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Summary. The second part of considerations concerning groups and fields. It in-
cludes a definition and properties of commutative fields a structure defined by: the set,
a support ofF, containing two different elements, by two binary operatigns - on this
set, called addition and multiplication, and by two elements from the suppért@f being
neutral for addition andg being neutral for multiplication. This structure is named a field if
(the support of, +¢, Og) and(the support of, -g, 1) are commutative groups and multi-
plication has the property of left-hand and right-hand distributivity with respect to addition. It
is demonstrated that the fiekdsatisfies the definition of a field in the axiomatic approach.
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The articles[[6],[[4],8],119], [2], [3], [7], [5], and([1] provide the notation and terminology for this
paper.

Let1; be a double loop structure. We say thais field-like if and only if the condition (Def. 1)
is satisfied.

(Def. 1) There exists a non trivial sAtand there exists a binary operationon A and there exists
an elementy of Aand there exists a binary operationof A preservingA \ { n; } and there
exists an element, of A\ {n;} such that

(I) I = fieId(A, 01,02,N1, nz),
(i) (A 01,n1) is a group,
(iii)  for every non empty seB and for every binary operatida on B and for every elemerd
of B such thaB = A\ {n;} ande=n; andP = 0, [, Aholds(B,P,€e) is a group, and
(iv) for all elementsx, y, z of A holdsox({x, 01({y, 2)))) = 01({02({X, ¥)), 02({X, 2})}) and
02({01({x, ¥}), 2)) = 01({02({X, 2)), 02({y, 2))))-
One can check that there exists a double loop structure which is strict and field-like.

A field is a field-like double loop structure.
LetF be afield. The support & yields a non trivial set and is defined by the condition (Def. 2).

(Def. 2) There exists a binary operation on the support of and there exists an elememt of
the support ofF and there exists a binary operatiop of the support ofF preserving the
support ofF \ { n; } and there exists an elememt of (the support of) \ {n;} such that
F =field(the support of, 01,02,n1,N2), whereF = {x1,%2,X3, X4}, X1 = {{X, X}, X}, X2 = {({X,
), ), X3 = ((y, X), ¥), andxa = ({y. y), X).

Let F be a field. The functos#-f yielding a binary operation on the supportffs defined by
the condition (Def. 3).
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(Def. 3) There exists an elememt of the support of and there exists a binary operationof the
support ofF preserving the support & \ { n; } and there exists an elemantof (the support
of F)\ {n1} such that = field(the support of, +¢,02,n1,n2), whereF = {x1,X2,X3,Xa},
X1 = (XX}, ), X2 = ((x,¥), ), X3 = {{y, X), ¥}, andxa = ({y, ¥), X).

Let F be a field. The functofr yielding an element of the support &f is defined by the
condition (Def. 4).

(Def. 4) There exists a binary operatiopof the support of preserving the support & \ { O }
and there exists an elemantof (the support of ) \ {Oe } such tha¥ = field(the support of
F, +£,02,0r,ny), whereF = {x1,X2,X3,X4}, X1 = {{X, X}, X}, Xo = {({X, ¥), ¥), x3 = {{y, X},
y), andxs = {{y, ¥}, X).

Let F be a field. The functors yields a binary operation of the support lefpreserving the
support ofF \ { O } and is defined by:

(Def. 5) There exists an elememt of (the support of) \ {Oc } such that = field(the support of
F, +F,'F,0r,N2), whereF = {X1,%2,X3,Xa}, X1 = {{X, X}, X}, X2 = ({X, ¥}, ¥}, Xs = {{¥, X),
y), andxs = ({y, y), X).

LetF be afield. The functotg yields an element of (the support®j \ {Or } and is defined as
follows:

(Def. 6) F = field(the support ofF, +f,r,0r, 1), whereF = {Xq,X2,X3,Xa}, X1 = {{X, X), X},
X2 = ({(X, ), ¥), X3 = {{¥; X), ), andxq = ({y, y), X).

We now state several propositions:

(SH For every fieldF holds(the support of, +¢,0) is a group, wheré& = {x1,X2,X3,Xa},
x1 = ((X, X}, X}, X2 = ({X, ¥), ¥), X3 = {{y, X}, ¥}, andxa = {{y, ¥} X).

