Several Properties of Fields. Field Theory

Józef Białas
University of Łódź

Abstract

Summary. The article includes a continuation of the paper [1]. Some simple theorems concerning basic properties of a field are proved.

MML Identifier: REALSET3.
WWW: http://mizar.org/JFM/Vol2/realset3.html

The articles [5], [4], [6], [2], [3], and [1] provide the notation and terminology for this paper.
The following propositions are true:
(1) For every field F holds ${ }_{F}\left(\mathbf{0}_{F}\right)=\mathbf{0}_{F}$.
(2) For every field F holds $\left({ }_{F}^{-1}\right)\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$.
(3) For every field F and for all elements a, b of the support of F holds $-_{F}\left(+{ }_{F}\left(\left\langle a,{ }_{F}(b)\right\rangle\right)\right)=$ $+_{F}\left(\left\langle b,{ }_{F}(a)\right\rangle\right)$.
(4) For every field F and for all elements a, b of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\left({ }_{F}^{-1}\right)\left({ }_{F}(\langle a\right.$, $\left.\left.\left.\left({ }_{F}^{-1}\right)(b)\right\rangle\right)\right)=\cdot{ }_{F}\left(\left\langle b,\left({ }_{F}^{-1}\right)(a)\right\rangle\right)$.
(5) For every field F and for all elements a, b of the support of F holds $-_{F}\left(+_{F}(\langle a, b\rangle)\right)=$ $+_{F}\left(\left\langle-_{F}(a),{ }_{F}(b)\right\rangle\right)$.
(6) For every field F and for all elements a, b of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\left({ }_{F}^{-1}\right)\left({ }_{F}(\langle a\right.$, $b\rangle))=\cdot_{F}\left(\left\langle\left({ }_{F}^{-1}\right)(a),\left({ }_{F}^{-1}\right)(b)\right\rangle\right)$.
(7) Let F be a field and a, b, c, d be elements of the support of F. Then $+_{F}\left(\left\langle a,{ }_{F}(b)\right\rangle\right)=$ $+_{F}\left(\left\langle c,-_{F}(d)\right\rangle\right)$ if and only if $+_{F}(\langle a, d\rangle)=+_{F}(\langle b, c\rangle)$.
(8) Let F be a field, a, c be elements of the support of F, and b, d be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $\cdot{ }_{F}\left(\left\langle a,\left({ }_{F}^{-1}\right)(b)\right\rangle\right)=\cdot_{F}\left(\left\langle c,\left({ }_{F}^{-1}\right)(d)\right\rangle\right)$ if and only if $\cdot F(\langle a, d\rangle)=\cdot_{F}(\langle b, c\rangle)$.
(9) For every field F and for all elements a, b of the support of F holds $\cdot{ }_{F}(\langle a, b\rangle)=\mathbf{0}_{F}$ iff $a=\mathbf{0}_{F}$ or $b=\mathbf{0}_{F}$.
(10) Let F be a field, a, b be elements of the support of F, and c, d be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $\left.\left.\cdot{ }_{F}\left(\left\langle{ }_{F}\left(\left\langle a,{ }_{F}^{-1}\right)(c)\right\rangle\right), \cdot_{F}\left(\left\langle b,{ }_{F}^{-1}\right)(d)\right\rangle\right)\right\rangle\right)=\cdot_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle),\left(_{F}^{-1}\right)\left(\cdot_{F}(\langle c\right.\right.\right.$, $d\rangle))\rangle)$.
(11) Let F be a field, a, b be elements of the support of F, and c, d be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $+_{F}\left(\left\langle\cdot_{F}\left(\left\langle a,\left({ }_{F}^{-1}\right)(c)\right\rangle\right), \cdot_{F}\left(\left\langle b,\left({ }_{F}^{-1}\right)(d)\right\rangle\right)\right\rangle\right)=\cdot_{F}\left(\left\langle+_{F}\left(\left\langle\cdot{ }_{F}(\langle a, d\rangle), \cdot_{F}(\langle b\right.\right.\right.\right.$, $\left.\left.c\rangle)\rangle),\left({ }_{F}^{-1}\right)(\cdot F(\langle c, d\rangle))\right\rangle\right)$.

