Group and Field Definitions

Józef Białas Łódź University

Summary. The article contains exactly the same definitions of group and field as those in [4]. These definitions were prepared without the help of the definitions and properties of *Nat* and *Real* modes included in the MML. This is the first of a series of articles in which we are going to introduce the concept of the set of real numbers in a elementary axiomatic way.

MML Identifier: REALSET1.

WWW: http://mizar.org/JFM/Vol1/realset1.html

The articles [6], [3], [8], [9], [1], [2], [7], and [5] provide the notation and terminology for this paper.

The following two propositions are true:

- (10)¹ For all sets X, x and for every function F from [:X,X:] into X such that $x \in [:X,X:]$ holds $F(x) \in X$.
- (11) Let X be a set and F be a binary operation on X. Then there exists a subset A of X such that for every set x such that $x \in [:A, A:]$ holds $F(x) \in A$.

Let *X* be a set, let *F* be a binary operation on *X*, and let *A* be a subset of *X*. We say that *F* is in *A* if and only if:

(Def. 1) For every set x such that $x \in [:A, A:]$ holds $F(x) \in A$.

Let *X* be a set and let *F* be a binary operation on *X*. A subset of *X* is called a set closed w.r.t. *F* if:

(Def. 2) For every set x such that $x \in [:it, it:]$ holds $F(x) \in it$.

One can prove the following proposition

(14)² Let X be a set, F be a binary operation on X, and A be a set closed w.r.t. F. Then $F \upharpoonright [A, A]$ is a binary operation on A.

Let X be a set, let F be a binary operation on X, and let A be a set closed w.r.t. F. The functor $F \upharpoonright A$ yields a binary operation on A and is defined by:

(Def. 3) $F \upharpoonright A = F \upharpoonright [:A,A:]$.

Let I_1 be a loop structure. We say that I_1 is zeroed if and only if the condition (Def. 5) is satisfied.

¹ The propositions (1)–(9) have been removed.

² The propositions (12) and (13) have been removed.

(Def. 5)³ Let a be an element of I_1 . Then (the addition of I_1)($\langle a$, the zero of $I_1 \rangle$) = a and (the addition of I_1)(\langle the zero of I_1 , $a \rangle$) = a.

We say that I_1 is complementable if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let a be an element of I_1 . Then there exists an element b of I_1 such that (the addition of I_1)($\langle a, b \rangle$) = the zero of I_1 and (the addition of I_1)($\langle b, a \rangle$) = the zero of I_1 .

Let L be a non empty loop structure. Let us observe that L is add-associative if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let a, b, c be elements of L. Then (the addition of L)($\langle (\text{the addition of } L)(\langle a, b \rangle), c \rangle) = (\text{the addition of } L)(\langle a, (\text{the addition of } L)(\langle b, c \rangle))\rangle$).

Let us observe that *L* is Abelian if and only if:

(Def. 8) For all elements a, b of L holds (the addition of L)($\langle a, b \rangle$) = (the addition of L)($\langle b, a \rangle$).

Let X be a non empty set, let a be a binary operation on X, and let Z be an element of X. One can verify that $\langle X, a, Z \rangle$ is non empty.

Let us observe that there exists a non empty loop structure which is strict, Abelian, add-associative, zeroed, and complementable.

A group is an Abelian add-associative zeroed complementable non empty loop structure. Let I_1 be a set. We say that I_1 is trivial if and only if:

(Def. 12)⁴ I_1 is empty or there exists a set x such that $I_1 = \{x\}$.

One can verify the following observations:

- * there exists a set which is trivial and non empty,
- * there exists a set which is non trivial and non empty, and
- * every set which is non trivial is also non empty.

We now state three propositions:

- (32)⁵ For every non empty set *X* holds *X* is non trivial iff for every set *x* holds $X \setminus \{x\}$ is a non empty set.
- (33) There exists a non empty set A such that for every element z of A holds $A \setminus \{z\}$ is a non empty set.
- (34) For every non empty set X such that for every element x of X holds $X \setminus \{x\}$ is a non empty set holds X is non trivial.

Let I_1 be a 1-sorted structure. We say that I_1 is trivial if and only if:

(Def. 13) The carrier of I_1 is trivial.