(9) LetF be afieldB be a non empty sel, be a binary operation d, ande be an element of
B. Supposa = (the support of) \ {Or } ande= 1r andP = -r [q. the support of. Then
(B,P,€) is a group, wher& = {x1,X2,X3,Xa}, X1 = ({X, X), X}, X2 = {{X, ¥), ¥), X3 = {(y, X},
y), andxs = ({y, ¥}, X).

(10) LetF be a field andx, y, z be elements of the support &. Then -g({x, +r({y,
2))) = +r((r((x W), (%, 2))) and £ ((+F ({(x, ¥)), 2)) = +F ((F({X. 2)), F({Y, 2))),
V\;hereF = {X17X27X37X4}7 X1 = ((X7 X)a X)7 X2 = ((X? y)7 y)! X3 = ((y7 X)a y)v andX4 = ((y7 y)a
X).

(11) For every fieldr and for all elements, b, ¢ of the support oF holds+¢ ({+£({(a, b)),
c)) =+r({a +r({b, c)))), whereF = {x1,%2,X3,Xa}, X1 = {{X, X}, X), X2 = {{X, ), ¥), X3 =
({v. ), y), andxa = ({y, y), X).

(12) For every field= and for all elements, b of the support of holds+¢({a, b)) = +¢r ({b,
a)), whereF = {xg,%2,%3,%Xs}, X1 = ({(X, X), X}, X2 = ({X, ¥}, ¥}, X3 = ({¥, X}, y), andxa = ((y,
y):%)-

(13) For every field= and for every elemera of the support of holds+¢({a, Or)) = a and
+r ({0, @) = & whereF = {x1,X2,X3,Xa}, X1 = {{X, X), X}, X2 = ({X, ¥), ¥}, X3 = {{¥, %),
y)! andX4 = ((ya y)7 X)'

(14) LetF be afield andh be an element of the supportief Then there exists an elemdnof
the support of such thati-r ({a, b)) = Or and+¢ ({b, a)) = Or, whereF = {x1,X%>,X3,Xa},
x1 = ((X, X), X), X2 = ({X, ¥}, ¥), Xa = {{¥, X), ¥), andxs = {{y, ¥}, X).

Let F be a non trivial set. A set is called an one-element subdetibf

1 The propositions (1)—(7) have been removed.
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(Def. 7) There exists an elemexbdf F such that it= {x}, whereF = {x1,%2,X3,X4}, X1 = {({X, X},
X), X2 = (¥}, ¥}, X3 = {(¥, X), ¥), andxa = {(y, ), X)-

Next we state the proposition

(15) For every non trivial sef and for every one-element subgetf F holdsF \ A is a non
empty set, wher& = {x1,%2,X3,Xs}, X1 = ({X, X), X}, X2 = ((X, ¥), ¥), X3 = {{. X), y), and
Xa = {{y,y), ).

Let F be a non trivial set and |& be an one-element subsetfof Note that- \ Ais non empty.
Let F be a non trivial set. One can check that there exists an one-element subsahath is

non empty.
Let F be a non trivial set and letbe an element df. Then{x} is an one-element subset®f
Next we state four propositions:

(ZOE] For every fieldF and for all elements, b, c of (the support of) \ {Oc} holds-e({-({a,
b))? C)) = 'F((a7 'F((bﬂ C))))7 whereF = {X17X27X37X4}v X1 = ((X, X>7 X)v X2 = ((Xa y>7y)v
x3 = ((¥, X}, ¥), andxa = ({¥, y), X).

(21) For every field= and for all elements, b of (the support of) \ {0} holds-g({a, b)) =
£({b, a)), whereF = {xq,X2,X3,Xa}, X1 = {{X, X}, X}, X2 = ((X, ¥), ¥), X3 = {{Y, X), ¥}, and
Xa = {{y.y), ).

(22) For every field= and for every elemeratof (the support oF )\ {O¢ } holds-¢ ({a, 1r)) =a
and'F((lFa a)) =a, whereF = {X17X27X37X4}’ X1 = (<X7 X)? X)’ X2 = ((Xa y)7 y)! X3 = ((ya
X), y), andxs = ({y, ¥}, X).