Let F be a field. The functor osf F yielding a binary operation on the support of F is defined by:
(Def. 1) For all elements x, y of the support of F holds $(\operatorname{osf} F)(\langle x, y\rangle)=+_{F}\left(\left\langle x,-_{F}(y)\right\rangle\right)$.

Next we state a number of propositions:
(14 ${ }^{1}$ For every field F and for every element x of the support of F holds $(\operatorname{osf} F)(\langle x, x\rangle)=\mathbf{0}_{F}$.
(15) For every field F and for all elements a, b, c of the support of F holds $\cdot_{F}(\langle a,(\operatorname{osf} F)(\langle b$, $c\rangle)\rangle)=(\operatorname{osf} F)\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle), \cdot{ }_{F}(\langle a, c\rangle)\right\rangle\right)$.
(16) Let F be a field and a, b be elements of the support of F. Then $(\operatorname{osf} F)(\langle a, b\rangle)$ is an element of the support of F.
(17) For every field F and for all elements a, b, c of the support of F holds $\cdot F(\langle(\operatorname{osf} F)(\langle a, b\rangle)$, $c\rangle)=(\operatorname{osf} F)\left(\left\langle\cdot F(\langle a, c\rangle), \cdot{ }^{\prime}(\langle b, c\rangle)\right\rangle\right)$.
(18) For every field F and for all elements a, b of the support of F holds $(\operatorname{osf} F)(\langle a, b\rangle)=$ $-_{F}((\operatorname{osf} F)(\langle b, a\rangle))$.
(19) For every field F and for all elements a, b of the support of F holds $(\operatorname{osf} F)\left(\left\langle-_{F}(a)\right.\right.$, $b\rangle)=-{ }_{F}\left(+_{F}(\langle a, b\rangle)\right)$.
(20) Let F be a field and a, b, c, d be elements of the support of F. Then $(\operatorname{osf} F)(\langle a, b\rangle)=$ $(\operatorname{osf} F)(\langle c, d\rangle)$ if and only if $+_{F}(\langle a, d\rangle)=+_{F}(\langle b, c\rangle)$.
(21) For every field F and for every element a of the support of F holds $(\operatorname{osf} F)\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)=$ $-_{F}(a)$.
(22) For every field F and for every element a of the support of F holds $(\operatorname{osf} F)\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=a$.
(23) For every field F and for all elements a, b, c of the support of F holds $+_{F}(\langle a, b\rangle)=c$ iff $(\operatorname{osf} F)(\langle c, a\rangle)=b$.
(24) For every field F and for all elements a, b, c of the support of F holds $+_{F}(\langle a, b\rangle)=c$ iff $(\operatorname{osf} F)(\langle c, b\rangle)=a$.
(25) For every field F and for all elements a, b, c of the support of F holds (osf $F)(\langle a$, $(\operatorname{osf} F)(\langle b, c\rangle)\rangle)=+_{F}(\langle(\operatorname{osf} F)(\langle a, b\rangle), c\rangle)$.
(26) For every field F and for all elements a, b, c of the support of F holds $(\operatorname{osf} F)\left(\left\langle a,+_{F}(\langle b\right.\right.$, $c\rangle)\rangle)=(\operatorname{osf} F)(\langle(\operatorname{osf} F)(\langle a, b\rangle), c\rangle)$.

Let F be a field. The functor ovf F yields a function from $[$:the support of F, (the support of $\left.F) \backslash\left\{\mathbf{0}_{F}\right\}:\right]$ into the support of F and is defined by the condition (Def. 2).
(Def. 2) Let x be an element of the support of F and y be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $(\operatorname{ovf} F)(\langle x, y\rangle)=\cdot_{F}\left(\left\langle x,\left({ }_{F}^{-1}\right)(y)\right\rangle\right)$.

