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Summary. In RSA Cryptograms, many modulo calculations are used, but modulo
calculation is based on many subtractions and it takes long time to calculate. In this article,
we explain about a new modulo calculation algorithm using table. And we proof that upper
3 digits of Radix-2k SD numbers is enough to specify the answer. In the first section, we
prepared some useful theorems for operations of Radix-2k SD Number. In the second section,
we defined Upper 3 Digits of Radix-2k SD number and proved that property. In the third
section, we proved some property about the minimum digits of Radix-2k SD number. In the
fourth section, we identified the range of modulo arithmetic result and proved that the Upper
3 Digits indicate two possible answers. And in the last section, we defined a function to select
true answer from the results of Upper 3 Digits.

MML Identifier: RADIX_6.

WWW: http://mizar.org/JFM/Vol15/radix_6.html

The articles [8], [10], [9], [1], [7], [4], [2], [3], [11], [5], and [6] provide the notation and terminol-
ogy for this paper.

1. SOME USEFUL THEOREMS

The following two propositions are true:

(1) Letn be a natural number. Supposen≥ 1. Let m, k be natural numbers. Ifm≥ 1 andk≥ 2,
then SDDecFmin(m+n,m,k) = SDDecFmin(m,m,k).

(2) For all natural numbersm, k such thatm≥ 1 andk≥ 2 holds SDDecFmin(m,m,k) > 0.

2. DEFINITIONS OFUPPER3 DIGITS OF RADIX -2k SD NUMBER AND ITS PROPERTY

Let i, m, k be natural numbers and letr be am+2-tuple ofk−SD. Let us assume thati ∈Seg(m+2).
The functor M0Digit(r, i) yields an element ofk−SD and is defined as follows:

(Def. 1)(i) M0Digit(r, i) = r(i) if i ≥m,

(ii) M0Digit (r, i) = 0 if i < m.

Let m, k be natural numbers and letr be am+2-tuple ofk−SD. The functor M0(r) yielding a
m+2-tuple ofk−SD is defined by:

(Def. 2) For every natural numberi such thati ∈ Seg(m+2) holds DigA(M0(r), i) = M0Digit(r, i).
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Let i, m, k be natural numbers and letr be am+2-tuple ofk−SD. Let us assume thatk≥ 2 and
i ∈ Seg(m+2). The functor MmaxDigit(r, i) yielding an element ofk−SD is defined by:

(Def. 3)(i) MmaxDigit(r, i) = r(i) if i ≥m,

(ii) MmaxDigit(r, i) = Radixk−1 if i < m.

Let m, k be natural numbers and letr be am+2-tuple ofk−SD. The functor Mmax(r) yields a
m+2-tuple ofk−SD and is defined by:

(Def. 4) For every natural numberi such that i ∈ Seg(m + 2) holds DigA(Mmax(r), i) =
MmaxDigit(r, i).

Let i, m, k be natural numbers and letr be am+2-tuple ofk−SD. Let us assume thatk≥ 2 and
i ∈ Seg(m+2). The functor MminDigit(r, i) yielding an element ofk−SD is defined by:

(Def. 5)(i) MminDigit(r, i) = r(i) if i ≥m,

(ii) MminDigit (r, i) =−Radixk+1 if i < m.

Let m, k be natural numbers and letr be am+2-tuple ofk−SD. The functor Mmin(r) yielding
am+2-tuple ofk−SD is defined by:

(Def. 6) For every natural numberi such that i ∈ Seg(m + 2) holds DigA(Mmin(r), i) =
MminDigit(r, i).

We now state two propositions:

(3) For all natural numbersm, k such thatm≥ 1 andk≥ 2 and for everym+2-tupler of k−SD
holds SDDecMmax(r)≥ SDDecr.

(4) For all natural numbersm, k such thatm≥ 1 andk≥ 2 and for everym+2-tupler of k−SD
holds SDDecr ≥ SDDecMmin(r).

3. PROPERTIES OFM INIMUM DIGITS OF RADIX -2k SD NUMBER

Let n, k be natural numbers and letx be an integer. We say thatx needs digits ofn, k if and only if:

(Def. 7) x < (Radixk)n andx≥ (Radixk)n−′1.

The following three propositions are true:

(5) For all natural numbersx, n, k, i such thati ∈ Segn holds DigA(DecSD(x,n,k), i)≥ 0.

(6) For all natural numbersn, k, x such thatn≥ 1 andk≥ 2 andx needs digits ofn, k holds
DigA(DecSD(x,n,k),n) > 0.

(7) For all natural numbersf , m, k such thatm≥ 1 andk≥ 2 and f needs digits ofm, k holds
f ≥ SDDecFmin(m+2,m,k).

4. MODULO CALCULATION ALGORITHM USING UPPER3 DIGITS OF RADIX -2k SD
NUMBER

One can prove the following propositions:

(8) For all integersm1, m2, f such thatm2 < m1 + f and f > 0 there exists an integers such
that− f < m1−s· f andm2−s· f < f .

