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Summary. We introduce the field of quotients over an integral domain following the
well-known construction using pairs over integral domains. In addition we define ring ho-

momorphisms and prove some basic facts about fields of quotients including their universal
property.

MML Identifier: QUOFIELD.

WWW: http://mizar.orqg/JFM/Voll0/quofield.html

The articles([11],[[4], [14],[[15],[[12],[12],[[8],[[0],[[10], [13],[{7],[[6],[[1],[[8], and [5] provide the
notation and terminology for this paper.

1. PRELIMINARIES

Let | be a non empty zero structure. The fundfit) is a subset of the carrier ofl, the carrier of
| ] and is defined by:

(Def. 1) For every seti holdsu € Q(1) iff there exist elements, b of | such thatu = (a, b) and
b+#0.

The following proposition is true

(1) For every non degenerated non empty multiplicative loop with zero struichoklsQ(1)
iS non empty.

Let| be a non degenerated non empty multiplicative loop with zero structure. No@®(thas
non empty.

Next we state the proposition

(2) Letl be a non degenerated non empty multiplicative loop with zero structure badin
element ofQ(1). Thenu, # 0.

Let| be a non degenerated non empty multiplicative loop with zero structure and&tn
element ofQ(1). Thenu;, is an element of. Thenu, is an element of.

Let| be a non degenerated integral domain-like non empty double loop structure and bet
elements of(1). The functoru+ v yields an element (1) and is defined by:

(Def. 2) u+v={(ui-Va+Vi-Uy, Up- Vo).

Let| be a non degenerated integral domain-like non empty double loop structure andbet
elements of)(1). The functoru- v yields an element a®(1) and is defined as follows:

(Def.3) u-v={ug-vy, Uz-Vo).
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Next we state two propositions:

(48 Let | be a non degenerated integral domain-like associative commutative Abelian add-
associative distributive non empty double loop structure @nd w be elements of)(1).
Thenu+ (v+w) = (u+v)+wandu+v=v-+u.

(5) Letl be a non degenerated integral domain-like associative commutative Abelian non
empty double loop structure and v, w be elements o€Q(l). Thenu-(v-w) = (u-v)-w
andu-v=v-u.

Letl be anon degenerated integral domain-like associative commutative Abelian add-associative
distributive non empty double loop structure anddet be elements of)(1). Let us notice that the
functoru+ v is commutative.

Let I be a non degenerated integral domain-like associative commutative Abelian non empty
double loop structure and lat v be elements of)(1). Let us notice that the functer vis commu-

tative.
Let| be a non degenerated non empty multiplicative loop with zero structure and&etin

element ofQ(1). The functor QClags) is a subset of(1) and is defined by:
(Def. 4) For every elemerztof Q(1) holdsz € QClassu) iff z;-u, =z - us.
We now state the proposition

(6) Letl be a non degenerated commutative non empty multiplicative loop with zero structure
andu be an element d)(1). Thenu € QClasgu).

Let| be a non degenerated commutative non empty multiplicative loop with zero structure and

letu be an element d(l). Observe that QClags) is non empty.
Let | be a non degenerated non empty multiplicative loop with zero structure. The functor

Quot(l) is a family of subsets d®(l) and is defined by:

(Def. 5) For every subsétof Q(I) holdsA € Quot(l) iff there exists an elementof Q(I) such that
A= QClassu).

Next we state the proposition

(7) For every non degenerated non empty multiplicative loop with zero strutthiads
Quotl) is non empty.

Let | be a non degenerated non empty multiplicative loop with zero structure. Observe that
Quotl) is non empty.
Next we state two propositions:

(8) Letl be a non degenerated integral domain-like commutative ringiantbe elements of
Q(1). If there exists an elememt of Quot(l) such thau € w andv € w, thenuy - v, = vy - Up.

(9) Letl be a non degenerated integral domain-like commutative ringiantbe elements of
Quotl). If umeetsy, thenu=v.

2. DEFINING THE OPERATIONS

Let | be a non degenerated integral domain-like commutative ring and, ketbe elements of
Quotf(l). The functoru+qV yielding an element of Qudi) is defined by the condition (Def. 6).

