Recursive Definitions

Krzysztof Hryniewiecki
Warsaw University

Abstract

Summary. The text contains some schemes which allow elimination of definitions by recursion.

MML Identifier: RECDEF_1.
WWW:http://mizar.org/JFM/Voll/recdef_1.html

The articles [6], [5], [8], [7], [1], [9], [3], [2], and [4] provide the notation and terminology for this paper.

We use the following convention: n, k denote natural numbers, x, y, z, y_{1}, y_{2} denote sets, and p denotes a finite sequence.

Let D be a set, let p be a partial function from D to \mathbb{N}, and let n be an element of D. Then $p(n)$ is a natural number.

In this article we present several logical schemes. The scheme $\operatorname{Rec} E x$ deals with a set \mathcal{A} and a ternary predicate \mathcal{P}, and states that:

There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every element n of \mathbb{N} holds $\mathscr{P}[n, f(n), f(n+1)]$
provided the parameters meet the following requirements:

- For every natural number n and for every set x there exists a set y such that $\mathcal{P}[n, x, y]$, and
- For every natural number n and for all sets x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathscr{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme $\operatorname{RecEx} D$ deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} holds $\mathscr{P}[n, f(n), f(n+1)]$
provided the parameters have the following property:

- For every natural number n and for every element x of \mathcal{A} there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.
The scheme LambdaRecEx deals with a set \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every element n of \mathbb{N} holds $f(n+1)=\mathcal{F}(n, f(n))$
for all values of the parameters.
The scheme LambdaRecExD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a binary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} holds $f(n+1)=\mathcal{F}(n, f(n))$
for all values of the parameters.
The scheme FinRecEx deals with a set \mathcal{A}, a natural number \mathcal{B}, and a ternary predicate \mathcal{P}, and states that:

There exists a finite sequence p such that len $p=\mathcal{B}$ but $p(1)=\mathcal{A}$ or $\mathcal{B}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{B}$ holds $\mathcal{P}[n, p(n), p(n+1)]$
provided the parameters meet the following conditions:

- For every natural number n such that $1 \leq n$ and $n<\mathcal{B}$ and for every set x there exists a set y such that $\mathscr{P}[n, x, y]$, and
- For every natural number n such that $1 \leq n$ and $n<\mathcal{B}$ and for all sets x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme FinRecExD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:

There exists a finite sequence p of elements of \mathcal{A} such that len $p=\mathcal{C}$ but $p(1)=\mathcal{B}$ or $\mathcal{C}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{C}$ holds $\mathcal{P}[n, p(n), p(n+1)]$ provided the parameters have the following property:

- Let n be a natural number. Suppose $1 \leq n$ and $n<\mathcal{C}$. Let x be an element of \mathcal{A}. Then there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.
The scheme SeqBinOpEx deals with a finite sequence \mathcal{A} and a ternary predicate \mathcal{P}, and states that:

There exists x and there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=$ len \mathcal{A} and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<$ len \mathcal{A} holds $\mathcal{P}[\mathcal{A}(k+$ 1), $p(k), p(k+1)]$
provided the following conditions are met:

- For all k, x such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ there exists y such that $\mathcal{P}[\mathcal{A}(k+1), x, y]$, and
- For all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ and $z=\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaSeqBinOpEx deals with a finite sequence \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:

There exists x and there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=$ len \mathcal{A} and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $p(k+1)=$ $\mathcal{F}(\mathcal{A}(k+1), p(k))$
for all values of the parameters.
The scheme $\operatorname{Rec} U n$ deals with a set \mathcal{A}, functions \mathcal{B}, \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters satisfy the following conditions:

- $\operatorname{dom} \mathcal{B}=\mathbb{N}$ and $\mathcal{B}(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, \mathcal{B}(n), \mathcal{B}(n+1)]$,
- $\operatorname{dom} \mathcal{C}=\mathbb{N}$ and $\mathcal{C}(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$, and
- For every n and for all sets x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.

