Topological Properties of Subsets in Real Numbers¹

Konrad Raczkowski Warsaw University Białystok Paweł Sadowski Warsaw University Białystok

Summary. The following notions for real subsets are defined: open set, closed set, compact set, intervals and neighbourhoods. In the sequel some theorems involving above mentioned notions are proved.

MML Identifier: RCOMP_1.

WWW: http://mizar.org/JFM/Vol2/rcomp_1.html

The articles [8], [10], [1], [9], [11], [2], [6], [4], [5], [3], and [7] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: n, m are natural numbers, s, g, g_1 , g_2 , r, p, q are real numbers, s_1 , s_2 are sequences of real numbers, and X, Y, Y_1 are subsets of \mathbb{R} .

The scheme RealSeqChoice concerns a binary predicate \mathcal{P} , and states that:

There exists a function s_1 from \mathbb{N} into \mathbb{R} such that for every natural number n holds $\mathcal{P}[n, s_1(n)]$

provided the parameters satisfy the following condition:

- For every natural number n there exists a real number r such that $\mathcal{P}[n,r]$. We now state four propositions:
- (1) If for every r such that $r \in X$ holds $r \in Y$, then $X \subseteq Y$.
- (3)¹ If $Y_1 \subseteq Y$ and Y is lower bounded, then Y_1 is lower bounded.
- (4) If $Y_1 \subseteq Y$ and Y is upper bounded, then Y_1 is upper bounded.
- (5) If $Y_1 \subseteq Y$ and Y is bounded, then Y_1 is bounded.

Let g, s be real numbers. The functor [g,s] yields a subset of \mathbb{R} and is defined as follows:

(Def. 1)
$$[g,s] = \{r; r \text{ ranges over real numbers: } g \le r \land r \le s\}.$$

Let g, s be real numbers. The functor [g,s] yields a subset of \mathbb{R} and is defined as follows:

(Def. 2) $]g,s[= \{r; r \text{ ranges over real numbers: } g < r \land r < s\}.$

Next we state a number of propositions:

$$(8)^2$$
 $r \in [p-g, p+g]$ iff $|r-p| < g$.

(9)
$$r \in [p,g] \text{ iff } |(p+g)-2\cdot r| \le g-p.$$

¹Supported by RPBP.III-24.C8.

¹ The proposition (2) has been removed.

² The propositions (6) and (7) have been removed.

- (10) $r \in]p, g[\text{ iff } |(p+g)-2 \cdot r| < g-p.$
- (11) For all g, s such that $g \le s$ holds $[g,s] =]g,s[\cup \{g,s\}.$
- (12) If $p \le g$, then $]g, p[=\emptyset]$.
- (13) If p < g, then $[g, p] = \emptyset$.
- (14) $[p,p] = \{p\}.$
- (15) If p < g, then $p \in [p,g]$ and if $p \le g$, then $p \in [p,g]$ and $p \in [p,g]$ and $p \in [p,g]$.
- (16) If $r \in [p, g]$ and $s \in [p, g]$, then $[r, s] \subseteq [p, g]$.
- (17) If $r \in]p,g[$ and $s \in]p,g[$, then $[r,s] \subseteq]p,g[$.
- (18) If $p \le g$, then $[p,g] = [p,g] \cup [g,p]$.

Let us consider *X*. We say that *X* is compact if and only if:

(Def. 3) For every s_1 such that $\operatorname{rng} s_1 \subseteq X$ there exists s_2 such that s_2 is a subsequence of s_1 and convergent and $\lim s_2 \in X$.

Let us consider *X*. We say that *X* is closed if and only if:

(Def. 4) For every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$.

Let us consider X. We say that X is open if and only if:

(Def. 5) X^{c} is closed.

One can prove the following four propositions:

- (22)³ For every s_1 such that $\operatorname{rng} s_1 \subseteq [s, g]$ holds s_1 is bounded.
- (23) [s,g] is closed.
- (24) [s,g] is compact.
- (25) p,q is open.

Let p, q be real numbers. Note that p, q is open.

We now state several propositions:

- (26) If X is compact, then X is closed.
- (27) Suppose that for every p such that $p \in X$ there exist r, n such that 0 < r and for every m such that n < m holds $r < |s_1(m) p|$. Let given s_2 . If s_2 is a subsequence of s_1 , then s_2 is not convergent or $\lim s_2 \notin X$.
- (28) If X is compact, then X is bounded.
- (29) If *X* is bounded and closed, then *X* is compact.
- (30) For every *X* such that $X \neq \emptyset$ and *X* is closed and upper bounded holds $\sup X \in X$.
- (31) For every *X* such that $X \neq \emptyset$ and *X* is closed and lower bounded holds inf $X \in X$.
- (32) For every *X* such that $X \neq \emptyset$ and *X* is compact holds $\sup X \in X$ and $\inf X \in X$.
- (33) If X is compact and for all g_1, g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X = [p, g].

³ The propositions (19)–(21) have been removed.

Let us observe that there exists a subset of \mathbb{R} which is open.

Let r be a real number. A subset of \mathbb{R} is called a neighbourhood of r if:

(Def. 7)⁴ There exists g such that 0 < g and it = |r - g, r + g|.

Let r be a real number. Observe that every neighbourhood of r is open.

Next we state several propositions:

- (37)⁵ For every neighbourhood N of r holds $r \in N$.
- (38) For every r and for all neighbourhoods N_1 , N_2 of r there exists a neighbourhood N of r such that $N \subseteq N_1$ and $N \subseteq N_2$.
- (39) For every open subset X of \mathbb{R} and for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$.
- (40) For every open subset X of \mathbb{R} and for every r such that $r \in X$ there exists g such that 0 < g and $|r g, r + g| \subseteq X$.
- (41) If for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$, then X is open.
- (42) For every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ iff X is open.
- (43) If *X* is open and upper bounded, then $\sup X \notin X$.
- (44) If X is open and lower bounded, then $\inf X \notin X$.
- (45) If X is open and bounded and for all g_1, g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X = [p, g].

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [7] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

⁴ The definition (Def. 6) has been removed.

⁵ The propositions (34)–(36) have been removed.

[11] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received June 18, 1990

Published January 2, 2004