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Summary. The following notions for real subsets are defined: open set, closed set,
compact set, intervals and neighbourhoods. In the sequel some theorems involving above
mentioned notions are proved.
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The articlesl[8],[[10],[[1],19], [11],12], 6], [4], [%5], [3], and.[7] provide the notation and terminol-
ogy for this paper.
For simplicity, we adopt the following convention; mare natural numbers, g, 91, d2, I, p, g
are real numbersy, s, are sequences of real numbers, 2nd, Y; are subsets dk.
The schem&ealSeqChoiceoncerns a binary predicaf® and states that:
There exists a functiog; from N into R such that for every natural numbeholds
P[n, sy(n)]
provided the parameters satisfy the following condition:
¢ For every natural numberthere exists a real numbesuch thatP[n,r].
We now state four propositions:

(1) |Iffor everyr such that € X holdsr €Y, thenX CY.

(SE] If Y, CY andY is lower bounded, the¥ is lower bounded.
(4) If Yy CY andY is upper bounded, then is upper bounded.
(5) IfYy CY andY is bounded, thelf; is bounded.

Let g, sbe real numbers. The functf, g yields a subset dR and is defined as follows:
(Def. 1) [g,5] = {r;r ranges over real numbemg<r A r <s}.

Let g, sbe real numbers. The functim, 5] yields a subset dR and is defined as follows:
(Def. 2) ]g,9[ = {r;r ranges over real numberg<r A r < s}.

Next we state a number of propositions:

@F relp—gp+gliff [r—p <o

9) relp,diff [(p+g)—2-r[<g—p.

1Supported by RPBP.1I1-24.C8.
1 The proposition (2) has been removed.
2 The propositions (6) and (7) have been removed.
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(10) re]p.giff [(p+g) —2:-r|<g—p.
(11) For allg, ssuch thag < sholds|g,s] = ]g,5[U{9g,s}.
(12) If p<g,then]g,p[=0.
(13) If p< g, theng,p]=0.
(14) [p,p]={p}-
(15) If p<g,then]p,g[#0andifp <g, thenpe [p,g] andg € [p,g] and]p,g[ < [p.g.
(16) |Ifr € [p,g] andse [p,q], then[r,5 C [p,g].
(17) Ifre]p,g[andse |p,g], then[r,s C]p,g[.
(18) If p<g,then[p,g = [p,g]U[g,pl.
Let us consideK. We say thaX is compact if and only if;:

(Def. 3) For everys; such that rng; C X there existss, such thats, is a subsequence sf and
convergent and lire, € X.

Let us consideK. We say thaK is closed if and only if:

(Def. 4) For everys; such that rng; C X ands; is convergent holds lirg, € X.
Let us consideK. We say thakX is open if and only if:

(Def. 5) XCis closed.

One can prove the following four propositions:

(22 For everys; such that rng; C [s,g] holdss; is bounded.
(23) [s,g] is closed.

(24) [s,g] is compact.

(25) ]p,q[is open.

Let p, g be real numbers. Note thg, q] is open.
We now state several propositions:

(26) If X is compact, theiX is closed.

(27) Suppose that for every such thatp € X there existr, n such that 0< r and for everym
such thah < mholdsr < |s;(m) — p|. Let givens,. If s, is a subsequence sf, thens; is not
convergent or ling, ¢ X.

(28) If X is compact, theiX is bounded.

(29) If X is bounded and closed, th&nis compact.

(30) For everyX such thaX # 0 andX is closed and upper bounded holds Xup X.
(31) For everyX such thaiX # 0 andX is closed and lower bounded holds €& X.
(32) For everyX such thaiX # 0 andX is compact holds sugp € X and infX € X.

(33) If X'is compact and for aths, g» such thag; € X andgp € X holds[gs,gz] C X, then there
existp, g such thaX = [p,g].

3 The propositions (19)—(21) have been removed.
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Let us observe that there exists a subsék efhich is open.
Letr be a real number. A subset&fis called a neighbourhood ofif:

(Def. 7@] There existg such that < gand it=|r —g,r +g[.

Letr be a real number. Observe that every neighbourhoodbpen.
Next we state several propositions:

(37| For every neighbourhool of r holdsr € N.

(38) For every and for all neighbourhoods;, N, of r there exists a neighbourhodbof r such
thatN C N; andN C No.

(39) For every open subsk¥tof R and for everyr such that € X there exists a neighbourhood
N of r such thalN C X.

(40) For every open subsk¥tof R and for everyr such that € X there existg such that 6< g
and]r —g,r+g[ C X.

(41) If for everyr such that € X there exists a neighbourhodtof r such thalN C X, thenX
is open.

(42) For everyr such thatr € X there exists a neighbourhoddof r such thatN C X iff X is
open.

(43) If X is open and upper bounded, then Xug X.
(44) If X is open and lower bounded, then # X.

(45) If X is open and bounded and for gll, gz such thatg; € X andgy € X holds[gi,g2] C X,
then there exisp, g such thaX =]p,g[.
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