(Def. 6) Letzbe anelement a(l). Thenze u+qvif and only if there exist elements b of Q(I)
suchthabe uandbevandz - (ax-by) =2 (a1-by+ by - ap).

Let | be a non degenerated integral domain-like commutative ring and {ebe elements of
Quotf(l). The functomu-q Vv yielding an element of Qugk) is defined by the condition (Def. 7).

1 The proposition (3) has been removed.
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(Def. 7) Letzbe an element o®(l). Thenz e u-qVvif and only if there exist elements b of Q(I)
such thab e uandbcvandz - (az-by) =2 - (a1 -b1).

Let| be a non degenerated non empty multiplicative loop with zero structure and&etin
element ofQ(1). Then QClas&l) is an element of Qudt).
Next we state two propositions:

(11E] For every non degenerated integral domain-like commutative ramgl for all elements,
vof Q(I) holds QClasgl) +q QClasgv) = QClasgu+ V).

(12) For every non degenerated integral domain-like commutative ramgl for all elements,
vof Q(I) holds QClasgl) - QClasgv) = QClasgu- V).

Let| be a non degenerated integral domain-like commutative ring. The fungtiorydelding
an element of Qudt) is defined by:

(Def. 8) For every elemertof Q(I) holdsz € Oq(l) iff 2 = 0.

Let| be a non degenerated integral domain-like commutative ring. The furgtioryields an
element of Qudt ) and is defined by:

(Def. 9) For every elemertof Q(I) holdsz € 14(1) iff 1 = 2.

Let| be a non degenerated integral domain-like commutative ring andldetan element of
Quot(l). The functor—qu yielding an element of Quglt) is defined as follows:

(Def. 10) For every elememtof Q(I) holdsz € —qu iff there exists an elemerat of Q(I) such that
acuandz -ay=2-—a;.

Let| be a non degenerated integral domain-like commutative ring andldetan element of
Quot(l). Let us assume thait£ Oy(1). The functomg1 yields an element of Qugt) and is defined
by:

(Def. 11) For every elemerztof Q(1) holdsz € ugl iff there exists an elemerat of Q(I) such that
acuandz-a; =2 -ap.

Next we state several propositions:

(13) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quot(l). Thenu+g (V+qW) = (U+qV) +gwandu+qV=V+qU.

(14) Letl be a non degenerated integral domain-like commutative ringudredan element of
Quoft(l). Thenu-+q0q(l) =uand §(l)+qu=u.

(15) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quot(l). Thenu-q (V-qW) = (U-qV) -qwandu-qv=Vv-qU.

(16) Letl be a non degenerated integral domain-like commutative ringidedan element of
Quot(l). Thenu-q1q(l) =uand (1) -qu=u.

(17) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quoft(l). Then(u+qV) -qW = (U-qW) +q (V-qW).

(18) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quoft(l). Thenu-q (V4+qw) = (U-qV) +q (U-qW).

(19) Letl be a non degenerated integral domain-like commutative ringidedan element of
Quot(l). Thenu+g—qu = 0q(l) and—qu+qu = Og(1).

(20) Letl be a non degenerated integral domain-like commutative ringidbedan element of
Quot(l). If u# Oq(1), thenu-qug* = 14(1) andug* -qu = 14(1).

2 The proposition (10) has been removed.
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(21) For every non degenerated integral domain-like commutative tigds & (1) # Oq(1).

Let| be a non degenerated integral domain-like commutative ring. The fungtdy yields a
binary operation on Qu@t) and is defined by:

(Def. 12) For all elements, v of Quot(l) holds(+4(1))(u, v) = u+qV.

Let| be a non degenerated integral domain-like commutative ring. The fugctpyielding a
binary operation on Qugt) is defined as follows:

(Def. 13) For all elements, v of Quot(l) holds(-4(1))(u,v) =u-qVv.

Let| be a non degenerated integral domain-like commutative ring. The furgldy yields a
unary operation on Qu(t) and is defined as follows:

(Def. 14) For every elementof Quot(l) holds(—q(l))(u) = —qu.

