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The articles [5], [4], [6], [2], [3], and [1] provide the notation and terminology for this paper.
The following propositions are true:

(1) For every fieldF holds−F(0F) = 0F .

(2) For every fieldF holds(−1
F )(1F) = 1F .

(3) For every fieldF and for all elementsa, b of the support ofF holds−F(+F(〈〈a, −F(b)〉〉)) =
+F(〈〈b, −F(a)〉〉).

(4) For every fieldF and for all elementsa, b of (the support ofF) \ {0F} holds(−1
F )(·F(〈〈a,

(−1
F )(b)〉〉)) = ·F(〈〈b, (−1

F )(a)〉〉).

(5) For every fieldF and for all elementsa, b of the support ofF holds−F(+F(〈〈a, b〉〉)) =
+F(〈〈−F(a), −F(b)〉〉).

(6) For every fieldF and for all elementsa, b of (the support ofF) \ {0F} holds(−1
F )(·F(〈〈a,

b〉〉)) = ·F(〈〈(−1
F )(a), (−1

F )(b)〉〉).

(7) Let F be a field anda, b, c, d be elements of the support ofF . Then+F(〈〈a, −F(b)〉〉) =
+F(〈〈c, −F(d)〉〉) if and only if +F(〈〈a, d〉〉) = +F(〈〈b, c〉〉).

(8) Let F be a field,a, c be elements of the support ofF , andb, d be elements of (the support
of F)\{0F}. Then·F(〈〈a, (−1

F )(b)〉〉) = ·F(〈〈c, (−1
F )(d)〉〉) if and only if ·F(〈〈a, d〉〉) = ·F(〈〈b, c〉〉).

(9) For every fieldF and for all elementsa, b of the support ofF holds ·F(〈〈a, b〉〉) = 0F iff
a = 0F or b = 0F .

(10) LetF be a field,a, b be elements of the support ofF , andc, d be elements of (the support
of F) \ {0F}. Then ·F(〈〈·F(〈〈a, (−1

F )(c)〉〉), ·F(〈〈b, (−1
F )(d)〉〉)〉〉) = ·F(〈〈·F(〈〈a, b〉〉), (−1

F )(·F(〈〈c,
d〉〉))〉〉).

(11) LetF be a field,a, b be elements of the support ofF , andc, d be elements of (the support
of F) \ {0F}. Then +F(〈〈·F(〈〈a, (−1

F )(c)〉〉), ·F(〈〈b, (−1
F )(d)〉〉)〉〉) = ·F(〈〈+F(〈〈·F(〈〈a, d〉〉), ·F(〈〈b,

c〉〉)〉〉), (−1
F )(·F(〈〈c, d〉〉))〉〉).

Let F be a field. The functor osfF yielding a binary operation on the support ofF is defined by:

(Def. 1) For all elementsx, y of the support ofF holds(osfF)(〈〈x, y〉〉) = +F(〈〈x, −F(y)〉〉).
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Next we state a number of propositions:

(14)1 For every fieldF and for every elementx of the support ofF holds(osfF)(〈〈x, x〉〉) = 0F .

(15) For every fieldF and for all elementsa, b, c of the support ofF holds·F(〈〈a, (osfF)(〈〈b,
c〉〉)〉〉) = (osfF)(〈〈·F(〈〈a, b〉〉), ·F(〈〈a, c〉〉)〉〉).

(16) LetF be a field anda, b be elements of the support ofF . Then(osfF)(〈〈a, b〉〉) is an element
of the support ofF .

(17) For every fieldF and for all elementsa, b, c of the support ofF holds·F(〈〈(osfF)(〈〈a, b〉〉),
c〉〉) = (osfF)(〈〈·F(〈〈a, c〉〉), ·F(〈〈b, c〉〉)〉〉).

(18) For every fieldF and for all elementsa, b of the support ofF holds (osfF)(〈〈a, b〉〉) =
−F((osfF)(〈〈b, a〉〉)).

(19) For every fieldF and for all elementsa, b of the support ofF holds (osfF)(〈〈−F(a),
b〉〉) = −F(+F(〈〈a, b〉〉)).

(20) Let F be a field anda, b, c, d be elements of the support ofF . Then(osfF)(〈〈a, b〉〉) =
(osfF)(〈〈c, d〉〉) if and only if +F(〈〈a, d〉〉) = +F(〈〈b, c〉〉).

(21) For every fieldF and for every elementa of the support ofF holds (osfF)(〈〈0F , a〉〉) =
−F(a).

