Properties of Fields

Józef Białas University of Łódź

Summary. The second part of considerations concerning groups and fields. It includes a definition and properties of commutative field *F* as a structure defined by: the set, a support of *F*, containing two different elements, by two binary operations $+_F$, \cdot_F on this set, called addition and multiplication, and by two elements from the support of *F*, $\mathbf{0}_F$ being neutral for addition and $\mathbf{1}_F$ being neutral for multiplication. This structure is named a field if $\langle \text{the support of } F, +_F, \mathbf{0}_F \rangle$ and $\langle \text{the support of } F, \cdot_F, \mathbf{1}_F \rangle$ are commutative groups and multiplication. It is demonstrated that the field *F* satisfies the definition of a field in the axiomatic approach.

MML Identifier: REALSET2.

WWW: http://mizar.org/JFM/Vol2/realset2.html

The articles [6], [4], [8], [9], [2], [3], [7], [5], and [1] provide the notation and terminology for this paper.

Let I_1 be a double loop structure. We say that I_1 is field-like if and only if the condition (Def. 1) is satisfied.

- (Def. 1) There exists a non trivial set A and there exists a binary operation o_1 on A and there exists an element n_1 of A and there exists a binary operation o_2 of A preserving $A \setminus \{n_1\}$ and there exists an element n_2 of $A \setminus \{n_1\}$ such that
 - (i) $I_1 = \text{field}(A, o_1, o_2, n_1, n_2),$
 - (ii) $\langle A, o_1, n_1 \rangle$ is a group,
 - (iii) for every non empty set *B* and for every binary operation *P* on *B* and for every element *e* of *B* such that $B = A \setminus \{n_1\}$ and $e = n_2$ and $P = o_2 \upharpoonright_{n_1} A$ holds $\langle B, P, e \rangle$ is a group, and
 - (iv) for all elements x, y, z of A holds $o_2(\langle x, o_1(\langle y, z \rangle) \rangle) = o_1(\langle o_2(\langle x, y \rangle), o_2(\langle x, z \rangle) \rangle)$ and $o_2(\langle o_1(\langle x, y \rangle), z \rangle) = o_1(\langle o_2(\langle x, z \rangle), o_2(\langle y, z \rangle) \rangle).$

One can check that there exists a double loop structure which is strict and field-like. A field is a field-like double loop structure.

Let F be a field. The support of F yields a non trivial set and is defined by the condition (Def. 2).

(Def. 2) There exists a binary operation o_1 on the support of F and there exists an element n_1 of the support of F and there exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{n_1\}$ and there exists an element n_2 of (the support of $F) \setminus \{n_1\}$ such that $F = \text{field}(\text{the support of } F, o_1, o_2, n_1, n_2)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let F be a field. The functor $+_F$ yielding a binary operation on the support of F is defined by the condition (Def. 3).

(Def. 3) There exists an element n_1 of the support of F and there exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{n_1\}$ and there exists an element n_2 of (the support of $F) \setminus \{n_1\}$ such that F = field(the support of F, $+_F$, o_2 , n_1 , n_2), where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let F be a field. The functor $\mathbf{0}_F$ yielding an element of the support of F is defined by the condition (Def. 4).

(Def. 4) There exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{ \mathbf{0}_F \}$ and there exists an element n_2 of (the support of $F) \setminus \{ \mathbf{0}_F \}$ such that F = field (the support of $F, +_F, o_2, \mathbf{0}_F, n_2$), where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let *F* be a field. The functor \cdot_F yields a binary operation of the support of *F* preserving the support of $F \setminus \{\mathbf{0}_F\}$ and is defined by:

(Def. 5) There exists an element n_2 of (the support of F) \ { $\mathbf{0}_F$ } such that F = field(the support of F, $+_F, \cdot_F, \mathbf{0}_F, n_2$), where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let *F* be a field. The functor $\mathbf{1}_F$ yields an element of (the support of *F*) \ { $\mathbf{0}_F$ } and is defined as follows:

(Def. 6) $F = \text{field}(\text{the support of } F, +_F, \cdot_F, \mathbf{0}_F, \mathbf{1}_F), \text{ where } F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle, \text{ and } x_4 = \langle \langle y, y \rangle, x \rangle.$

We now state several propositions:

- (8)¹ For every field *F* holds (the support of *F*, +_{*F*}, **0**_{*F*}) is a group, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (9) Let *F* be a field, *B* be a non empty set, *P* be a binary operation on *B*, and *e* be an element of *B*. Suppose $B = (\text{the support of } F) \setminus \{\mathbf{0}_F\}$ and $e = \mathbf{1}_F$ and $P = \cdot_F \upharpoonright_{\mathbf{0}_F}$ the support of *F*. Then $\langle B, P, e \rangle$ is a group, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (10) Let *F* be a field and *x*, *y*, *z* be elements of the support of *F*. Then $\cdot_F(\langle x, +_F(\langle y, z \rangle) \rangle) = +_F(\langle \cdot_F(\langle x, y \rangle), \cdot_F(\langle x, z \rangle) \rangle)$ and $\cdot_F(\langle +_F(\langle x, y \rangle), z \rangle) = +_F(\langle \cdot_F(\langle x, z \rangle), \cdot_F(\langle y, z \rangle) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (11) For every field *F* and for all elements *a*, *b*, *c* of the support of *F* holds $+_F(\langle +_F(\langle a, b \rangle), c \rangle) = +_F(\langle a, +_F(\langle b, c \rangle) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (12) For every field *F* and for all elements *a*, *b* of the support of *F* holds $+_F(\langle a, b \rangle) = +_F(\langle b, a \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (13) For every field *F* and for every element *a* of the support of *F* holds $+_F(\langle a, \mathbf{0}_F \rangle) = a$ and $+_F(\langle \mathbf{0}_F, a \rangle) = a$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle$, $x_2 = \langle \langle x, y \rangle, y \rangle$, $x_3 = \langle \langle y, x \rangle$, $y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (14) Let *F* be a field and *a* be an element of the support of *F*. Then there exists an element *b* of the support of *F* such that $+_F(\langle a, b \rangle) = \mathbf{0}_F$ and $+_F(\langle b, a \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let F be a non trivial set. A set is called an one-element subset of F if:

¹ The propositions (1)–(7) have been removed.

(Def. 7) There exists an element x of F such that it = {x}, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle, \text{ and } x_4 = \langle \langle y, y \rangle, x \rangle.$

Next we state the proposition

(15) For every non trivial set *F* and for every one-element subset *A* of *F* holds $F \setminus A$ is a non empty set, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let *F* be a non trivial set and let *A* be an one-element subset of *F*. Note that $F \setminus A$ is non empty. Let *F* be a non trivial set. One can check that there exists an one-element subset of *F* which is non empty.

Let *F* be a non trivial set and let *x* be an element of *F*. Then $\{x\}$ is an one-element subset of *F*. Next we state four propositions:

- (20)² For every field *F* and for all elements *a*, *b*, *c* of (the support of *F*) \ {**0**_{*F*}} holds $\cdot_F(\langle \cdot_F(\langle a, b \rangle), c \rangle) = \cdot_F(\langle a, \cdot_F(\langle b, c \rangle) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (21) For every field *F* and for all elements *a*, *b* of (the support of *F*) \ {**0**_{*F*}} holds $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle b, a \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle$, $x_2 = \langle \langle x, y \rangle, y \rangle$, $x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (22) For every field *F* and for every element *a* of (the support of *F*) \ {**0**_{*F*}} holds $\cdot_F(\langle a, \mathbf{1}_F \rangle) = a$ and $\cdot_F(\langle \mathbf{1}_F, a \rangle) = a$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (23) Let *F* be a field and *a* be an element of (the support of *F*) \ {**0**_{*F*}}. Then there exists an element *b* of (the support of *F*) \ {**0**_{*F*}} such that $\cdot_F(\langle a, b \rangle) = \mathbf{1}_F$ and $\cdot_F(\langle b, a \rangle) = \mathbf{1}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let *F* be a field. The functor $-_F$ yielding a function from the support of *F* into the support of *F* is defined as follows:

(Def. 8) For every element x of the support of F holds $+_F(\langle x, -_F(x) \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

One can prove the following propositions:

- (26)³ For every field *F* and for all elements *x*, *y* of the support of *F* such that $+_F(\langle x, y \rangle) = \mathbf{0}_F$ holds $y = -_F(x)$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle$, $x_2 = \langle \langle x, y \rangle, y \rangle$, $x_3 = \langle \langle y, x \rangle$, $y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (27) For every field *F* and for every element *x* of the support of *F* holds x = -F(-F(x)), where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (28) Let F be a field and a, b be elements of the support of F. Then
- (i) $+_F(\langle a, b \rangle)$ is an element of the support of *F*,
- (ii) $\cdot_F(\langle a, b \rangle)$ is an element of the support of *F*, and
- (iii) $-_F(a)$ is an element of the support of F,

where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x_2 \rangle$.

(29) For every field *F* and for all elements *a*, *b*, *c* of the support of *F* holds $\cdot_F(\langle a, +_F(\langle b, -_F(c) \rangle) \rangle) = +_F(\langle \cdot_F(\langle a, b \rangle), -_F(\cdot_F(\langle a, c \rangle)) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

 $^{^{2}}$ The propositions (16)–(19) have been removed.