We now state a number of propositions:
(29 $]^{2}$ For every field F and for every element x of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ holds (ovf $\left.F\right)(\langle x$, $x\rangle)=\mathbf{1}_{F}$.
(30) Let F be a field, a be an element of the support of F, and b be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $(\operatorname{ovf} F)(\langle a, b\rangle)$ is an element of the support of F.
(31) Let F be a field, a, b be elements of the support of F, and c be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $\cdot_{F}(\langle a,(\operatorname{ovf} F)(\langle b, c\rangle)\rangle)=(\operatorname{ovf} F)\left(\left\langle{ }_{F}(\langle a, b\rangle), c\right\rangle\right)$.
(32) For every field F and for every element a of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\cdot_{F}(\langle a$, $\left.\left.(\operatorname{ovf} F)\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)\right\rangle\right)=\mathbf{1}_{F}$ and $\cdot{ }_{F}\left(\left\langle(\operatorname{ovf} F)\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right), a\right\rangle\right)=\mathbf{1}_{F}$.

[^0]$(35)^{3}$ For every field F and for all elements a, b of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ holds (ovf $\left.F\right)(\langle a$, $b\rangle)=\left({ }_{F}^{-1}\right)((\operatorname{ovf} F)(\langle b, a\rangle))$.
(36) For every field F and for all elements a, b of (the support of F) $\backslash\left\{\mathbf{0}_{F}\right\}$ holds $(\operatorname{ovf} F)\left(\left\langle\left({ }_{F}^{-1}\right)(a), b\right\rangle\right)=\left({ }_{F}^{-1}\right)(\cdot F(\langle a, b\rangle))$.
(37) Let F be a field, a, c be elements of the support of F, and b, d be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $(\operatorname{ovf} F)(\langle a, b\rangle)=(\operatorname{ovf} F)(\langle c, d\rangle)$ if and only if $\cdot{ }_{F}(\langle a, d\rangle)={ }_{F}(\langle b, c\rangle)$.
(38) For every field F and for every element a of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds (ovf $\left.F\right)\left(\left\langle\mathbf{1}_{F}\right.\right.$, $a\rangle)=\left({ }_{F}^{-1}\right)(a)$.
(39) For every field F and for every element a of the support of F holds $(\operatorname{ovf} F)\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$.
(40) Let F be a field, a be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$, and b, c be elements of the support of F. Then $\cdot_{F}(\langle a, b\rangle)=c$ if and only if $(\operatorname{ovf} F)(\langle c, a\rangle)=b$.
(41) Let F be a field, a, c be elements of the support of F, and b be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $\cdot{ }_{F}(\langle a, b\rangle)=c$ if and only if $(\operatorname{ovf} F)(\langle c, b\rangle)=a$.
(42) Let F be a field, a be an element of the support of F, and b, c be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $(\operatorname{ovf} F)(\langle a,(\operatorname{ovf} F)(\langle b, c\rangle)\rangle)=\cdot_{F}(\langle(\operatorname{ovf} F)(\langle a, b\rangle), c\rangle)$.
(43) Let F be a field, a be an element of the support of F, and b, c be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then $(\operatorname{ovf} F)\left(\left\langle a,{ }_{F}(\langle b, c\rangle)\right\rangle\right)=(\operatorname{ovf} F)(\langle(\operatorname{ovf} F)(\langle a, b\rangle), c\rangle)$.

References

[1] Józef Białas. Properties of fields. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/realset2.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html

Published January 2, 2004

[^1]
[^0]: ${ }^{1}$ The propositions (12) and (13) have been removed.
 ${ }^{2}$ The propositions (27) and (28) have been removed.

[^1]: ${ }^{3}$ The propositions (33) and (34) have been removed.

