Improvement of Radix- 2^k Signed-Digit Number for High Speed Circuit

Masaaki Niimura Shinshu University Nagano Yasushi Fuwa Shinshu University Nagano

Summary. In this article, a new radix- 2^k signed-digit number (Radix- 2^k sub signed-digit number) is defined and its properties for hardware realization are discussed.

Until now, high speed calculation method with Radix- 2^k signed-digit numbers is proposed, but this method used "Compares With 2" to calculate carry. "Compares with 2" is a very simple method, but it needs very complicated hardware especially when the value of k becomes large. In this article, we propose a subset of Radix- 2^k signed-digit, named Radix- 2^k sub signed-digit numbers. Radix- 2^k sub signed-digit was designed so that the carry calculation use "bit compare" to hardware-realization simplifies more.

In the first section of this article, we defined the concept of Radix- 2^k sub signed-digit numbers and proved some of their properties. In the second section, we defined the new carry calculation method in consideration of hardware-realization, and proved some of their properties. In the third section, we provide some functions for generating Radix- 2^k sub signed-digit numbers from Radix- 2^k signed-digit numbers. In the last section, we defined some functions for generation natural numbers from Radix- 2^k sub signed-digit, and we clarified its correctness.

MML Identifier: RADIX_3.

WWW: http://mizar.org/JFM/Vol15/radix_3.html

The articles [8], [11], [9], [1], [4], [3], [10], [7], [2], [6], and [5] provide the notation and terminology for this paper.

1. Definition for Radix- 2^k Sub Signed-Digit Number

We adopt the following convention: i, n, m, k, x are natural numbers and i_1 , i_2 are integers. We now state the proposition

(1) $(\operatorname{Radix} k)^n \cdot \operatorname{Radix} k = (\operatorname{Radix} k)^{n+1}$.

Let us consider k. The functor k –SD_Sub_S is defined as follows:

(Def. 1) k – SD_Sub_S = $\{e; e \text{ ranges over elements of } \mathbb{Z}: e \ge -\text{Radix}(k-'1) \land e \le \text{Radix}(k-'1) - 1\}.$

Let us consider k. The functor k –SD_Sub is defined as follows:

(Def. 2) $k-\text{SD_Sub} = \{e; e \text{ ranges over elements of } \mathbb{Z}: e \ge -\text{Radix}(k-'1) - 1 \land e \le \text{Radix}(k-'1)\}.$

We now state a number of propositions:

- (2) If $i_1 \in k$ –SD_Sub, then –Radix $(k-'1)-1 \le i_1$ and $i_1 \le \text{Radix}(k-'1)$.
- (3) For every natural number k holds $k-SD_Sub_S \subseteq k-SD_Sub$.
- (4) $k-SD_Sub_S \subseteq (k+1)-SD_Sub_S$.
- (5) For every natural number k such that $2 \le k$ holds $k SD_Sub \subseteq k SD$.
- (6) $0 \in 0 SD_Sub_S$.
- (7) $0 \in k SD_Sub_S$.
- (8) $0 \in k SD_-Sub$.
- (9) For every set e such that $e \in k$ —SD_Sub holds e is an integer.
- (10) $k-SD_Sub \subseteq \mathbb{Z}$.
- (11) $k-SD_Sub_S \subseteq \mathbb{Z}$.

Let us consider k. Note that $k-SD_Sub_S$ is non empty and $k-SD_Sub$ is non empty.

Let us consider k. Then k –SD_Sub_S is a non empty subset of \mathbb{Z} .

Let us consider k. Then k –SD_Sub is a non empty subset of \mathbb{Z} .

In the sequel a is a n-tuple of k –SD and a_1 is a n-tuple of k –SD_Sub.

One can prove the following proposition

(12) If $i \in \text{Seg } n$, then $a_1(i)$ is an element of $k - \text{SD_Sub}$.

2. Definition for New Carry Calculation Method

Let x be an integer and let k be a natural number. The functor SDSubAddCarry(x,k) yields an integer and is defined by:

(Def. 3) SDSubAddCarry
$$(x,k) = \begin{cases} 1, & \text{if } \operatorname{Radix}(k-'1) \leq x, \\ -1, & \text{if } x < -\operatorname{Radix}(k-'1), \\ 0, & \text{otherwise.} \end{cases}$$

Let x be an integer and let k be a natural number. The functor SDSubAddData(x,k) yields an integer and is defined by:

(Def. 4) SDSubAddData(x, k) = x - Radix k · SDSubAddCarry(x, k).

Next we state several propositions:

- (13) For every integer x and for every natural number k such that $2 \le k$ holds $-1 \le SDSubAddCarry(x,k)$ and $SDSubAddCarry(x,k) \le 1$.
- (14) If $2 \le k$ and $i_1 \in k$ —SD, then SDSubAddData $(i_1, k) \ge -\text{Radix}(k 1)$ and SDSubAddData $(i_1, k) \le \text{Radix}(k 1) 1$.
- (15) For every integer x and for every natural number k such that $2 \le k$ holds SDSubAdCarry $(x,k) \in k$ —SD_Sub_S.
- (16) If $2 \le k$ and $i_1 \in k$ –SD and $i_2 \in k$ –SD, then SDSubAddData (i_1, k) +SDSubAddCarry $(i_2, k) \in k$ –SD_Sub.
- (17) If $2 \le k$, then SDSubAddCarry(0, k) = 0.