(22) For every fieldF and for every elementa of the support ofF holds(osfF)(〈〈a, 0F〉〉) = a.

(23) For every fieldF and for all elementsa, b, c of the support ofF holds+F(〈〈a, b〉〉) = c iff
(osfF)(〈〈c, a〉〉) = b.

(24) For every fieldF and for all elementsa, b, c of the support ofF holds+F(〈〈a, b〉〉) = c iff
(osfF)(〈〈c, b〉〉) = a.

(25) For every fieldF and for all elementsa, b, c of the support ofF holds (osfF)(〈〈a,
(osfF)(〈〈b, c〉〉)〉〉) = +F(〈〈(osfF)(〈〈a, b〉〉), c〉〉).

(26) For every fieldF and for all elementsa, b, c of the support ofF holds(osfF)(〈〈a, +F(〈〈b,
c〉〉)〉〉) = (osfF)(〈〈(osfF)(〈〈a, b〉〉), c〉〉).

Let F be a field. The functor ovfF yields a function from[: the support ofF , (the support of
F)\{0F} :] into the support ofF and is defined by the condition (Def. 2).

(Def. 2) Letx be an element of the support ofF andy be an element of (the support ofF)\{0F}.
Then(ovfF)(〈〈x, y〉〉) = ·F(〈〈x, (−1

F )(y)〉〉).

We now state a number of propositions:

(29)2 For every fieldF and for every elementx of (the support ofF) \ {0F} holds(ovfF)(〈〈x,
x〉〉) = 1F .

(30) LetF be a field,a be an element of the support ofF , andb be an element of (the support
of F)\{0F}. Then(ovfF)(〈〈a, b〉〉) is an element of the support ofF .

(31) LetF be a field,a, b be elements of the support ofF , andc be an element of (the support
of F)\{0F}. Then·F(〈〈a, (ovfF)(〈〈b, c〉〉)〉〉) = (ovfF)(〈〈·F(〈〈a, b〉〉), c〉〉).

(32) For every fieldF and for every elementa of (the support ofF) \ {0F} holds ·F(〈〈a,
(ovfF)(〈〈1F , a〉〉)〉〉) = 1F and·F(〈〈(ovfF)(〈〈1F , a〉〉), a〉〉) = 1F .

1 The propositions (12) and (13) have been removed.
2 The propositions (27) and (28) have been removed.
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(35)3 For every fieldF and for all elementsa, b of (the support ofF) \ {0F} holds(ovfF)(〈〈a,
b〉〉) = (−1

F )((ovfF)(〈〈b, a〉〉)).

(36) For every fieldF and for all elementsa, b of (the support ofF) \ {0F} holds
(ovfF)(〈〈(−1

F )(a), b〉〉) = (−1
F )(·F(〈〈a, b〉〉)).

(37) LetF be a field,a, c be elements of the support ofF , andb, d be elements of (the support
of F)\{0F}. Then(ovfF)(〈〈a, b〉〉) = (ovfF)(〈〈c, d〉〉) if and only if ·F(〈〈a, d〉〉) = ·F(〈〈b, c〉〉).

(38) For every fieldF and for every elementa of (the support ofF)\{0F} holds(ovfF)(〈〈1F ,
a〉〉) = (−1

F )(a).

(39) For every fieldF and for every elementa of the support ofF holds(ovfF)(〈〈a, 1F〉〉) = a.

(40) LetF be a field,a be an element of (the support ofF)\{0F}, andb, c be elements of the
support ofF . Then·F(〈〈a, b〉〉) = c if and only if (ovfF)(〈〈c, a〉〉) = b.

(41) LetF be a field,a, c be elements of the support ofF , andb be an element of (the support
of F)\{0F}. Then·F(〈〈a, b〉〉) = c if and only if (ovfF)(〈〈c, b〉〉) = a.

(42) LetF be a field,a be an element of the support ofF , andb, c be elements of (the support
of F)\{0F}. Then(ovfF)(〈〈a, (ovfF)(〈〈b, c〉〉)〉〉) = ·F(〈〈(ovfF)(〈〈a, b〉〉), c〉〉).

(43) LetF be a field,a be an element of the support ofF , andb, c be elements of (the support
of F)\{0F}. Then(ovfF)(〈〈a, ·F(〈〈b, c〉〉)〉〉) = (ovfF)(〈〈(ovfF)(〈〈a, b〉〉), c〉〉).
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3 The propositions (33) and (34) have been removed.
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