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Summary. The second part of considerations concerning groups and fields. It in-
cludes a definition and properties of commutative fieldF as a structure defined by: the set,
a support ofF , containing two different elements, by two binary operations+F , ·F on this
set, called addition and multiplication, and by two elements from the support ofF , 0F being
neutral for addition and1F being neutral for multiplication. This structure is named a field if
〈the support ofF , +F , 0F 〉 and〈the support ofF , ·F , 1F 〉 are commutative groups and multi-
plication has the property of left-hand and right-hand distributivity with respect to addition. It
is demonstrated that the fieldF satisfies the definition of a field in the axiomatic approach.

MML Identifier: REALSET2.

WWW: http://mizar.org/JFM/Vol2/realset2.html

The articles [6], [4], [8], [9], [2], [3], [7], [5], and [1] provide the notation and terminology for this
paper.

Let I1 be a double loop structure. We say thatI1 is field-like if and only if the condition (Def. 1)
is satisfied.

(Def. 1) There exists a non trivial setA and there exists a binary operationo1 on A and there exists
an elementn1 of A and there exists a binary operationo2 of A preservingA \ { n1 } and there
exists an elementn2 of A\{n1} such that

(i) I1 = field(A,o1,o2,n1,n2),

(ii) 〈A,o1,n1〉 is a group,

(iii) for every non empty setB and for every binary operationP on B and for every elemente
of B such thatB = A\{n1} ande= n2 andP = o2 �n1 A holds〈B,P,e〉 is a group, and

(iv) for all elementsx, y, z of A holdso2(〈〈x, o1(〈〈y, z〉〉)〉〉) = o1(〈〈o2(〈〈x, y〉〉), o2(〈〈x, z〉〉)〉〉) and
o2(〈〈o1(〈〈x, y〉〉), z〉〉) = o1(〈〈o2(〈〈x, z〉〉), o2(〈〈y, z〉〉)〉〉).

One can check that there exists a double loop structure which is strict and field-like.
A field is a field-like double loop structure.
Let F be a field. The support ofF yields a non trivial set and is defined by the condition (Def. 2).

(Def. 2) There exists a binary operationo1 on the support ofF and there exists an elementn1 of
the support ofF and there exists a binary operationo2 of the support ofF preserving the
support ofF \ { n1 } and there exists an elementn2 of (the support ofF) \ {n1} such that
F = field(the support ofF , o1,o2,n1,n2), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x,
y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor+F yielding a binary operation on the support ofF is defined by
the condition (Def. 3).
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(Def. 3) There exists an elementn1 of the support ofF and there exists a binary operationo2 of the
support ofF preserving the support ofF \ { n1 } and there exists an elementn2 of (the support
of F)\{n1} such thatF = field(the support ofF , +F ,o2,n1,n2), whereF = {x1,x2,x3,x4},
x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor0F yielding an element of the support ofF is defined by the
condition (Def. 4).

(Def. 4) There exists a binary operationo2 of the support ofF preserving the support ofF \ { 0F }
and there exists an elementn2 of (the support ofF)\{0F} such thatF = field(the support of
F , +F ,o2,0F ,n2), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor·F yields a binary operation of the support ofF preserving the
support ofF \ { 0F } and is defined by:

(Def. 5) There exists an elementn2 of (the support ofF)\{0F} such thatF = field(the support of
F , +F , ·F ,0F ,n2), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor1F yields an element of (the support ofF)\{0F} and is defined as
follows:

(Def. 6) F = field(the support ofF , +F , ·F ,0F ,1F), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉,
x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

We now state several propositions:

(8)1 For every fieldF holds〈the support ofF , +F ,0F〉 is a group, whereF = {x1,x2,x3,x4},
x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(9) LetF be a field,B be a non empty set,P be a binary operation onB, andebe an element of
B. SupposeB = (the support ofF)\{0F} ande= 1F andP = ·F �0F the support ofF . Then
〈B,P,e〉 is a group, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(10) Let F be a field andx, y, z be elements of the support ofF . Then ·F(〈〈x, +F(〈〈y,
z〉〉)〉〉) = +F(〈〈·F(〈〈x, y〉〉), ·F(〈〈x, z〉〉)〉〉) and ·F(〈〈+F(〈〈x, y〉〉), z〉〉) = +F(〈〈·F(〈〈x, z〉〉), ·F(〈〈y, z〉〉)〉〉),
whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉,
x〉〉.

(11) For every fieldF and for all elementsa, b, c of the support ofF holds+F(〈〈+F(〈〈a, b〉〉),
c〉〉) = +F(〈〈a, +F(〈〈b, c〉〉)〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 =
〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(12) For every fieldF and for all elementsa, b of the support ofF holds+F(〈〈a, b〉〉) = +F(〈〈b,
a〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y,
y〉〉, x〉〉.

(13) For every fieldF and for every elementa of the support ofF holds+F(〈〈a, 0F〉〉) = a and
+F(〈〈0F , a〉〉) = a, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(14) LetF be a field anda be an element of the support ofF . Then there exists an elementb of
the support ofF such that+F(〈〈a, b〉〉) = 0F and+F(〈〈b, a〉〉) = 0F , whereF = {x1,x2,x3,x4},
x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a non trivial set. A set is called an one-element subset ofF if:
1 The propositions (1)–(7) have been removed.
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(Def. 7) There exists an elementx of F such that it= {x}, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉,
x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Next we state the proposition

(15) For every non trivial setF and for every one-element subsetA of F holdsF \A is a non
empty set, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, and
x4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a non trivial set and letA be an one-element subset ofF . Note thatF \A is non empty.
Let F be a non trivial set. One can check that there exists an one-element subset ofF which is

non empty.
Let F be a non trivial set and letx be an element ofF . Then{x} is an one-element subset ofF .
Next we state four propositions:

(20)2 For every fieldF and for all elementsa, b, c of (the support ofF)\{0F} holds·F(〈〈·F(〈〈a,
b〉〉), c〉〉) = ·F(〈〈a, ·F(〈〈b, c〉〉)〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉,
x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(21) For every fieldF and for all elementsa, b of (the support ofF)\{0F} holds·F(〈〈a, b〉〉) =
·F(〈〈b, a〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, and
x4 = 〈〈〈〈y, y〉〉, x〉〉.