(23) LetF be a field anda be an element of (the support Bf) \ {O}. Then there exists an
elementb of (the support of) \ {Og } such thatg({a, b)) = 1r and-r({b, a)) = 1, where
F = {x1,%2,X3,Xa}, X1 = ({X, X}, X}, X2 = {({X, ¥}, ¥}, Xs = ({¥, X}, ¥}, andxa = {{Y. y), X).

Let F be afield. The functorf yielding a function from the support &f into the support oF
is defined as follows:

(Def. 8) For every elemenk of the support ofF holds +¢({X, —¢(X))) = O, where F =
{x1,%2,%3,Xa }, X1 = (%, %), X}, X2 = ({X, ), ), X3 = ({¥. ), ¥), andxa = ({y, ¥}, X).

One can prove the following propositions:

(26 For every fieldF and for all elements, y of the support of such that+g({X, y)) = Os
holdsy = —F (x), whereF = {x1,X2,Xs,Xa}, X1 = ({X, X}, X}, X2 = {({(X, ¥}, ¥), X3 = {{¥, X),
y), andxs = ({y, ¥}, X).

(27) For every field= and for every elementof the support of holdsx = —g (—g (X)), where
F={x1,%2,X3,Xa}, X1 = ({X, X}, X}, X2 = {{x, ¥), ¥}, X3 = {{¥. X), ¥}, andxs = ({y. y), X).
(28) LetF be afield and, b be elements of the support Bf Then
(i)  +r((a, b)) is an element of the support Bf
(i) -r({(a, b)) is an element of the support Bf and
(i)  —r(a) is an element of the support Bf
whereF = {x1,X2,X3,Xa}, X1 = ({X; X), X}, X2 = ({X, ¥}, ¥}, X3 = ({¥, X}, ¥}, andxa = {(y, ),
X}.
(29) For every field= and for all elements, b, ¢ of the support ofF holds - ({a, +r ({b,
—r(©))) =+r({r((a; b)), —r(-r({a,C)))}), whereF = {x1,X2,X3,Xa}, X1 = (X, X}, X),
X2 = ({X%,¥), V), X3 = ({y, X}, ¥}, andxa = {{y, y), X).

2 The propositions (16)—(19) have been removed.
3 The propositions (24) and (25) have been removed.
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(30) For every field= and for all elements, b, c of the support of holds-r ({+r({a, —r(b))),
C)) = +F(('F((av C))7 7F('F(<bv C)))))v whereF = {X17X27X37X4}' X1= ((X7 X)a X)! X2 = ((Xa
), ), X3 = (¥, X), ), andxa = ({y, y), X).

(31) Forevery field= and for every elemeratof the support oF holds ¢ ({a, Og}) = O, where
F = {X1, %2, X3, Xa}, X1 = ({X, X}, X), X2 = ((X, ¥}, ¥}, X3 = ({¥: X), ¥}, andxa = {{y, y), X).

(32) For every field= and for every elemertof the support of holds-¢ ({0, a)) = O, where
F = {x1,%2,X3,Xa}, X1 = ({X, X}, X), X2 = {{X, ), ¥}, Xa = {{¥. X), ¥}, andxs = {{y, y), X).

(33) Forevery field and for all elements, b of the support oF holds—g (-r({a, b})) =-F({a,
—F (D)), whereF = {x1,%,%3,%a}, X1 = ({X, %), X), X2 = {{x, ¥}, ¥), X3 = ({¥. X), y), and
Xa = ((¥,¥), %)

(34) For every fielde holds -r({1r, Or)) = O, whereF = {Xq,X2,X3,Xa}, X1 = {{X, X), X},
X2 = ((%, ), V), X3 = ({y, X}, ¥}, andxa = {{y, y), X).

(35) For every fieldF holds ¢ ({Og, 1r)) = O, whereF = {x1,X2,X3,Xa}, X1 = {{X, X}, X},
Xp = (<X7 y)a y)l X3 = ((ya X)7 y)! andX4 = ((ya y)> X)‘

(36) LetF be afield and, b be elements of the support Bf Then-g({a, b)) is an element of
the support of, whereF = {x1,X2,X3,Xa}, X1 = ({X, X), X}, X2 = ({X, ¥}, ¥), X3 = {{¥, X}, ¥},
andxs = ({y, y), X).

