Properties of Fields

Józef Białas
University of Łódź

Abstract

Summary. The second part of considerations concerning groups and fields. It includes a definition and properties of commutative field F as a structure defined by: the set, a support of F, containing two different elements, by two binary operations $+_{F}, \cdot_{F}$ on this set, called addition and multiplication, and by two elements from the support of $F, \mathbf{0}_{F}$ being neutral for addition and $\mathbf{1}_{F}$ being neutral for multiplication. This structure is named a field if $\left\langle\right.$ the support of $\left.F,+_{F}, \mathbf{0}_{F}\right\rangle$ and $\left\langle\right.$ the support of $\left.F,{ }^{\cdot}, \mathbf{1}_{F}\right\rangle$ are commutative groups and multiplication has the property of left-hand and right-hand distributivity with respect to addition. It is demonstrated that the field F satisfies the definition of a field in the axiomatic approach.

MML Identifier: REALSET2.
WWW:http://mizar.org/JFM/Vol2/realset2.html

The articles [6], [4], [8], [9], [2], [3], [7], [5], and [1] provide the notation and terminology for this paper.

Let I_{1} be a double loop structure. We say that I_{1} is field-like if and only if the condition (Def. 1) is satisfied.
(Def. 1) There exists a non trivial set A and there exists a binary operation o_{1} on A and there exists an element n_{1} of A and there exists a binary operation o_{2} of A preserving $A \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of $A \backslash\left\{n_{1}\right\}$ such that
(i) $I_{1}=\operatorname{field}\left(A, o_{1}, o_{2}, n_{1}, n_{2}\right)$,
(ii) $\left\langle A, o_{1}, n_{1}\right\rangle$ is a group,
(iii) for every non empty set B and for every binary operation P on B and for every element e of B such that $B=A \backslash\left\{n_{1}\right\}$ and $e=n_{2}$ and $P=o_{2} \upharpoonright_{n_{1}} A$ holds $\langle B, P, e\rangle$ is a group, and
(iv) for all elements x, y, z of A holds $o_{2}\left(\left\langle x, o_{1}(\langle y, z\rangle)\right\rangle\right)=o_{1}\left(\left\langle o_{2}(\langle x, y\rangle), o_{2}(\langle x, z\rangle)\right\rangle\right)$ and $o_{2}\left(\left\langle o_{1}(\langle x, y\rangle), z\right\rangle\right)=o_{1}\left(\left\langle o_{2}(\langle x, z\rangle), o_{2}(\langle y, z\rangle)\right\rangle\right)$.

One can check that there exists a double loop structure which is strict and field-like.
A field is a field-like double loop structure.
Let F be a field. The support of F yields a non trivial set and is defined by the condition (Def. 2).
(Def. 2) There exists a binary operation o_{1} on the support of F and there exists an element n_{1} of the support of F and there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of (the support of F) $\backslash\left\{n_{1}\right\}$ such that $F=$ field(the support of $\left.F, o_{1}, o_{2}, n_{1}, n_{2}\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x$, $y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor $+_{F}$ yielding a binary operation on the support of F is defined by the condition (Def. 3).
(Def. 3) There exists an element n_{1} of the support of F and there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of (the support of $F) \backslash\left\{n_{1}\right\}$ such that $F=$ field(the support of $\left.F,+_{F}, o_{2}, n_{1}, n_{2}\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, $x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor $\mathbf{0}_{F}$ yielding an element of the support of F is defined by the condition (Def. 4).
(Def. 4) There exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{\mathbf{0}_{F}\right\}$ and there exists an element n_{2} of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ such that $F=$ field(the support of $F,+_{F}, o_{2}, \mathbf{0}_{F}, n_{2}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor \cdot_{F} yields a binary operation of the support of F preserving the support of $F \backslash\left\{\mathbf{0}_{F}\right\}$ and is defined by:
(Def. 5) There exists an element n_{2} of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ such that $F=$ field(the support of $\left.F,+_{F},{ }_{F}, \mathbf{0}_{F}, n_{2}\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor $\mathbf{1}_{F}$ yields an element of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ and is defined as follows:
(Def. 6) $\quad F=$ field(the support of $F,+_{F},{ }_{F}, \mathbf{0}_{F}, \mathbf{1}_{F}$), where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle$, $x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