Let us observe that there exists a 1-sorted structure which is trivial. Next we state the proposition

(35) For every non empty set A such that for every element x of A holds $A \setminus \{x\}$ is a non empty set holds A is a non trivial set.

Let us note that there exists a double loop structure which is non trivial and strict.

Let A be a non trivial set, let o_1 , o_2 be binary operations on A, let n_1 be an element of A, and let n_2 be an element of $A \setminus \{n_1\}$. The functor field (A, o_1, o_2, n_1, n_2) yields a non trivial strict double loop structure and is defined by the conditions (Def. 14).

³ The definition (Def. 4) has been removed.

⁴ The definitions (Def. 9)–(Def. 11) have been removed.

⁵ The propositions (15)–(31) have been removed.

- (Def. 14)(i) $A = \text{the carrier of field}(A, o_1, o_2, n_1, n_2),$
 - (ii) $o_1 = \text{the addition of field}(A, o_1, o_2, n_1, n_2),$
 - (iii) o_2 = the multiplication of field(A, o_1, o_2, n_1, n_2),
 - (iv) n_1 = the zero of field (A, o_1, o_2, n_1, n_2) , and
 - (v) $n_2 = \text{the unity of field}(A, o_1, o_2, n_1, n_2).$

Let X be a non trivial set, let F be a binary operation on X, and let x be an element of X. We say that F is binary operation preserving x if and only if:

(Def. 15) $X \setminus \{x\}$ is a set closed w.r.t. F and $F \upharpoonright [: X \setminus \{x\}, X \setminus \{x\}:]$ is a binary operation on $X \setminus \{x\}$.

The following proposition is true

(39)⁶ Let X be a set and A be a subset of X. Then there exists a binary operation F on X such that for every set x such that $x \in [:A,A:]$ holds $F(x) \in A$.

Let *X* be a set and let *A* be a subset of *X*. A binary operation on *X* is said to be a binary operation of *X* preserving *A* if:

(Def. 16) For every set x such that $x \in [A, A]$ holds it $(x) \in A$.

Next we state the proposition

 $(41)^7$ Let X be a set, A be a subset of X, and F be a binary operation of X preserving A. Then $F \upharpoonright [:A,A:]$ is a binary operation on A.

Let X be a set, let A be a subset of X, and let F be a binary operation of X preserving A. The functor $F \upharpoonright A$ yielding a binary operation on A is defined by:

(Def. 17) $F \upharpoonright A = F \upharpoonright [:A, A:].$

We now state the proposition

(43)⁸ Let *A* be a non trivial set and *x* be an element of *A*. Then there exists a binary operation *F* on *A* such that for every set *y* if $y \in [:A \setminus \{x\}, A \setminus \{x\}:]$, then $F(y) \in A \setminus \{x\}$.

Let *A* be a non trivial set and let *x* be an element of *A*. A binary operation on *A* is said to be a binary operation of *A* preserving $A \setminus \{x\}$ if:

(Def. 18) For every set y such that $y \in [A \setminus \{x\}, A \setminus \{x\}]$: holds it $(y) \in A \setminus \{x\}$.

Next we state the proposition

(45)⁹ Let *A* be a non trivial set, *x* be an element of *A*, and *F* be a binary operation of *A* preserving $A \setminus \{x\}$. Then $F \upharpoonright [:A \setminus \{x\}, A \setminus \{x\}]$ is a binary operation on $A \setminus \{x\}$.

Let *A* be a non trivial set, let *x* be an element of *A*, and let *F* be a binary operation of *A* preserving $A \setminus \{x\}$. The functor $F \upharpoonright_x A$ yields a binary operation on $A \setminus \{x\}$ and is defined as follows:

(Def. 19) $F \upharpoonright_x A = F \upharpoonright [:A \setminus \{x\}, A \setminus \{x\}:].$

Let I_1 be a 1-sorted structure. Let us observe that I_1 is trivial if and only if:

(Def. 20) For all elements x, y of I_1 holds x = y.

⁶ The propositions (36)–(38) have been removed.

⁷ The proposition (40) has been removed.

⁸ The proposition (42) has been removed.

⁹ The proposition (44) has been removed.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Jean Dieudonné. Foundations of Modern Analysis. Academic Press, New York and London, 1960.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_l.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html.

Received October 27, 1989

Published January 2, 2004