Let| be a non degenerated integral domain-like commutative ring. The ftqwjdtkjryielding a
unary operation on Qugt) is defined by:

(Def. 15)  For every elementof Quot(l) holds(5*(1))(u) = ug™.
The following propositions are true:

(22) Letl be a non degenerated integral domain-like commutative ringiandv be elements

of Quot(l). Then(+q(1))((+q(1)) (U, v), W) = (+q(1) (U, (+q(1)) (v, W)).

(23) For every non degenerated integral domain-like commutative i&mgl for all elements,
v of Quot(l) holds(+q(1))(u, v) = (+4(1))(v, u).

(24) Letl be a non degenerated integral domain-like commutative ringudredan element of
Quot(l). Then(+q(1))(u, 0g(l)) = uand(+q(1))(Og(l), u) = u.

(25) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quot(l). Then(.q(1))((-q(1))(u, v), W) = (-q(1) (U, (-q(1))(v, W)).

(26) For every non degenerated integral domain-like commutative ramgl for all elements,
v of Quot(l) holds(-q(1))(u, v) = (-q(1)) (v, u).

(27) Letl be a non degenerated integral domain-like commutative ringudelan element of
Quot(l). Then(-q(1))(u, 1q(1)) = uand(-q(1))(1q(l), u) = u.

(28) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quot(l). Then(q(1))((+q(1)(U, v), W) = (4q(1))((-q(1) (U, W), (-q(1)) (v, W)).

(29) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of Quot(l). Then(-q(1))(u, (+q(1)) (% W)) = (+q(1))((-q(1)) (U, V), (-q(1)) (U, W)).

(30) Letl be a non degenerated integral domain-like commutative ringidedan element of
Quot(l). Then(+q(1))(u, (—q(1))(u)) = Og(1) and(+q(1))((—q(1))(u), u) = Gq(1).

(31) Letl be a non degenerated integral domain-like commutative ringudbedan element of

Quot(l). If u# 0q(1), then(-q(1))(u, (¢1(1)) (1)) = 1q(1) and(-q(1))((g*(1)) (), u) = L4(1).
3. DEFINING THE FIELD OF QUOTIENTS

Let | be a non degenerated integral domain-like commutative ring. The field of quotiehts of
yielding a strict double loop structure is defined as follows:

(Def. 16) The field of quotients df= (Quot(l),+q4(1),-q(l),1q(1),04(1))-

Let | be a non degenerated integral domain-like commutative ring. Observe that the field of
guotients ofl is non empty.
One can prove the following propositions:



THE FIELD OF QUOTIENTS OVER AN INTEGRAL. .. 5

(32) Letl be a non degenerated integral domain-like commutative ring. Then
(i) the carrier of the field of quotients df= Quot(l),

(i) the addition of the field of quotients df= +4(l),

(i) the multiplication of the field of quotients df= -(l),

(iv) the zero of the field of quotients df= Oq4(l ), and
(v)  the unity of the field of quotients df= 14(l).

(33) Letl be a non degenerated integral domain-like commutative ringuiantbe elements of
the field of quotients of. Then(+4(1))(u, v) is an element of the field of quotients lof

(34) Letl be a non degenerated integral domain-like commutative ringidelan element of
the field of quotients of. Then(—q(1))(u) is an element of the field of quotients lof

(35) Letl be a non degenerated integral domain-like commutative ringiantbe elements of
the field of quotients of. Then(-q4(1))(u, v) is an element of the field of quotients lof

(36) Letl be a non degenerated integral domain-like commutative ringudredan element of
the field of quotients of. Then(al(l ))(u) is an element of the field of quotients lof

(37) Letl be a non degenerated integral domain-like commutative ringuantbe elements of
the field of quotients of. Thenu+v = (+4(1))(u, v).

Let | be a non degenerated integral domain-like commutative ring. Observe that the field of
quotients ofl is add-associative, right zeroed, and right complementable.
We now state a number of propositions:

(38) Letl be a non degenerated integral domain-like commutative ringudbedan element of
the field of quotients of. Then—u = (—q(1))(u).

(39) Letl be a non degenerated integral domain-like commutative ringuantbe elements of
the field of quotients of. Thenu-v= (-q(l))(u, v).

