequencep such thatB = p(lenp) and lenp= lenA andp(1) =
A(1) and for everyk such that 1≤ k and k < lenA holds p(k + 1) = F (A(k +
1), p(k)), and

• There exists a finite sequencep such thatC = p(lenp) and lenp= lenA andp(1) =
A(1) and for everyk such that 1≤ k and k < lenA holds p(k + 1) = F (A(k +
1), p(k)).

The schemeDefRecdeals with a setA , a natural numberB, and a ternary predicateP , and states
that:

(i) There exists a sety and there exists a functionf such thaty = f (B) and
dom f = N and f (0) = A and for everyn holdsP [n, f (n), f (n+1)], and
(ii) for all setsy1, y2 such that there exists a functionf such thaty1 = f (B) and

dom f = N and f (0) = A and for everyn holdsP [n, f (n), f (n+1)] and there exists
a function f such thaty2 = f (B) and domf = N and f (0) = A and for everyn holds
P [n, f (n), f (n+1)] holdsy1 = y2
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provided the following conditions are satisfied:
• For alln, x there existsy such thatP [n,x,y], and
• For alln, x, y1, y2 such thatP [n,x,y1] andP [n,x,y2] holdsy1 = y2.

The schemeLambdaDefRecdeals with a setA , a natural numberB, and a binary functorF
yielding a set, and states that:

(i) There exists a sety and there exists a functionf such thaty = f (B) and
dom f = N and f (0) = A and for everyn holds f (n+1) = F (n, f (n)), and
(ii) for all setsy1, y2 such that there exists a functionf such thaty1 = f (B) and

dom f = N and f (0) = A and for everyn holds f (n+ 1) = F (n, f (n)) and there
exists a functionf such thaty2 = f (B) and domf = N and f (0) = A and for every
n holds f (n+1) = F (n, f (n)) holdsy1 = y2

for all values of the parameters.
The schemeDefRecDdeals with a non empty setA , an elementB of A , a natural numberC ,

and a ternary predicateP , and states that:
(i) There exists an elementy of A and there exists a functionf from N into A

such thaty = f (C ) and f (0) = B and for everyn holdsP [n, f (n), f (n+1)], and
(ii) for all elementsy1, y2 of A such that there exists a functionf from N into

A such thaty1 = f (C ) and f (0) = B and for everyn holdsP [n, f (n), f (n+1)] and
there exists a functionf from N into A such thaty2 = f (C ) and f (0) = B and for
everyn holdsP [n, f (n), f (n+1)] holdsy1 = y2

provided the following conditions are met:
• For every natural numbern and for every elementx of A there exists an elementy of

A such thatP [n,x,y], and
• For every natural numbern and for all elementsx, y1, y2 of A such thatP [n,x,y1]

andP [n,x,y2] holdsy1 = y2.
The schemeLambdaDefRecDdeals with a non empty setA , an elementB of A , a natural

numberC , and a binary functorF yielding an element ofA , and states that:
(i) There exists an elementy of A and there exists a functionf from N into A

such thaty = f (C ) and f (0) = B and for every natural numbern holds f (n+1) =
F (n, f (n)), and
(ii) for all elementsy1, y2 of A such that there exists a functionf from N into A

such thaty1 = f (C ) and f (0) = B and for every natural numbern holds f (n+1) =
F (n, f (n)) and there exists a functionf from N into A such thaty2 = f (C ) and
f (0) = B and for every natural numbern holds f (n+1) = F (n, f (n)) holdsy1 = y2

for all values of the parameters.
The schemeSeqBinOpDefdeals with a finite sequenceA and a ternary predicateP , and states

that:
(i) There existsx and there exists a finite sequencep such thatx = p(lenp) and

lenp = lenA andp(1) = A(1) and for everyk such that 1≤ k andk < lenA holds
P [A(k+1), p(k), p(k+1)], and
(ii) for all x, y such that there exists a finite sequencep such thatx = p(lenp) and

lenp = lenA andp(1) = A(1) and for everyk such that 1≤ k andk < lenA holds
P [A(k+1), p(k), p(k+1)] and there exists a finite sequencep such thaty= p(lenp)
and lenp = lenA and p(1) = A(1) and for everyk such that 1≤ k andk < lenA
holdsP [A(k+1), p(k), p(k+1)] holdsx = y

provided the following conditions are satisfied:
• For allk, y such that 1≤ k andk < lenA there existszsuch thatP [A(k+1),y,z], and
• For all k, x, y1, y2, z such that 1≤ k andk < lenA andz= A(k+ 1) andP [z,x,y1]

andP [z,x,y2] holdsy1 = y2.
The schemeLambdaSeqBinOpDefdeals with a finite sequenceA and a binary functorF yield-

ing a set, and states that:
(i) There existsx and there exists a finite sequencep such thatx = p(lenp) and

lenp = lenA andp(1) = A(1) and for everyk such that 1≤ k andk < lenA holds
p(k+1) = F (A(k+1), p(k)), and
(ii) for all x, y such that there exists a finite sequencep such thatx = p(lenp)

and lenp = lenA and p(1) = A(1) and for everyk such that 1≤ k andk < lenA
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holds p(k+ 1) = F (A(k+ 1), p(k)) and there exists a finite sequencep such that
y = p(lenp) and lenp = lenA andp(1) = A(1) and for everyk such that 1≤ k and
k < lenA holdsp(k+1) = F (A(k+1), p(k)) holdsx = y

for all values of the parameters.
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[5] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/zfmisc_
1.html.

[6] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[7] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[8] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[9] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received September 4, 1989

Published January 2, 2004

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	recursive definitions By krzysztof hryniewiecki