(22) For every fieldF and for every elementa of (the support ofF)\{0F} holds·F(〈〈a, 1F〉〉) = a
and ·F(〈〈1F , a〉〉) = a, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y,
x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(23) Let F be a field anda be an element of (the support ofF) \ {0F}. Then there exists an
elementb of (the support ofF)\{0F} such that·F(〈〈a, b〉〉) = 1F and·F(〈〈b, a〉〉) = 1F , where
F = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor−F yielding a function from the support ofF into the support ofF
is defined as follows:

(Def. 8) For every elementx of the support ofF holds +F(〈〈x, −F(x)〉〉) = 0F , where F =
{x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

One can prove the following propositions:

(26)3 For every fieldF and for all elementsx, y of the support ofF such that+F(〈〈x, y〉〉) = 0F

holdsy = −F(x), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(27) For every fieldF and for every elementx of the support ofF holdsx =−F(−F(x)), where
F = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(28) LetF be a field anda, b be elements of the support ofF . Then

(i) +F(〈〈a, b〉〉) is an element of the support ofF ,

(ii) ·F(〈〈a, b〉〉) is an element of the support ofF , and

(iii) −F(a) is an element of the support ofF ,

whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉,
x〉〉.

(29) For every fieldF and for all elementsa, b, c of the support ofF holds ·F(〈〈a, +F(〈〈b,
−F(c)〉〉)〉〉) = +F(〈〈·F(〈〈a, b〉〉), −F(·F(〈〈a, c〉〉))〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉,
x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

2 The propositions (16)–(19) have been removed.
3 The propositions (24) and (25) have been removed.
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(30) For every fieldF and for all elementsa, b, c of the support ofF holds·F(〈〈+F(〈〈a, −F(b)〉〉),
c〉〉) = +F(〈〈·F(〈〈a, c〉〉), −F(·F(〈〈b, c〉〉))〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x,
y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(31) For every fieldF and for every elementa of the support ofF holds·F(〈〈a, 0F〉〉) = 0F , where
F = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(32) For every fieldF and for every elementa of the support ofF holds·F(〈〈0F , a〉〉) = 0F , where
F = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(33) For every fieldF and for all elementsa, b of the support ofF holds−F(·F(〈〈a, b〉〉)) = ·F(〈〈a,
−F(b)〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, and
x4 = 〈〈〈〈y, y〉〉, x〉〉.

(34) For every fieldF holds ·F(〈〈1F , 0F〉〉) = 0F , whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉,
x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(35) For every fieldF holds ·F(〈〈0F , 1F〉〉) = 0F , whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉,
x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(36) LetF be a field anda, b be elements of the support ofF . Then·F(〈〈a, b〉〉) is an element of
the support ofF , whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉,
andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(37) For every fieldF and for all elementsa, b, c of the support ofF holds·F(〈〈·F(〈〈a, b〉〉), c〉〉) =
·F(〈〈a, ·F(〈〈b, c〉〉)〉〉), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉,
y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(38) For every fieldF and for all elementsa, b of the support ofF holds·F(〈〈a, b〉〉) = ·F(〈〈b, a〉〉),
whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉,
x〉〉.

(39) For every fieldF and for every elementa of the support ofF holds ·F(〈〈a, 1F〉〉) = a and
·F(〈〈1F , a〉〉) = a, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉,
andx4 = 〈〈〈〈y, y〉〉, x〉〉.

Let F be a field. The functor−1
F yields a function from (the support ofF)\{0F} into (the support

of F)\{0F} and is defined as follows:

(Def. 9) For every elementx of (the support ofF) \ {0F} holds·F(〈〈x, (−1
F )(x)〉〉) = 1F , whereF =

{x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

One can prove the following propositions:

(42)4 For every fieldF and for all elementsx, y of (the support ofF) \ {0F} such that·F(〈〈x,
y〉〉) = 1F holdsy= (−1

F )(x), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 =
〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(43) For every fieldF and for every elementx of (the support ofF) \ {0F} holds x =
(−1
F )((−1

F )(x)), whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉,
andx4 = 〈〈〈〈y, y〉〉, x〉〉.

(44) Let F be a field anda, b be elements of (the support ofF) \ {0F}. Then ·F(〈〈a, b〉〉) is an
element of (the support ofF)\{0F} and(−1

F )(a) is an element of (the support ofF)\{0F},
whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉,
x〉〉.

(45) For every fieldF and for all elementsa, b, c of the support ofF such that+F(〈〈a, b〉〉) =
+F(〈〈a, c〉〉) holdsb= c, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉, x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y,
x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.

4 The propositions (40) and (41) have been removed.
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(46) LetF be a field,a be an element of (the support ofF)\{0F}, andb, c be elements of the
support ofF . If ·F(〈〈a, b〉〉) = ·F(〈〈a, c〉〉), thenb = c, whereF = {x1,x2,x3,x4}, x1 = 〈〈〈〈x, x〉〉,
x〉〉, x2 = 〈〈〈〈x, y〉〉, y〉〉, x3 = 〈〈〈〈y, x〉〉, y〉〉, andx4 = 〈〈〈〈y, y〉〉, x〉〉.
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