We now state several propositions:
(8) For every field F holds $\left\langle\right.$ the support of $\left.F,+_{F}, \mathbf{0}_{F}\right\rangle$ is a group, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, $x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(9) Let F be a field, B be a non empty set, P be a binary operation on B, and e be an element of B. Suppose $B=$ (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ and $e=\mathbf{1}_{F}$ and $P=\cdot_{F}\left\lceil_{\mathbf{0}_{F}}\right.$ the support of F. Then $\langle B, P, e\rangle$ is a group, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(10) Let F be a field and x, y, z be elements of the support of F. Then $\cdot_{F}\left(\left\langle x,+_{F}(\langle y\right.\right.$, $z\rangle)\rangle)=+_{F}\left(\left\langle\cdot{ }_{F}(\langle x, y\rangle) \cdot \cdot_{F}(\langle x, z\rangle)\right\rangle\right)$ and $\cdot{ }_{F}\left(\left\langle+_{F}(\langle x, y\rangle), z\right\rangle\right)=+_{F}\left(\left\langle\cdot{ }_{F}(\langle x, z\rangle),{ }_{F}(\langle y, z\rangle)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle$, $x\rangle$.
(11) For every field F and for all elements a, b, c of the support of F holds $+_{F}\left(\left\langle+_{F}(\langle a, b\rangle)\right.\right.$, $c\rangle)=+_{F}\left(\left\langle a,+_{F}(\langle b, c\rangle)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=$ $\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(12) For every field F and for all elements a, b of the support of F holds $+_{F}(\langle a, b\rangle)=+_{F}(\langle b$, $a\rangle$), where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y$, $y\rangle, x\rangle$.
(13) For every field F and for every element a of the support of F holds $+_{F}\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=a$ and $+_{F}\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)=a$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(14) Let F be a field and a be an element of the support of F. Then there exists an element b of the support of F such that $+_{F}(\langle a, b\rangle)=\mathbf{0}_{F}$ and $+_{F}(\langle b, a\rangle)=\mathbf{0}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, $x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a non trivial set. A set is called an one-element subset of F if:

[^0](Def. 7) There exists an element x of F such that it $=\{x\}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle$, $x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Next we state the proposition
(15) For every non trivial set F and for every one-element subset A of F holds $F \backslash A$ is a non empty set, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a non trivial set and let A be an one-element subset of F. Note that $F \backslash A$ is non empty.
Let F be a non trivial set. One can check that there exists an one-element subset of F which is non empty.

Let F be a non trivial set and let x be an element of F. Then $\{x\}$ is an one-element subset of F.
Next we state four propositions:
(20 \rangle^{2} For every field F and for all elements a, b, c of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\cdot{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a\right.\right.$, $b\rangle), c\rangle)=\cdot{ }_{F}\left(\left\langle a, \cdot{ }_{F}(\langle b, c\rangle)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle$, $x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(21) For every field F and for all elements a, b of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\cdot F(\langle a, b\rangle)=$ $\cdot{ }_{F}(\langle b, a\rangle)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(22) For every field F and for every element a of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds ${ }_{F}\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$ and $\cdot{ }_{F}\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)=a$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y$, $x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(23) Let F be a field and a be an element of (the support of F) $\backslash\left\{\mathbf{0}_{F}\right\}$. Then there exists an element b of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ such that ${ }_{F}(\langle a, b\rangle)=\mathbf{1}_{F}$ and $\cdot{ }_{F}(\langle b, a\rangle)=\mathbf{1}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor $-_{F}$ yielding a function from the support of F into the support of F is defined as follows:
(Def. 8) For every element x of the support of F holds $+_{F}\left(\left\langle x,{ }_{F}(x)\right\rangle\right)=\mathbf{0}_{F}$, where $F=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

One can prove the following propositions:
(26) For every field F and for all elements x, y of the support of F such that $+_{F}(\langle x, y\rangle)=\mathbf{0}_{F}$ holds $y=-_{F}(x)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(27) For every field F and for every element x of the support of F holds $x=-{ }_{F}\left(-{ }_{F}(x)\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(28) Let F be a field and a, b be elements of the support of F. Then
(i) $\quad+_{F}(\langle a, b\rangle)$ is an element of the support of F,
(ii) $\quad{ }_{F}(\langle a, b\rangle)$ is an element of the support of F, and
(iii) $-{ }_{F}(a)$ is an element of the support of F,
where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle$, $x\rangle$.
(29) For every field F and for all elements a, b, c of the support of F holds $\cdot_{F}\left(\left\langle a,+_{F}(\langle b\right.\right.$, $\left.\left.\left.\left.-_{F}(c)\right\rangle\right)\right\rangle\right)=+_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle),-_{F}\left(\cdot{ }_{F}(\langle a, c\rangle)\right)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle$, $x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