(40) Let | be a non degenerated integral domain-like commutative ring. Then
1the field of quotients of = 1q(|) and Qhe field of quotients of = Oq(l )

(41) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of the field of quotients of. Then(u+Vv) +w=u+ (V+w).

(42) Letl be a non degenerated integral domain-like commutative ringiantbe elements of
the field of quotients of. Thenu+v=v+u.

(43) Letl be a non degenerated integral domain-like commutative ringudredan element of
the field of quotients of. Thenu+ One field of quotients of = U.

(45@ Let| be a non degenerated integral domain-like commutative ringidoredan element of
the field of quotients of. Thenline field of quotients of - U= U.

(46) Letl be a non degenerated integral domain-like commutative ringuantbe elements of
the field of quotients of. Thenu-v=v-u.

(47) Letl be a non degenerated integral domain-like commutative ringiandv be elements
of the field of quotients of. Then(u-v)-w=u-(v-w).

(48) Letl be a non degenerated integral domain-like commutative ringidedan element of
the field of quotients of. Suppose # One field of quotients of - 1heN there exists an element
of the field of quotients of such thau- v = Lie field of quotients of -

3 The proposition (44) has been removed.
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(49) Letl be a non degenerated integral domain-like commutative ring. Then the field of quo-
tients ofl is an add-associative right zeroed right complementable Abelian commutative as-
sociative left unital distributive field-like non degenerated non empty double loop structure.

Let| be a non degenerated integral domain-like commutative ring. One can check that the field
of quotients ofl is Abelian, commutative, associative, left unital, distributive, field-like, and non
degenerated.

We now state the proposition

(50) Letl be a non degenerated integral domain-like commutative ringxamel an element
of the field of quotients of. SupposeX # Otne field of quotients of - LET @ be an element of.
Suppose # 0. Let u be an element o)(l). Supposex = QClasgu) andu= (a, 1,). Letv
be an element a®(1). If v= (1, a), thenx ! = QClasgv).

Let us note that every add-associative right zeroed right complementable commutative associa-
tive left unital distributive field-like non degenerated non empty double loop structure is integral
domain-like and right unital.

Let us note that there exists a non empty double loop structure which is add-associative, right
zeroed, right complementable, Abelian, commutative, associative, left unital, distributive, field-like,
and non degenerated.

Let F be a commutative associative left unital distributive field-like non empty double loop
structure and let, y be elements df. The functor’—; yielding an element df is defined as follows:

(Def.17) = x-y L.

The following two propositions are true:

(51) LetF be a non degenerated field-like commutative ring antg ¢, d be elements of. If

b # Or andd # O, then$ - & = &€,

(52) LetF be a non degenerated field-like commutative ring artol ¢, d be elements of . If
b+ O andd # O, theng + ¢ = adtch,

4. DEFINING RING HOMOMORPHISMS

Let R, Sbe non empty double loop structures andflée a map fronRinto S. We say thaff is ring
homomorphism if and only if:

(Def. 21|f| f is additive, multiplicative, and unity-preserving.

Let R, Sbe non empty double loop structures. Note that every map Ramto Swhich is ring
homomorphism is also additive, multiplicative, and unity-preserving and every mapHiiamm S
which is additive, multiplicative, and unity-preserving is also ring homomorphism.

Let R, She non empty double loop structures andfldéie a map fronR into S. We say thaff is
ring epimorphism if and only if:

(Def. 22) f is ring homomorphism and riig= the carrier ofS.
We say thaff is ring monomorphism if and only if:
(Def. 23) f is ring homomorphism and one-to-one.

We introducef is embedding as a synonym bfis ring monomorphism.
Let R, Sbe non empty double loop structures andfléte a map fronRinto S. We say thaff is
ring isomorphism if and only if;

(Def. 24) f isring monomorphism and ring epimorphism.

4 The definitions (Def. 18)—(Def. 20) have been removed.
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Let R, Sbe non empty double loop structures. Observe that every mapRriomto S which is
ring isomorphism is also ring monomorphism and ring epimorphism and every mag_fiota S
which is ring monomorphism and ring epimorphism is also ring isomorphism.

The following propositions are true:

(53) For all ringsR, Sand for every magf from R into Ssuch thatf is ring homomorphism
h0|de(0R) = Os.

