The Fundamental Logic Structure in Quantum Mechanics Paweł Sadowski Warsaw University Białystok Andrzej Trybulec Warsaw University Białystok Konrad Raczkowski Warsaw University Białystok **Summary.** In this article we present the logical structure given by four axioms of Mackey [4] in the set of propositions of Quantum Mechanics. The equivalence relation (PropRel(Q)) in the set of propositions (Prop Q) for given Quantum Mechanics Q is considered. The main text for this article is [6] where the structure of quotient space and the properties of equivalence relations, classes and partitions are studied. MML Identifier: QMAX_1. WWW: http://mizar.org/JFM/Vol1/qmax_1.html The articles [8], [3], [12], [10], [13], [14], [15], [1], [2], [11], [7], [5], [9], and [6] provide the notation and terminology for this paper. In this paper X_1 , x are sets, X is a non empty set, and A is an event of the Borel sets. Let us consider X and let S be a σ -field of subsets of X. The functor probabilities S yielding a set is defined by: (Def. 1) $x \in \text{probabilities } S \text{ iff } x \text{ is a probability on } S.$ Let us consider X and let S be a σ -field of subsets of X. One can check that probabilities S is non empty. We consider quantum mechanics structures as systems ⟨ observables, control states, a probability ⟩, where the observables and the control states constitute non empty sets and the probability is a function from [:the observables, the control states:] into probabilities (the Borel sets). In the sequel Q denotes a quantum mechanics structure. Let us consider Q. The functor Obs Q yielding a set is defined by: (Def. 2) Obs Q = the observables of Q. The functor Sts Q yields a set and is defined as follows: (Def. 3) Sts Q = the control states of Q. Let us consider Q. One can verify that Obs Q is non empty and Sts Q is non empty. In the sequel A_1 is an element of Obs Q, s is an element of Sts Q, and E is an event of the Borel sets Let us consider Q, A_1 , s. The functor $Meas(A_1, s)$ yields a probability on the Borel sets and is defined by: (Def. 4) Meas (A_1, s) = (the probability of Q)($\langle A_1, s \rangle$). Let I_1 be a quantum mechanics structure. We say that I_1 is quantum mechanics-like if and only if the conditions (Def. 5) are satisfied. - (Def. 5)(i) For all elements A_1 , A_2 of Obs I_1 such that for every element s of Sts I_1 holds $Meas(A_1, s) = Meas(A_2, s)$ holds $A_1 = A_2$, - (ii) for all elements s_1 , s_2 of Sts I_1 such that for every element A of Obs I_1 holds Meas $(A, s_1) = \text{Meas}(A, s_2)$ holds $s_1 = s_2$, and - (iii) for all elements s_1 , s_2 of $\operatorname{Sts} I_1$ and for every real number t such that $0 \le t$ and $t \le 1$ there exists an element s of $\operatorname{Sts} I_1$ such that for every element A of $\operatorname{Obs} I_1$ and for every E holds $\operatorname{Meas}(A,s)(E) = t \cdot \operatorname{Meas}(A,s_1)(E) + (1-t) \cdot \operatorname{Meas}(A,s_2)(E)$. Let us note that there exists a quantum mechanics structure which is strict and quantum mechanicslike. A quantum mechanics is a quantum mechanics-like quantum mechanics structure. In the sequel Q denotes a quantum mechanics and s denotes an element of Sts Q. Let X be a set. We consider POI structures over X as systems \langle an ordering, an involution \rangle , where the ordering is a binary relation on X and the involution is a function from X into X. In the sequel x_1 is an element of X_1 and I_2 is a function from X_1 into X_1 . Let us consider X_1 , I_2 . We say that I_2 is an involution in X_1 if and only if: (Def. 6) $$I_2(I_2(x_1)) = x_1$$. Let us consider X_1 and let W be a POI structure over X_1 . We say that W is a quantum logic on X_1 if and only if the condition (Def. 7) is satisfied. - (Def. 7) There exists a binary relation O_1 on X_1 and there exists a function I_2 from X_1 into X_1 such that - (i) $W = \langle O_1, I_2 \rangle$, - (ii) O_1 partially orders X_1 , - (iii) I_2 is an involution in X_1 , and - (iv) for all elements x, y of X_1 such that $\langle x, y \rangle \in O_1$ holds $\langle I_2(y), I_2(x) \rangle \in O_1$. Let us consider Q. The functor Prop Q yields a set and is defined as follows: (Def. 8) $\operatorname{Prop} Q = [\operatorname{Obs} Q, \text{ the Borel sets }:].