Topological Properties of Subsets in Real Numbers¹ Konrad Raczkowski Warsaw University Białystok Paweł Sadowski Warsaw University Białystok **Summary.** The following notions for real subsets are defined: open set, closed set, compact set, intervals and neighbourhoods. In the sequel some theorems involving above mentioned notions are proved. MML Identifier: RCOMP_1. WWW: http://mizar.org/JFM/Vol2/rcomp_1.html The articles [8], [10], [1], [9], [11], [2], [6], [4], [5], [3], and [7] provide the notation and terminology for this paper. For simplicity, we adopt the following convention: n, m are natural numbers, s, g, g_1 , g_2 , r, p, q are real numbers, s_1 , s_2 are sequences of real numbers, and X, Y, Y_1 are subsets of \mathbb{R} . The scheme RealSeqChoice concerns a binary predicate \mathcal{P} , and states that: There exists a function s_1 from \mathbb{N} into \mathbb{R} such that for every natural number n holds $\mathcal{P}[n, s_1(n)]$ provided the parameters satisfy the following condition: - For every natural number n there exists a real number r such that $\mathcal{P}[n,r]$. We now state four propositions: - (1) If for every r such that $r \in X$ holds $r \in Y$, then $X \subseteq Y$. - (3)¹ If $Y_1 \subseteq Y$ and Y is lower bounded, then Y_1 is lower bounded. - (4) If $Y_1 \subseteq Y$ and Y is upper bounded, then Y_1 is upper bounded. - (5) If $Y_1 \subseteq Y$ and Y is bounded, then Y_1 is bounded. Let g, s be real numbers. The functor [g,s] yields a subset of \mathbb{R} and is defined as follows: (Def. 1) $$[g,s] = \{r; r \text{ ranges over real numbers: } g \le r \land r \le s\}.$$ Let g, s be real numbers. The functor [g,s] yields a subset of \mathbb{R} and is defined as follows: (Def. 2) $]g,s[= \{r; r \text{ ranges over real numbers: } g < r \land r < s\}.$ Next we state a number of propositions: $$(8)^2$$ $r \in [p-g, p+g]$ iff $|r-p| < g$. (9) $$r \in [p,g] \text{ iff } |(p+g)-2\cdot r| \le g-p.$$ ¹Supported by RPBP.III-24.C8. ¹ The proposition (2) has been removed. ² The propositions (6) and (7) have been removed. - (10) $r \in]p, g[\text{ iff } |(p+g)-2 \cdot r| < g-p.$ - (11) For all g, s such that $g \le s$ holds $[g,s] =]g,s[\cup \{g,s\}.$ - (12) If $p \le g$, then $]g, p[=\emptyset]$. - (13) If p < g, then $[g, p] = \emptyset$. - (14) $[p,p] = \{p\}.$ - (15) If p < g, then $p \in [p,g]$ and if $p \le g$, then $p \in [p,g]$ and $p \in [p,g]$ and $p \in [p,g]$. - (16) If $r \in [p, g]$ and $s \in [p, g]$, then $[r, s] \subseteq [p, g]$. - (17) If $r \in]p,g[$ and $s \in]p,g[$, then $[r,s] \subseteq]p,g[$. - (18) If $p \le g$, then $[p,g] = [p,g] \cup [g,p]$. Let us consider *X*. We say that *X* is compact if and only if: (Def. 3) For every s_1 such that $\operatorname{rng} s_1 \subseteq X$ there exists s_2 such that s_2 is a subsequence of s_1 and convergent and $\lim s_2 \in X$. Let us consider *X*. We say that *X* is closed if and only if: (Def. 4) For every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$. Let us consider X. We say that X is open if and only if: (Def. 5) X^{c} is closed. One can prove the following four propositions: - (22)³ For every s_1 such that $\operatorname{rng} s_1 \subseteq [s, g]$ holds s_1 is bounded. - (23) [s,g] is closed. - (24) [s,g] is compact. - (25) p,q is open. Let p, q be real numbers. Note that p, q is open. We now state several propositions: - (26) If X is compact, then X is closed. - (27) Suppose that for every p such that $p \in X$ there exist r, n such that 0 < r and for every m such that n < m holds $r < |s_1(m) p|$. Let given s_2 . If s_2 is a subsequence of s_1 , then s_2 is not convergent or $\lim s_2 \notin X$. - (28) If X is compact, then X is bounded. - (29) If *X* is bounded and closed, then *X* is compact. - (30) For every *X* such that $X \neq \emptyset$ and *X* is closed and upper bounded holds $\sup X \in X$. - (31) For every *X* such that $X \neq \emptyset$ and *X* is closed and lower bounded holds inf $X \in X$. - (32) For every *X* such that $X \neq \emptyset$ and *X* is compact holds $\sup X \in X$ and $\inf X \in X$. - (33) If X is compact and for all g_1, g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X = [p, g]. ³ The propositions (19)–(21) have been removed. Let us observe that there exists a subset of \mathbb{R} which is open. Let r be a real number. A subset of \mathbb{R} is called a neighbourhood of r if: (Def. 7)⁴ There exists g such that 0 < g and it = |r - g, r + g|. Let r be a real number. Observe that every neighbourhood of r is open. Next we state several propositions: - (37)⁵ For every neighbourhood N of r holds $r \in N$. - (38) For every r and for all neighbourhoods N_1 , N_2 of r there exists a neighbourhood N of r such that $N \subseteq N_1$ and $N \subseteq N_2$. - (39) For every open subset X of \mathbb{R} and for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$. - (40) For every open subset X of \mathbb{R} and for every r such that $r \in X$ there exists g such that 0 < g and $|r g, r + g| \subseteq X$. - (41) If for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$, then X is open. - (42) For every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ iff X is open. - (43) If *X* is open and upper bounded, then $\sup X \notin X$. - (44) If X is open and lower bounded, then $\inf X \notin X$. - (45) If X is open and bounded and for all g_1, g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X = [p, g]. ## REFERENCES - Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html. - [2] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [3] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html. - [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html. - [5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html. - [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html. - [7] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. ⁴ The definition (Def. 6) has been removed. ⁵ The propositions (34)–(36) have been removed. [11] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html. Received June 18, 1990 Published January 2, 2004