The scheme $\operatorname{Rec} U n D$ deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, functions \mathcal{C}, \mathcal{D} from \mathbb{N} into \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters meet the following requirements:

- $\mathcal{C}(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- $\mathcal{D}(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$, and
- For every natural number n and for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaRecUn deals with a set \mathcal{A}, a binary functor \mathcal{F} yielding a set, and functions \mathcal{B}, \mathcal{C}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters meet the following conditions:

- $\operatorname{dom} \mathcal{B}=\mathbb{N}$ and $\mathcal{B}(0)=\mathcal{A}$ and for every n holds $\mathcal{B}(n+1)=\mathcal{F}(n, \mathcal{B}(n))$, and
- $\operatorname{dom} \mathcal{C}=\mathbb{N}$ and $\mathcal{C}(0)=\mathcal{A}$ and for every n holds $\mathcal{C}(n+1)=\mathcal{F}(n, \mathcal{C}(n))$.

The scheme LambdaRecUnD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a binary functor \mathcal{F} yielding an element of \mathcal{A}, and functions \mathcal{C}, \mathcal{D} from \mathbb{N} into \mathcal{A}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the following conditions are satisfied:

- $\mathcal{C}(0)=\mathcal{B}$ and for every n holds $\mathcal{C}(n+1)=\mathcal{F}(n, \mathcal{C}(n))$, and
- $\mathcal{D}(0)=\mathcal{B}$ and for every n holds $\mathcal{D}(n+1)=\mathcal{F}(n, \mathcal{D}(n))$.

The scheme LambdaRecUnR deals with a real number \mathcal{A}, a binary functor \mathcal{F} yielding a set, and functions \mathcal{B}, \mathcal{C} from \mathbb{N} into \mathbb{R}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters meet the following conditions:

- $\mathcal{B}(0)=\mathcal{A}$ and for every n holds $\mathcal{B}(n+1)=\mathcal{F}(n, \mathcal{B}(n))$, and
- $\mathcal{C}(0)=\mathcal{A}$ and for every n holds $\mathcal{C}(n+1)=\mathcal{F}(n, \mathcal{C}(n))$.

The scheme FinRecUn deals with a set \mathcal{A}, a natural number \mathcal{B}, finite sequences \mathcal{C}, \mathcal{D}, and a ternary predicate \mathcal{P}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters meet the following requirements:

- For every n such that $1 \leq n$ and $n<\mathcal{B}$ and for all sets x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{C}=\mathcal{B}$ but $\mathcal{C}(1)=\mathcal{A}$ or $\mathcal{B}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{B}$ holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$, and
- len $\mathcal{D}=\mathcal{B}$ but $\mathcal{D}(1)=\mathcal{A}$ or $\mathcal{B}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{B}$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.
The scheme FinRecUnD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, finite sequences \mathcal{D}, \mathcal{E} of elements of \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

$$
\hat{D}=\mathcal{E}
$$

provided the parameters meet the following requirements:

- For every n such that $1 \leq n$ and $n<\mathcal{C}$ and for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathscr{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{D}=\mathcal{C}$ but $\mathcal{D}(1)=\mathcal{B}$ or $\mathcal{C}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{C}$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$, and
- len $\mathcal{E}=\mathcal{C}$ but $\mathcal{E}(1)=\mathcal{B}$ or $\mathcal{C}=0$ but for every n such that $1 \leq n$ and $n<\mathcal{C}$ holds $\mathcal{P}[n, \mathcal{E}(n), \mathcal{E}(n+1)]$.
The scheme $\operatorname{SeqBinOpUn}$ deals with a finite sequence \mathcal{A}, sets \mathcal{B}, \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the following conditions are satisfied:

- For all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ and $z=\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- There exists a finite sequence p such that $\mathcal{B}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=$ $\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$, and
- There exists a finite sequence p such that $\mathcal{C}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=$ $\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.
The scheme LambdaSeqBinOpUn deals with a finite sequence \mathcal{A}, a binary functor \mathcal{F} yielding a set, and sets \mathcal{B}, \mathcal{C}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters meet the following conditions:

- There exists a finite sequence p such that $\mathcal{B}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=$ $\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $p(k+1)=\mathcal{F}(\mathcal{A}(k+$ 1), $p(k)$), and
- There exists a finite sequence p such that $\mathcal{C}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=$ $\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $p(k+1)=\mathcal{F}(\mathcal{A}(k+$ 1), $p(k))$.