(54) LetR, Sbe rings andf be a map fronRinto S. Supposé€f is ring monomorphism. Let
be an element dR. Thenf(x) = Os if and only if x = Og.

(55) LetR, She non degenerated field-like commutative rings &tk a map fronR into S.
Supposd is ring homomorphism. Letbe an element dR. If x # Og, thenf (x 1) = f(x) L.

(56) LetR, She non degenerated field-like commutative rings &ritk a map fronR into S.
Supposef is ring homomorphism. Let, y be elements oR. If y # O, then f(x-y~1) =

F(x)- f(y)~L

(57) LetR, S T be rings andf be a map fronRinto S. Suppos€ is ring homomorphism. Let
g be a map fronSinto T. If gis ring homomorphism, theg- f is ring homomorphism.

(58) For every non empty double loop struct&&olds id is ring homomorphism.

Let Rbe a non empty double loop structure. Note thatigdring homomorphism.
Let R, She non empty double loop structures. We say Bistembedded isif and only if:

(Def. 25) There exists a map froRiinto Swhich is ring monomorphism.

Let R, Sbe non empty double loop structures. We say Bt ring isomorphic t&sif and only
if:

(Def. 26) There exists a map froRiinto Swhich is ring isomorphism.

Let us note that the predicafs ring isomorphic tdSis symmetric.

5. SOME FURTHER PROPERTIES

Let| be a non empty zero structure andel be elements of. Let us assume that=~ 0,. The
functor quotientx,y) yielding an element o(1) is defined as follows:

(Def. 27) quotientx,y) = (X, y).

Let | be a non degenerated integral domain-like commutative ring. The canonical homomor-
phism ofl into quotient field is a map fronh into the field of quotients of and is defined as
follows:

(Def. 28) For every elementof | holds (the canonical homomorphismidhto quotient fieldjx) =
QClasgquotientx, 1;)).

Next we state four propositions:

(59) Letl be a non degenerated integral domain-like commutative ring. Then the canonical
homomorphism of into quotient field is ring homomorphism.

(60) Letl be a non degenerated integral domain-like commutative ring. Then the canonical
homomorphism of into quotient field is embedding.

(61) Letl be a non degenerated integral domain-like commutative ring. Tieeambedded in
the field of quotients of.

(62) LetF be a non degenerated field-like integral domain-like commutative ring. Fhisn
ring isomorphic to the field of quotients B&f.



THE FIELD OF QUOTIENTS OVER AN INTEGRAL. .. 8

Let| be a non degenerated integral domain-like commutative ring. One can verify that the field

of quotients ofl is integral domain-like, right unital, and right distributive.

Next we state the proposition

(63) Letl be a non degenerated integral domain-like commutative ring. Then the field of quo-

tients of the field of quotients dfis ring isomorphic to the field of quotients bf

Letl, F be non empty double loop structures andfléte a map froni into F. We say thaF is

a field of quotients fot via f if and only if the conditions (Def. 29) are satisfied.

(Def. 29)(i) f is ring monomorphism, and

(i) for every add-associative right zeroed right complementable Abelian commutative asso-
ciative left unital distributive field-like non degenerated non empty double loop struéture
and for every magd’ from | into F’ such thatf’ is ring monomorphism there exists a map
from F into F’ such thath is ring homomorphism and- f = f’ and for every map’ from F
into F’ such that' is ring homomorphism and - f = f’ holdsh’ = h.

One can prove the following propositions:

(64) Letl be a non degenerated integral domain-like commutative ring. Then there exists an

add-associative right zeroed right complementable Abelian commutative associative left uni-
tal distributive field-like non degenerated non empty double loop struEtaned there exists
a mapf from| into F such thaf is a field of quotients fol via f.

(65) Letl be an integral domain-like commutative rirfg, F’ be add-associative right zeroed

(1
(2]

4

5]

6]

[7]

8l

[
[10]

[11]

[12]

[13]

[14]

right complementable Abelian commutative associative left unital distributive field-like non
degenerated non empty double loop structufelse a map from into F, and f’ be a map
from | into F’. Supposd- is a field of quotients for via f andF’ is a field of quotients fof

via f’. ThenF is ring isomorphic tc'.
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