(37) Forevery field= and for all elementa, b, ¢ of the support of holds-({-=({a, b)), c}) =
'F((aﬂ 'F(<b7 C))))7 whereF = {X13X23X3?X4}! X1 = ((Xv X), X)! X2 = ((Xv y>7 y)v X3 = ((y» X)7
y), andxs = ({y, y}, X).

(38) For every field= and for all elementa, b of the support of holds-¢ ({a, b)) = -g({b, a}),
whereF = {x1,Xz,X3,Xa}, X1 = {(X, X), X), X2 = ({X, ¥), ¥}, X3 = ({¥, X}, ¥), andxs = {{y, y).
X}.

(39) For every field= and for every elemerd of the support of holds-g({a, 1)) = a and
F({1r, @) = a whereF = {x1,%2,X3,Xa}, X1 = {{X, X}, X), X2 = ((X, ¥}, ¥}, X3 = ({¥, X}, ¥),
andxs = ((y, y), X).

LetF be afield. The functogl yields a function from (the support &f) \ {O } into (the support
of F)\ {Os} and is defined as follows:

(Def. 9) For every elementof (the support of )\ {0 } holds ¢ ({x, (1)(x))) = 1¢, whereF =
{X17X27X37X4}, X1 = ((Xv X)a X)! X2 = ((Xv y)7 y)! X3 = ((y, X)v y)! andxs = ((yv y)v X)'

One can prove the following propositions:

(42)f] For every fieldF and for all elements, y of (the support oF ) \ {Or} such thatr ({x,
y)) = 1 holdsy = (£1)(x), whereF = {x,%2,X3,Xa}, X1 = {{X, X}, X), X2 = {{X, ¥}, ¥}, X3 =
{(y, %), y), andxa = {{¥, ¥), %)

(43) For every fieldF and for every elemenk of (the support ofF)\ {Og} holds x =
(FH((FH)(x)), whereF = {xq,%2,X3,Xa}, X1 = (%, X), X), X2 = ({X. ¥}, ¥}, X = {{y. %), Y},
andxs = ((y, ¥), X)-

(44) LetF be afield anda, b be elements of (the support Bf) \ {Oc }. Then-g({a, b}) is an
element of (the support &) \ {Or } and(£*)(a) is an element of (the support Bf) \ {0},
whereF = {x1,X2,X3,X4}, X1 = ({X, X), X}, X2 = ({X, ¥}, ¥}, Xa = {{y, X), ¥), andxs = {{y, ),
X}.

(45) For every field= and for all elements, b, ¢ of the support oF such that+g({a, b)) =
+£((a, c)) holdsb = ¢, whereF = {xq,%2,%3,Xa}, X1 = ({X, X}, X}, X2 = ({X, ¥}, ¥}, X = {(V,
X),y), andxa = ({y, y), X).

4 The propositions (40) and (41) have been removed.
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(46) LetF be afield,a be an element of (the support®f \ {Oe }, andb, c be elements of the
support ofF. If -g({a, b)) = -£({a, c)), thenb = ¢, whereF = {x1,X,X3,Xa}, X1 = ({X;, X},
X), %2 = ({X,¥), V), x3 = ({y, X), ), andxa = ({y. y), X).

REFERENCES

Jozef Biatas. Group and field definition®urnal of Formalized Mathematics, 1989http: //mizar.org/JFM/Voll/realsetl.htmll

Czestaw Byliski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989.http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a sdournal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/funct_|
2.htmll

Czestaw Bylhski. Some basic properties of seleurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/zfmisc_|
L. htmIl

Eugeniusz Kusak, Wojciech Léozuk, and Michat Muzalewski. Abelian groups, fields and vector spadesirnal of Formalized
Mathematics1, 1989 http://mizar.org/JFM/Voll/vectsp_1.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989/http://mizar.org/JFM/
Axiomatics/tarski.htmll

Wojciech A. Trybulec. Vectors in real linear spacdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
rlvect_1.html.

Zinaida Trybulec. Properties of subsedsurnal of Formalized Mathematic§, 1989 http://mizar.org/JFM/Voll/subset_1.html}

Edmund Woronowicz. Relations and their basic propertigsurnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/
Voll/relat_1.htmll

Received June 20, 1990

Published January 2, 2004


http://mizar.org/JFM/Vol1/realset1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/vectsp_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/rlvect_1.html
http://mizar.org/JFM/Vol1/rlvect_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	properties of fields By józef bialas