The scheme DefRec deals with a set \mathcal{A}, a natural number \mathcal{B}, and a ternary predicate \mathcal{P}, and states that:
(i) There exists a set y and there exists a function f such that $y=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$, and
(ii) for all sets y_{1}, y_{2} such that there exists a function f such that $y_{1}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists a function f such that $y_{2}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_{1}=y_{2}$
provided the following conditions are satisfied:

- For all n, x there exists y such that $\mathcal{P}[n, x, y]$, and
- For all n, x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.

The scheme LambdaDefRec deals with a set \mathcal{A}, a natural number \mathcal{B}, and a binary functor \mathcal{F} yielding a set, and states that:
(i) There exists a set y and there exists a function f such that $y=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $f(n+1)=\mathcal{F}(n, f(n))$, and
(ii) for all sets y_{1}, y_{2} such that there exists a function f such that $y_{1}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $f(n+1)=\mathcal{F}(n, f(n))$ and there exists a function f such that $y_{2}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $f(n+1)=\mathcal{F}(n, f(n))$ holds $y_{1}=y_{2}$
for all values of the parameters.
The scheme $\operatorname{DefRec} D$ deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:
(i) There exists an element y of \mathcal{A} and there exists a function f from \mathbb{N} into \mathcal{A} such that $y=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$, and
(ii) for all elements y_{1}, y_{2} of \mathcal{A} such that there exists a function f from \mathbb{N} into \mathcal{A} such that $y_{1}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists a function f from \mathbb{N} into \mathcal{A} such that $y_{2}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_{1}=y_{2}$
provided the following conditions are met:

- For every natural number n and for every element x of \mathcal{A} there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$, and
- For every natural number n and for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaDefRecD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, and a binary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:
(i) There exists an element y of \mathcal{A} and there exists a function f from \mathbb{N} into \mathcal{A} such that $y=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n holds $f(n+1)=$ $\mathcal{F}(n, f(n))$, and
(ii) for all elements y_{1}, y_{2} of \mathcal{A} such that there exists a function f from \mathbb{N} into \mathcal{A} such that $y_{1}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n holds $f(n+1)=$ $\mathcal{F}(n, f(n))$ and there exists a function f from \mathbb{N} into \mathcal{A} such that $y_{2}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n holds $f(n+1)=\mathcal{F}(n, f(n))$ holds $y_{1}=y_{2}$ for all values of the parameters.

The scheme SeqBinOpDef deals with a finite sequence \mathcal{A} and a ternary predicate \mathcal{P}, and states that:
(i) There exists x and there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$, and
(ii) for all x, y such that there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ and there exists a finite sequence p such that $y=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ holds $x=y$
provided the following conditions are satisfied:

- For all k, y such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ there exists z such that $\mathcal{P}[\mathcal{A}(k+1), y, z]$, and
- For all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ and $z=\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaSeqBinOpDef deals with a finite sequence \mathcal{A} and a binary functor \mathcal{F} yielding a set, and states that:
(i) There exists x and there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $p(k+1)=\mathcal{F}(\mathcal{A}(k+1), p(k))$, and
(ii) for all x, y such that there exists a finite sequence p such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$
holds $p(k+1)=\mathcal{F}(\mathcal{A}(k+1), p(k))$ and there exists a finite sequence p such that $y=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k<\operatorname{len} \mathcal{A}$ holds $p(k+1)=\mathcal{F}(\mathcal{A}(k+1), p(k))$ holds $x=y$
for all values of the parameters.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/ JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funct_1.html
[4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

