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Summary. In this article we present the logical structure given by four axioms of
Mackey [4] in the set of propositions of Quantum Mechanics. The equivalence relation (Pro-
pRel(Q)) in the set of propositions (Prop Q) for given Quantum Mechanics Q is considered.
The main text for this article i$ [6] where the structure of quotient space and the properties of
equivalence relations, classes and partitions are studied.

MML Identifier: QMAX_1.

WWW: http://mizar.orqg/JFM/Voll/gmax_1.html

The articles|[8], [[3], ([12], [[10], [[18], [([14], [[15], 4], 2], [124], 171, [15], [[9], and_[6] provide the
notation and terminology for this paper.

In this papeiXy, x are setsX is a non empty set, arilis an event of the Borel sets.

Let us consideX and letS be ao-field of subsets oK. The functor probabilitieS yielding a
set is defined by:

(Def. 1) x € probabilitiesSiff x is a probability orS.

Let us consideX and letS be ao-field of subsets oK. One can check that probabiliti&ss
non empty.

We consider quantum mechanics structures as systems

( observables, control states, a probability
where the observables and the control states constitute non empty sets and the probability is a
function from[:the observableshe control statesinto probabilities (the Borel sets).

In the sequel denotes a quantum mechanics structure.

Let us considef. The functor Ob® yielding a set is defined by:

(Def. 2) ObgQ = the observables @).
The functor St8 yields a set and is defined as follows:
(Def. 3) St = the control states d.

Let us considef. One can verify that Olf3 is non empty and S is non empty.

In the sequeh; is an element of OWY, sis an element of St3, andE is an event of the Borel
sets.

Let us consideR), A1, s. The functor Mea@\;, s) yields a probability on the Borel sets and is
defined by:

(Def. 4) MeasgAq,s) = (the probability ofQ)({Aq, S)).
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Let |1 be a guantum mechanics structure. We saylthstquantum mechanics-like if and only
if the conditions (Def. 5) are satisfied.

(Def.5)()) For all elementsA;, A, of Obsl; such that for every elemerd of Stsl; holds
MeagA;,s) = MeagAy,s) holdsA; = Ay,

(i) for all elementss;, s, of Stsl; such that for every elemeAtof Obsl; holds MeagA, s;) =
MeagA, s») holdss; = s, and

(i)  for all elementss;, sp of Stsl; and for every real numbersuch that <t andt < 1 there
exists an elemerd of Stsl; such that for every element of Obsl; and for everyE holds
MeagA,s)(E) =t-MeagA,s1)(E)+ (1-t)-MeasA, s)(E).

Let us note that there exists a quantum mechanics structure which is strict and quantum mechanics-
like.

A quantum mechanics is a quantum mechanics-like quantum mechanics structure.

In the seque) denotes a quantum mechanics amtnotes an element of £s

Let X be a set. We consider POI structures o¥eas systems

( an ordering, an involutio,
where the ordering is a binary relation ¥rand the involution is a function frord into X.

In the sequek; is an element 0K; andl; is a function fromx; into X;.

Let us consideKy, |,. We say that; is an involution inX; if and only if:

(Def. 6) I2(l2(x1)) = X1

Let us consideK; and letW be a POI structure ovef;. We say thaw is a quantum logic on
X3 if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a binary relati@y on X; and there exists a functida from X; into X; such
that

(i) W=(0,l2),
(i)  Oq partially ordersXy,
(iii) I is aninvolution inXy, and
(iv) forall elementsx, y of X; such thafx, y) € O; holds({lz(y), 12(X)) € Os.
Let us conside. The functor Prof yields a set and is defined as follows:
(Def. 8) Prom = [ ObsQ, the Borel set$.

Let us considef. Observe that PraQ is non empty.

In the sequep, g, r, p1, g1 denote elements of Prgp

Let us conside®, p. Thenp; is an element of OB. Thenp; is an event of the Borel sets.
We now state two propositions:

4] p=(p1, p2).
(16f] For everyE such thaE = (p,)¢ holds Meaépy,s)(pz) = 1—Meag p1,s)(E).
Let us conside®, p. The functor-p yielding an element of PraQ is defined by:
(Def. 9)  —p=(p1. (P2)°)-
Let us conside®, p, g. The predicate - q is defined by:
(Def. 10) For evensholds Meaéps,s)(p2) < Meagqs,s)(02).-
Let us conside®, p, g. The predicate = qis defined by:
(Def. 11) ptFqgandqgt p.

1 The propositions (1)-(13) have been removed.
2 The proposition (15) has been removed.
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One can prove the following propositions:

(20F] p= qiff for every sholds Measp;, s)(pz) = Meagqs, s)(ap).
(21) pkp.

(22) If p-qgandgtr,thenptr.

(23) p=p

(24) If p=q,theng=p.

(25) Ifp=gandg=r,thenp=r.

(26) (—p)1=prand(-p)2 = (p2)".

27) ——p=p.

(28) If ptq,then—qk —p.

Let us conside@. The functor PropRé) yielding an equivalence relation of Pr@ds defined
by:

(Def. 12) (p, q) € PropReRiff p=aq.

In the sequeB, C are subsets of Pr@p.
Next we state the proposition

(SOE] Let givenB, C. SupposeB € ClassesPropR€&l andC < ClassesPropR€@l. Leta, b, ¢, d
be elements of Prap. If a< B andb € Bandc € C andd € C andat c, thenbtd.

Let us consideR. The functor OrdRdD yields a binary relation on Classes PropQelnd is
defined by:

(Def. 13) (B, C) € OrdRelQ iff B € ClassesPropR€& andC < ClassesPropRE€l and for all p, q
such thatp € B andqg € C holdspt- g.

The following propositions are true:

(SZE pt qiff ([p]PropReQ7 [q]PropReQ) € OrdRelQ.

(33) For allB, C such thaB € ClassesPropRé&l andC € ClassesPropR& and for allps, g1
such thatp; € Bandg; € Band—p; € C holds—q; € C.

(34) For allB, C such thatB € ClassesPropR€&l andC € ClassesPropR€&l and for allp, q
such that-p € C and—q € C andp € B holdsq € B.

Let us conside®. The functor InvReQ) yielding a function from Classes PropRginto Classes PropRél
is defined by:

(Def. 14) (InVReIQ)([p]PropReQ) = [ p}PropReQ'

We now state the proposition

(36@ For everyQ holds(OrdRelQ, InvRelQ) is a quantum logic on Classes PropRel

3 The propositions (17)—(19) have been removed.
4 The proposition (29) has been removed.
5 The proposition (31) has been removed.
6 The proposition (35) has been removed.
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