3. Definition for Translation from Radix- 2^k Signed-Digit Number

Let i, k, n be natural numbers and let x be a n-tuple of k –SD_Sub. The functor DigA_SDSub(x, i) yielding an integer is defined as follows:

- (Def. 5)(i) DigA_SDSub(x, i) = x(i) if $i \in \text{Seg } n$,
 - (ii) $\operatorname{DigA_SDSub}(x, i) = 0 \text{ if } i = 0.$

Let i, k, n be natural numbers and let x be a n-tuple of k –SD. The functor SD2SDSubDigit(x, i, k) yields an integer and is defined by:

$$(\text{Def. 6}) \quad \text{SD2SDSubDigit}(x,i,k) = \begin{cases} \text{(i)} \quad \text{SDSubAddData}(\text{DigA}(x,i),k) + \text{SDSubAddCarry}(\text{DigA}(x,i-'1),k), \text{ if } i \in \text{Seg } n, \\ \text{(ii)} \quad \text{SDSubAddCarry}(\text{DigA}(x,i-'1),k), \text{ if } i = n+1, \\ 0, \text{ otherwise.} \end{cases}$$

The following proposition is true

(18) If $2 \le k$ and $i \in \text{Seg}(n+1)$, then SD2SDSubDigit(a,i,k) is an element of k-SD.Sub.

Let i, k, n be natural numbers and let x be a n-tuple of k-SD. Let us assume that $2 \le k$ and $i \in \text{Seg}(n+1)$. The functor SD2SDSubDigitS(x,i,k) yielding an element of k-SD_Sub is defined by:

(Def. 7) SD2SDSubDigitS(x, i, k) = SD2SDSubDigit(x, i, k).

Let n, k be natural numbers and let x be a n-tuple of k –SD. The functor SD2SDSubx yielding a n+1-tuple of k –SD_Sub is defined as follows:

(Def. 8) For every natural number i such that $i \in \text{Seg}(n+1)$ holds $\text{DigA_SDSub}(\text{SD2SDSub}x, i) = \text{SD2SDSubDigitS}(x, i, k)$.

Next we state two propositions:

- (19) If $i \in \text{Seg } n$, then $\text{DigA_SDSub}(a_1, i)$ is an element of $k \text{SD_Sub}$.
- (20) If $2 \le k$ and $i_1 \in k$ —SD and $i_2 \in k$ —SD_Sub, then SDSubAddData $(i_1 + i_2, k) \in k$ —SD_Sub_S.
- 4. Definiton for Translation from Radix-2^k Sub Signed-Digit Number to INT

Let i, k, n be natural numbers and let x be a n-tuple of k—SD_Sub. The functor DigB_SDSub(x, i) yielding an element of \mathbb{Z} is defined by:

(Def. 9) $\operatorname{DigB_SDSub}(x,i) = \operatorname{DigA_SDSub}(x,i)$.

Let i, k, n be natural numbers and let x be a n-tuple of k —SD_Sub. The functor SDSub2INTDigit(x, i, k) yielding an element of \mathbb{Z} is defined by:

(Def. 10) SDSub2INTDigit $(x, i, k) = (\text{Radix } k)^{i-1} \cdot \text{DigB_SDSub}(x, i)$.

Let n, k be natural numbers and let x be a n-tuple of k-SD_Sub. The functor SDSub2INTx yields a n-tuple of \mathbb{Z} and is defined as follows:

(Def. 11) For every natural number i such that $i \in \text{Seg } n$ holds (SDSub2INTx) $_i = \text{SDSub2INTDigit}(x, i, k)$.

Let n, k be natural numbers and let x be a n-tuple of k –SD_Sub. The functor SDSub2IntOutx yielding an integer is defined as follows:

(Def. 12) SDSub2IntOut $x = \sum SDSub2INTx$.

The following propositions are true:

- (21) For every i such that $i \in \text{Seg } n$ holds if $2 \le k$, then DigA_SDSub(SD2SDSub DecSD(m, n + 1, k), i) = DigA_SDSub(SD2SDSub DecSD $(m \text{ mod } (\text{Radix } k)^n, n, k)$, i).
- (22) For every n such that $n \ge 1$ and for all k, x such that $k \ge 2$ and x is represented by n, k holds x = SDSub2IntOutSD2SDSubDecSD(x, n, k).

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/trees_4.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct 1.html.
- [5] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2^k signed-digit number and its adder algorithm. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Voll1/radix_1.html.
- [6] Andrzej Kondracki. The Chinese Remainder Theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/wsierp_1.html.
- [7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [10] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received January 3, 2003

Published January 2, 2004