$ Let us consider Q. Observe that Prop Q is non empty. In the sequel p, q, r, p_1 , q_1 denote elements of Prop Q. Let us consider Q, p. Then p_1 is an element of Obs Q. Then p_2 is an event of the Borel sets. We now state two propositions: $$(14)^1$$ $p = \langle p_1, p_2 \rangle.$ (16)² For every E such that $$E = (p_2)^c$$ holds $\operatorname{Meas}(p_1, s)(p_2) = 1 - \operatorname{Meas}(p_1, s)(E)$. Let us consider Q, p. The functor $\neg p$ yielding an element of Prop Q is defined by: (Def. 9) $$\neg p = \langle p_1, (p_2)^c \rangle$$. Let us consider Q, p, q. The predicate $p \vdash q$ is defined by: (Def. 10) For every s holds $\operatorname{Meas}(p_1, s)(p_2) \leq \operatorname{Meas}(q_1, s)(q_2)$. Let us consider Q, p, q. The predicate $p \equiv q$ is defined by: (Def. 11) $p \vdash q$ and $q \vdash p$. ¹ The propositions (1)–(13) have been removed. ² The proposition (15) has been removed. One can prove the following propositions: - (20)³ $p \equiv q$ iff for every s holds $\operatorname{Meas}(p_1, s)(p_2) = \operatorname{Meas}(q_1, s)(q_2)$. - (21) $p \vdash p$. - (22) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$. - (23) $p \equiv p$. - (24) If $p \equiv q$, then $q \equiv p$. - (25) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$. - (26) $(\neg p)_1 = p_1$ and $(\neg p)_2 = (p_2)^c$. - (27) $\neg \neg p = p$. - (28) If $p \vdash q$, then $\neg q \vdash \neg p$. Let us consider Q. The functor PropRel Q yielding an equivalence relation of Prop Q is defined by: (Def. 12) $\langle p, q \rangle \in \operatorname{PropRel} Q \text{ iff } p \equiv q.$ In the sequel B, C are subsets of Prop Q. Next we state the proposition (30)⁴ Let given B, C. Suppose $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$. Let a, b, c, d be elements of Prop Q. If $a \in B$ and $b \in B$ and $c \in C$ and $d \in C$ and $a \vdash c$, then $b \vdash d$. Let us consider Q. The functor OrdRel Q yields a binary relation on Classes PropRel Q and is defined by: (Def. 13) $\langle B, C \rangle \in \text{OrdRel } Q \text{ iff } B \in \text{Classes PropRel } Q \text{ and } C \in \text{Classes PropRel } Q \text{ and for all } p, q \text{ such that } p \in B \text{ and } q \in C \text{ holds } p \vdash q.$ The following propositions are true: - $(32)^5 \quad p \vdash q \text{ iff } \langle [p]_{\text{PropRel } O}, [q]_{\text{PropRel } O} \rangle \in \text{OrdRel } Q.$ - (33) For all B, C such that $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$ and for all p_1 , q_1 such that $p_1 \in B$ and $q_1 \in B$ and $\neg p_1 \in C$ holds $\neg q_1 \in C$. - (34) For all B, C such that $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$ and for all p, q such that $\neg p \in C$ and $\neg q \in C$ and $p \in B$ holds $q \in B$. Let us consider Q. The functor InvRel Q yielding a function from Classes PropRel Q into Classes PropRel Q is defined by: (Def. 14) $$(InvRel Q)([p]_{PropRel Q}) = [\neg p]_{PropRel Q}$$. We now state the proposition (36)⁶ For every Q holds $\langle \text{OrdRel } Q, \text{InvRel } Q \rangle$ is a quantum logic on Classes PropRel Q. ³ The propositions (17)–(19) have been removed. ⁴ The proposition (29) has been removed. ⁵ The proposition (31) has been removed. ⁶ The proposition (35) has been removed. ## REFERENCES - Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html - [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html. - [4] G.W.Mackey. The Mathematical Foundations of Quantum Mechanics. North Holland, New York, Amsterdam, 1963. - [5] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html. - [6] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html. - [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html. - [10] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [11] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_2.html. - [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. - [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html. - [15] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html. Received December 18, 1989 Published January 2, 2004