(9) Let m, k be natural numbers. Supposem≥ 1 andk≥ 2. Let r be am+2-tuple ofk−SD.
Then SDDecMmax(r)+ SDDecDecSD(0,m+ 2,k) = SDDecM0(r)+ SDDecSDMax(m+
2,m,k).
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(10) For all natural numbersm, k such thatm≥ 1 andk≥ 2 and for everym+2-tupler of k−SD
holds SDDecMmax(r) < SDDecM0(r)+SDDecFmin(m+2,m,k).

(11) Letm, k be natural numbers. Supposem≥ 1 andk≥ 2. Let r be am+2-tuple ofk−SD.
Then SDDecMmin(r) + SDDecDecSD(0,m+ 2,k) = SDDecM0(r) + SDDecSDMin(m+
2,m,k).

(12) Let m, k be natural numbers andr be am+ 2-tuple ofk−SD. If m≥ 1 andk≥ 2, then
SDDecM0(r)+SDDecDecSD(0,m+2,k) = SDDecMmin(r)+SDDecSDMax(m+2,m,k).

(13) For all natural numbersm, k such thatm≥ 1 andk≥ 2 and for everym+2-tupler of k−SD
holds SDDecM0(r) < SDDecMmin(r)+SDDecFmin(m+2,m,k).

(14) Letm, k, f be natural numbers andr be am+2-tuple ofk−SD. Supposem≥ 1 andk≥ 2
and f needs digits ofm, k. Then there exists an integerssuch that− f < SDDecM0(r)−s· f
and SDDecMmax(r)−s· f < f .

(15) Letm, k, f be natural numbers andr be am+2-tuple ofk−SD. Supposem≥ 1 andk≥ 2
and f needs digits ofm, k. Then there exists an integers such that− f < SDDecMmin(r)−
s· f and SDDecM0(r)−s· f < f .

(16) Let m, k be natural numbers andr be am+ 2-tuple ofk−SD. If m≥ 1 andk≥ 2, then
SDDecM0(r) ≤ SDDecr and SDDecr ≤ SDDecMmax(r) or SDDecMmin(r) ≤ SDDecr
and SDDecr < SDDecM0(r).

5. HOW TO IDENTIFY THE RANGE OF MODULO ARITHMETIC RESULT

Let i, m, k be natural numbers and letr be am+2-tuple ofk−SD. Let us assume thati ∈Seg(m+2).
The functor MmaskDigit(r, i) yielding an element ofk−SD is defined as follows:

(Def. 8)(i) MmaskDigit(r, i) = r(i) if i < m,

(ii) MmaskDigit(r, i) = 0 if i ≥m.

Let m, k be natural numbers and letr be am+2-tuple ofk−SD. The functor Mmask(r) yielding
am+2-tuple ofk−SD is defined by:

(Def. 9) For every natural numberi such that i ∈ Seg(m + 2) holds DigA(Mmask(r), i) =
MmaskDigit(r, i).

Next we state two propositions:

(17) For all natural numbersm, k and for everym+ 2-tuple r of k−SD such thatm≥ 1 and
k≥ 2 holds SDDecM0(r)+SDDecMmask(r) = SDDecr +SDDecDecSD(0,m+2,k).

(18) For all natural numbersm, k and for everym+ 2-tuple r of k−SD such thatm≥ 1 and
k≥ 2 holds if SDDecMmask(r) > 0, then SDDecr > SDDecM0(r).

Let i, m, k be natural numbers. Let us assume thatk ≥ 2. The functor FSDMinDigit(m,k, i)
yields an element ofk−SD and is defined as follows:

(Def. 10) FSDMinDigit(m,k, i) =

(i) 0, if i > m,
(ii) 1, if i = m,
−Radixk+1, otherwise.

Let n, m, k be natural numbers. The functor FSDMin(n,m,k) yields an-tuple ofk−SD and is
defined as follows:

(Def. 11) For every natural numberi such that i ∈ Segn holds DigA(FSDMin(n,m,k), i) =
FSDMinDigit(m,k, i).

The following proposition is true
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(19) For every natural numbern such thatn≥ 1 and for all natural numbersm, k such that
m∈ Segn andk≥ 2 holds SDDecFSDMin(n,m,k) = 1.

Let n, m, k be natural numbers and letr be am+2-tuple ofk−SD. We say thatr is zero overn
if and only if:

(Def. 12) For every natural numberi such thati > n holds DigA(r, i) = 0.

One can prove the following proposition

(20) Let m be a natural number. Supposem≥ 1. Let n, k be natural numbers andr be a
m+ 2-tuple of k−SD. If k ≥ 2 and n ∈ Seg(m+ 2) and Mmask(r) is zero overn and
DigA(Mmask(r),n) > 0, then SDDecMmask(r) > 0.
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