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Summary. The following notions for real subsets are defined: open set, closed set,
compact set, intervals and neighbourhoods. In the sequel some theorems involving above
mentioned notions are proved.
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The articles [8], [10], [1], [9], [11], [2], [6], [4], [5], [3], and [7] provide the notation and terminol-
ogy for this paper.

For simplicity, we adopt the following convention:n, mare natural numbers,s, g, g1, g2, r, p, q
are real numbers,s1, s2 are sequences of real numbers, andX, Y, Y1 are subsets ofR.

The schemeRealSeqChoiceconcerns a binary predicateP , and states that:
There exists a functions1 from N into R such that for every natural numbern holds
P [n,s1(n)]

provided the parameters satisfy the following condition:
• For every natural numbern there exists a real numberr such thatP [n, r].

We now state four propositions:

(1) If for everyr such thatr ∈ X holdsr ∈Y, thenX ⊆Y.

(3)1 If Y1 ⊆Y andY is lower bounded, thenY1 is lower bounded.

(4) If Y1 ⊆Y andY is upper bounded, thenY1 is upper bounded.

(5) If Y1 ⊆Y andY is bounded, thenY1 is bounded.

Let g, s be real numbers. The functor[g,s] yields a subset ofR and is defined as follows:

(Def. 1) [g,s] = {r; r ranges over real numbers:g≤ r ∧ r ≤ s}.

Let g, s be real numbers. The functor]g,s[ yields a subset ofR and is defined as follows:

(Def. 2) ]g,s[ = {r; r ranges over real numbers:g < r ∧ r < s}.

Next we state a number of propositions:

(8)2 r ∈ ]p−g, p+g[ iff |r− p|< g.

(9) r ∈ [p,g] iff |(p+g)−2· r| ≤ g− p.

1Supported by RPBP.III-24.C8.
1 The proposition (2) has been removed.
2 The propositions (6) and (7) have been removed.
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(10) r ∈ ]p,g[ iff |(p+g)−2· r|< g− p.

(11) For allg, s such thatg≤ s holds[g,s] = ]g,s[∪{g,s}.

(12) If p≤ g, then]g, p[ = /0.

(13) If p < g, then[g, p] = /0.

(14) [p, p] = {p}.

(15) If p < g, then]p,g[ 6= /0 and if p≤ g, thenp∈ [p,g] andg∈ [p,g] and]p,g[⊆ [p,g].

(16) If r ∈ [p,g] ands∈ [p,g], then[r,s]⊆ [p,g].

(17) If r ∈ ]p,g[ ands∈ ]p,g[, then[r,s]⊆ ]p,g[.

(18) If p≤ g, then[p,g] = [p,g]∪ [g, p].

Let us considerX. We say thatX is compact if and only if:

(Def. 3) For everys1 such that rngs1 ⊆ X there existss2 such thats2 is a subsequence ofs1 and
convergent and lims2 ∈ X.

Let us considerX. We say thatX is closed if and only if:

(Def. 4) For everys1 such that rngs1 ⊆ X ands1 is convergent holds lims1 ∈ X.

Let us considerX. We say thatX is open if and only if:

(Def. 5) Xc is closed.

One can prove the following four propositions:

(22)3 For everys1 such that rngs1 ⊆ [s,g] holdss1 is bounded.

(23) [s,g] is closed.

(24) [s,g] is compact.

(25) ]p,q[ is open.

Let p, q be real numbers. Note that]p,q[ is open.
We now state several propositions:

(26) If X is compact, thenX is closed.

(27) Suppose that for everyp such thatp∈ X there existr, n such that 0< r and for everym
such thatn< mholdsr < |s1(m)− p|. Let givens2. If s2 is a subsequence ofs1, thens2 is not
convergent or lims2 /∈ X.

(28) If X is compact, thenX is bounded.

(29) If X is bounded and closed, thenX is compact.

(30) For everyX such thatX 6= /0 andX is closed and upper bounded holds supX ∈ X.

(31) For everyX such thatX 6= /0 andX is closed and lower bounded holds infX ∈ X.

(32) For everyX such thatX 6= /0 andX is compact holds supX ∈ X and infX ∈ X.

(33) If X is compact and for allg1, g2 such thatg1 ∈ X andg2 ∈ X holds[g1,g2]⊆ X, then there
exist p, g such thatX = [p,g].

3 The propositions (19)–(21) have been removed.
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Let us observe that there exists a subset ofR which is open.
Let r be a real number. A subset ofR is called a neighbourhood ofr if:

(Def. 7)4 There existsg such that 0< g and it= ]r−g, r +g[.

Let r be a real number. Observe that every neighbourhood ofr is open.
Next we state several propositions:

(37)5 For every neighbourhoodN of r holdsr ∈ N.

(38) For everyr and for all neighbourhoodsN1, N2 of r there exists a neighbourhoodN of r such
thatN ⊆ N1 andN ⊆ N2.

(39) For every open subsetX of R and for everyr such thatr ∈ X there exists a neighbourhood
N of r such thatN ⊆ X.

(40) For every open subsetX of R and for everyr such thatr ∈ X there existsg such that 0< g
and]r−g, r +g[⊆ X.

(41) If for everyr such thatr ∈ X there exists a neighbourhoodN of r such thatN ⊆ X, thenX
is open.

(42) For everyr such thatr ∈ X there exists a neighbourhoodN of r such thatN ⊆ X iff X is
open.

(43) If X is open and upper bounded, then supX /∈ X.

(44) If X is open and lower bounded, then infX /∈ X.

(45) If X is open and bounded and for allg1, g2 such thatg1 ∈ X andg2 ∈ X holds[g1,g2]⊆ X,
then there existp, g such thatX = ]p,g[.
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