[^1](30) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}\left(\left\langle+_{F}\left(\left\langle a,{ }_{F}(b)\right\rangle\right)\right.\right.$, $c\rangle)=+{ }_{F}\left(\left\langle{ }_{F}(\langle a, c\rangle),{ }_{F}\left(\cdot{ }_{F}(\langle b, c\rangle)\right)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x$, $y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(31) For every field F and for every element a of the support of F holds $\cdot{ }_{F}\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=\mathbf{0}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(32) For every field F and for every element a of the support of F holds ${ }_{F}\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)=\mathbf{0}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(33) For every field F and for all elements a, b of the support of F holds $-{ }_{F}\left(\cdot{ }_{F}(\langle a, b\rangle)\right)=\cdot_{F}(\langle a$, $\left.\left.{ }_{-F}(b)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(34) For every field F holds $\cdot_{F}\left(\left\langle\mathbf{1}_{F}, \mathbf{0}_{F}\right\rangle\right)=\mathbf{0}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle$, $x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(35) For every field F holds $\cdot_{F}\left(\left\langle\mathbf{0}_{F}, \mathbf{1}_{F}\right\rangle\right)=\mathbf{0}_{F}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle$, $x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(36) Let F be a field and a, b be elements of the support of F. Then $\cdot_{F}(\langle a, b\rangle)$ is an element of the support of F, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(37) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle), c\right\rangle\right)=$ ${ }^{\cdot}{ }_{F}\left(\left\langle a, \cdot{ }_{F}(\langle b, c\rangle)\right\rangle\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle$, $y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(38) For every field F and for all elements a, b of the support of F holds $\cdot{ }_{F}(\langle a, b\rangle)=\cdot{ }_{F}(\langle b, a\rangle)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle$, $x\rangle$.
(39) For every field F and for every element a of the support of F holds $\cdot_{F}\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$ and ${ }^{\cdot}\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)=a$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

Let F be a field. The functor ${ }_{F}^{-1}$ yields a function from (the support of F) $\backslash\left\{\mathbf{0}_{F}\right\}$ into (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ and is defined as follows:
(Def. 9) For every element x of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ holds $\cdot{ }_{F}\left(\left\langle x,\left({ }_{F}^{-1}\right)(x)\right\rangle\right)=\mathbf{1}_{F}$, where $F=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
One can prove the following propositions:
$(42\rangle^{4}$ For every field F and for all elements x, y of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$ such that ${ }_{F}(\langle x$, $y\rangle)=\mathbf{1}_{F}$ holds $y=\left({ }_{F}^{-1}\right)(x)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=$ $\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(43) For every field F and for every element x of (the support of F) $\backslash\left\{\mathbf{0}_{F}\right\}$ holds $x=$ $\left({ }_{F}^{-1}\right)\left(\left(_{F}^{-1}\right)(x)\right)$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.
(44) Let F be a field and a, b be elements of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$. Then ${ }_{F}(\langle a, b\rangle)$ is an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$ and $\left({ }_{F}^{-1}\right)(a)$ is an element of (the support of $\left.F\right) \backslash\left\{\mathbf{0}_{F}\right\}$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle$, $x\rangle$.
(45) For every field F and for all elements a, b, c of the support of F such that $+_{F}(\langle a, b\rangle)=$ $+_{F}(\langle a, c\rangle)$ holds $b=c$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle, x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y$, $x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

[^2](46) Let F be a field, a be an element of (the support of $F) \backslash\left\{\mathbf{0}_{F}\right\}$, and b, c be elements of the support of F. If $\cdot F(\langle a, b\rangle)=\cdot_{F}(\langle a, c\rangle)$, then $b=c$, where $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, x_{1}=\langle\langle x, x\rangle$, $x\rangle, x_{2}=\langle\langle x, y\rangle, y\rangle, x_{3}=\langle\langle y, x\rangle, y\rangle$, and $x_{4}=\langle\langle y, y\rangle, x\rangle$.

References

[1] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html.
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received June 20, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (1)-(7) have been removed.

[^1]: ${ }^{2}$ The propositions (16)-(19) have been removed.
 ${ }^{3}$ The propositions (24) and (25) have been removed.

[^2]: ${ }^{4}$ The propositions (40) and (41) have been removed.

