Magnitude Relation Properties of Radix- 2^k SD Number

Masaaki Niimura Shinshu University Nagano Yasushi Fuwa Shinshu University Nagano

Summary. In this article, magnitude relation properties of Radix- 2^k SD number are discussed.

Until now, the Radix- 2^k SD Number is proposed for the high-speed calculations for RSA Cryptograms. In RSA Cryptograms, many modulo calculations are used, and modulo calculations need a comparison between two numbers.

In this article, we discussed about a magnitude relation of Radix- 2^k SD Number. In the first section, we prepared some useful theorems for operations of Radix- 2^k SD Number. In the second section, we proved some properties about the primary numbers expressed by Radix- 2^k SD Number such as 0, 1, and Radix(k). In the third section, we proved primary magnitude relations between two Radix- 2^k SD Numbers. In the fourth section, we defined Max/Min numbers in some cases. And in the last section, we proved some relations about the addition of Max/Min numbers.

MML Identifier: RADIX_5.

WWW: http://mizar.org/JFM/Vol15/radix_5.html

The articles [7], [8], [1], [6], [4], [2], [3], and [5] provide the notation and terminology for this paper.

1. Some Useful Theorems

One can prove the following propositions:

- (1) For every natural number k such that $k \ge 2$ holds Radix $k 1 \in k SD$.
- (2) For all natural numbers i, n such that i > 1 and $i \in \text{Seg } n$ holds $i 1 \in \text{Seg } n$.
- (3) For every natural number k such that $2 \le k$ holds $4 \le \text{Radix } k$.
- (4) For every natural number k and for every 1-tuple t_1 of k –SD holds SDDec $t_1 = \text{DigA}(t_1, 1)$.
 - 2. Properties of Primary Radix- 2^k SD Number

We now state several propositions:

- (5) For all natural numbers i, k, n such that $i \in \text{Seg } n$ holds DigA(DecSD(0, n, k), i) = 0.
- (6) For all natural numbers n, k such that $n \ge 1$ holds SDDec DecSD(0, n, k) = 0.

- (7) For all natural numbers k, n such that $1 \in \text{Seg } n$ and $k \ge 2$ holds DigA(DecSD(1, n, k), 1) = 1
- (8) For all natural numbers i, k, n such that $i \in \text{Seg } n$ and i > 1 and $k \ge 2$ holds DigA(DecSD(1, n, k), i) = 0.
- (9) For all natural numbers n, k such that $n \ge 1$ and $k \ge 2$ holds SDDec DecSD(1, n, k) = 1.
- (10) For every natural number k such that $k \ge 2$ holds SD_Add_Carry Radix k = 1.
- (11) For every natural number k such that $k \ge 2$ holds SD_Add_Data(Radix k, k) = 0.

3. Primary Magnitude Relation of Radix- 2^k SD Number

The following propositions are true:

- (12) Let n be a natural number. Suppose $n \ge 1$. Let k be a natural number and t_1, t_2 be n-tuples of k-SD. If for every natural number i such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) = \text{DigA}(t_2, i)$, then $\text{SDDec } t_1 = \text{SDDec } t_2$.
- (13) Let n be a natural number. Suppose $n \ge 1$. Let k be a natural number and t_1, t_2 be n-tuples of k-SD. If for every natural number i such that $i \in \operatorname{Seg} n$ holds $\operatorname{DigA}(t_1, i) \ge \operatorname{DigA}(t_2, i)$, then $\operatorname{SDDec} t_1 \ge \operatorname{SDDec} t_2$.
- (14) Let n be a natural number. Suppose $n \ge 1$. Let k be a natural number. Suppose $k \ge 2$. Let t_1, t_2, t_3, t_4 be n-tuples of k-SD. Suppose that for every natural number i such that $i \in \operatorname{Seg} n$ holds $\operatorname{DigA}(t_1, i) = \operatorname{DigA}(t_3, i)$ and $\operatorname{DigA}(t_2, i) = \operatorname{DigA}(t_4, i)$ or $\operatorname{DigA}(t_2, i) = \operatorname{DigA}(t_3, i)$ and $\operatorname{DigA}(t_1, i) = \operatorname{DigA}(t_4, i)$. Then $\operatorname{SDDec} t_3 + \operatorname{SDDec} t_4 = \operatorname{SDDec} t_1 + \operatorname{SDDec} t_2$.
- (15) Let n, k be natural numbers. Suppose $n \ge 1$ and $k \ge 2$. Let t_1 , t_2 , t_3 be n-tuples of k-SD. Suppose that for every natural number i such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) = \text{DigA}(t_3, i)$ and $\text{DigA}(t_2, i) = 0$ or $\text{DigA}(t_2, i) = \text{DigA}(t_3, i)$ and $\text{DigA}(t_1, i) = 0$. Then $\text{SDDec}t_3 + \text{SDDec}\text{Dec}\text{SD}(0, n, k) = \text{SDDec}t_1 + \text{SDDec}t_2$.
 - 4. Definition of Max/Min Radix- 2^k SD Numbers in Some Digits