³ The propositions (24) and (25) have been removed.

- (30) For every field *F* and for all elements *a*, *b*, *c* of the support of *F* holds $\cdot_F(\langle +_F(\langle a, -_F(b) \rangle), c \rangle) = +_F(\langle \cdot_F(\langle a, c \rangle), -_F(\cdot_F(\langle b, c \rangle)) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (31) For every field *F* and for every element *a* of the support of *F* holds $\cdot_F(\langle a, \mathbf{0}_F \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle, \text{ and } x_4 = \langle \langle y, y \rangle, x \rangle.$
- (32) For every field *F* and for every element *a* of the support of *F* holds $\cdot_F(\langle \mathbf{0}_F, a \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle, \text{ and } x_4 = \langle \langle y, y \rangle, x \rangle.$
- (33) For every field *F* and for all elements *a*, *b* of the support of *F* holds $-_F(\cdot_F(\langle a, b \rangle)) = \cdot_F(\langle a, -F(b) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle$, $x_2 = \langle \langle x, y \rangle, y \rangle$, $x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (34) For every field F holds $\cdot_F(\langle \mathbf{1}_F, \mathbf{0}_F \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (35) For every field *F* holds $\cdot_F(\langle \mathbf{0}_F, \mathbf{1}_F \rangle) = \mathbf{0}_F$, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle, x \rangle$, $x_2 = \langle \langle x, y \rangle, y \rangle$, $x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (36) Let *F* be a field and *a*, *b* be elements of the support of *F*. Then $\cdot_F(\langle a, b \rangle)$ is an element of the support of *F*, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (37) For every field *F* and for all elements *a*, *b*, *c* of the support of *F* holds $\cdot_F(\langle \cdot_F(\langle a, b \rangle), c \rangle) =$ $\cdot_F(\langle a, \cdot_F(\langle b, c \rangle) \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (38) For every field *F* and for all elements *a*, *b* of the support of *F* holds $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle b, a \rangle)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (39) For every field *F* and for every element *a* of the support of *F* holds $\cdot_F(\langle a, \mathbf{1}_F \rangle) = a$ and $\cdot_F(\langle \mathbf{1}_F, a \rangle) = a$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle,$ and $x_4 = \langle \langle y, y \rangle, x \rangle$.

Let *F* be a field. The functor $_{F}^{-1}$ yields a function from (the support of *F*) \ {**0**_{*F*}} into (the support of *F*) \ {**0**_{*F*}} and is defined as follows:

(Def. 9) For every element x of (the support of F) \ { $\mathbf{0}_F$ } holds $\cdot_F(\langle x, (F^{-1})(x) \rangle) = \mathbf{1}_F$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

One can prove the following propositions:

- (42)⁴ For every field *F* and for all elements *x*, *y* of (the support of *F*) \ { $\mathbf{0}_F$ } such that $\cdot_F(\langle x, y \rangle) = \mathbf{1}_F$ holds $y = \binom{-1}{F}(x)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (43) For every field *F* and for every element *x* of (the support of *F*) \ {**0**_{*F*}} holds $x = \binom{-1}{F} \binom{-1}{F} \binom{-1}{F} (\binom{-1}{F})(x)$, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle,$ and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (44) Let *F* be a field and *a*, *b* be elements of (the support of *F*) \ {**0**_{*F*}}. Then $\cdot_F(\langle a, b \rangle)$ is an element of (the support of *F*) \ {**0**_{*F*}} and $\binom{-1}{F}(a)$ is an element of (the support of *F*) \ {**0**_{*F*}}, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.
- (45) For every field *F* and for all elements *a*, *b*, *c* of the support of *F* such that $+_F(\langle a, b \rangle) = +_F(\langle a, c \rangle)$ holds b = c, where $F = \{x_1, x_2, x_3, x_4\}, x_1 = \langle \langle x, x \rangle, x \rangle, x_2 = \langle \langle x, y \rangle, y \rangle, x_3 = \langle \langle y, x \rangle, y \rangle$, and $x_4 = \langle \langle y, y \rangle, x \rangle$.

⁴ The propositions (40) and (41) have been removed.

(46) Let *F* be a field, *a* be an element of (the support of *F*) \ {**0**_{*F*}}, and *b*, *c* be elements of the support of *F*. If $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle a, c \rangle)$, then b = c, where $F = \{x_1, x_2, x_3, x_4\}$, $x_1 = \langle \langle x, x \rangle$, $x \rangle$, $x_2 = \langle \langle x, y \rangle$, $y \rangle$, $x_3 = \langle \langle y, x \rangle$, $y \rangle$, and $x_4 = \langle \langle y, y \rangle$, $x \rangle$.

REFERENCES

- [1] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_1.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html.

Received June 20, 1990

Published January 2, 2004