Let i, m, k be natural numbers. Let us assume that $k \ge 2$. The functor SDMinDigit(m, k, i) yielding an element of k –SD is defined by:

(Def. 1) SDMinDigit
$$(m, k, i) = \begin{cases} -\text{Radix } k + 1, \text{ if } 1 \leq i \text{ and } i < m, \\ 0, \text{ otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor SDMin(n, m, k) yielding a n-tuple of k-SD is defined as follows:

(Def. 2) For every natural number i such that $i \in \text{Seg } n$ holds DigA(SDMin(n, m, k), i) = SDMinDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that $k \ge 2$. The functor SDMaxDigit(m,k,i) yielding an element of k –SD is defined by:

(Def. 3) SDMaxDigit
$$(m, k, i) = \begin{cases} Radix k - 1, & \text{if } 1 \leq i \text{ and } i < m, \\ 0, & \text{otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor SDMax(n, m, k) yields a n-tuple of k -SD and is defined by:

(Def. 4) For every natural number i such that $i \in \text{Seg} n$ holds DigA(SDMax(n, m, k), i) = SDMaxDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that $k \ge 2$. The functor FminDigit(m, k, i) yields an element of k –SD and is defined as follows:

(Def. 5) FminDigit $(m, k, i) = \begin{cases} 1, & \text{if } i = m, \\ 0, & \text{otherwise.} \end{cases}$

Let n, m, k be natural numbers. The functor Fmin(n, m, k) yields a n-tuple of k-SD and is defined by:

(Def. 6) For every natural number i such that $i \in \text{Seg} n$ holds DigA(Fmin(n, m, k), i) = FminDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that $k \ge 2$. The functor FmaxDigit(m, k, i) yields an element of k –SD and is defined as follows:

(Def. 7) FmaxDigit
$$(m, k, i) = \begin{cases} \text{Radix } k - 1, \text{ if } i = m, \\ 0, \text{ otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor Fmax(n, m, k) yields a n-tuple of k –SD and is defined by:

- (Def. 8) For every natural number i such that $i \in \operatorname{Seg} n$ holds $\operatorname{DigA}(\operatorname{Fmax}(n, m, k), i) = \operatorname{FmaxDigit}(m, k, i)$.
 - 5. PROPERTIES OF MAX/MIN RADIX-2^k SD NUMBERS

The following four propositions are true:

- (16) Let n, m, k be natural numbers. Suppose $n \ge 1$ and $k \ge 2$ and $m \in \text{Seg } n$. Let i be a natural number. If $i \in \text{Seg } n$, then DigA(SDMax(n, m, k), i) + DigA(SDMin(n, m, k), i) = 0.
- (17) Let n be a natural number. Suppose $n \ge 1$. Let m, k be natural numbers. If $m \in \text{Seg } n$ and $k \ge 2$, then SDDec SDMax(n, m, k) + SDDec SDMin(n, m, k) = SDDec DecSD(0, n, k).
- (18) Let *n* be a natural number. Suppose $n \ge 1$. Let *m*, *k* be natural numbers. If $m \in \text{Seg } n$ and $k \ge 2$, then SDDec Fmin(n, m, k) = SDDec SDMax(n, m, k) + SDDec DecSD(1, n, k).
- (19) For all natural numbers n, m, k such that $m \in \operatorname{Seg} n$ and $k \ge 2$ holds $\operatorname{SDDec}\operatorname{Fmin}(n+1,m+1,k) = \operatorname{SDDec}\operatorname{Fmin}(n+1,m,k) + \operatorname{SDDec}\operatorname{Fmax}(n+1,m,k)$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2^k signed-digit number and its adder algorithm. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/radix_1.html.
- [5] Andrzej Kondracki. The Chinese Remainder Theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/wsierp_1.html.
- [6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

 $\textbf{[8]} \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$

Received November 7, 2003

Published January 2, 2004