The Fundamental Logic Structure in Quantum Mechanics

Paweł Sadowski Warsaw University Białystok Andrzej Trybulec Warsaw University Białystok Konrad Raczkowski Warsaw University Białystok

Summary. In this article we present the logical structure given by four axioms of Mackey [4] in the set of propositions of Quantum Mechanics. The equivalence relation (PropRel(Q)) in the set of propositions (Prop Q) for given Quantum Mechanics Q is considered. The main text for this article is [6] where the structure of quotient space and the properties of equivalence relations, classes and partitions are studied.

MML Identifier: QMAX_1.

WWW: http://mizar.org/JFM/Vol1/qmax_1.html

The articles [8], [3], [12], [10], [13], [14], [15], [1], [2], [11], [7], [5], [9], and [6] provide the notation and terminology for this paper.

In this paper X_1 , x are sets, X is a non empty set, and A is an event of the Borel sets.

Let us consider X and let S be a σ -field of subsets of X. The functor probabilities S yielding a set is defined by:

(Def. 1) $x \in \text{probabilities } S \text{ iff } x \text{ is a probability on } S.$

Let us consider X and let S be a σ -field of subsets of X. One can check that probabilities S is non empty.

We consider quantum mechanics structures as systems

⟨ observables, control states, a probability ⟩,

where the observables and the control states constitute non empty sets and the probability is a function from [:the observables, the control states:] into probabilities (the Borel sets).

In the sequel Q denotes a quantum mechanics structure.

Let us consider Q. The functor Obs Q yielding a set is defined by:

(Def. 2) Obs Q = the observables of Q.

The functor Sts Q yields a set and is defined as follows:

(Def. 3) Sts Q = the control states of Q.

Let us consider Q. One can verify that Obs Q is non empty and Sts Q is non empty.

In the sequel A_1 is an element of Obs Q, s is an element of Sts Q, and E is an event of the Borel sets

Let us consider Q, A_1 , s. The functor $Meas(A_1, s)$ yields a probability on the Borel sets and is defined by:

(Def. 4) Meas (A_1, s) = (the probability of Q)($\langle A_1, s \rangle$).

Let I_1 be a quantum mechanics structure. We say that I_1 is quantum mechanics-like if and only if the conditions (Def. 5) are satisfied.

- (Def. 5)(i) For all elements A_1 , A_2 of Obs I_1 such that for every element s of Sts I_1 holds $Meas(A_1, s) = Meas(A_2, s)$ holds $A_1 = A_2$,
 - (ii) for all elements s_1 , s_2 of Sts I_1 such that for every element A of Obs I_1 holds Meas $(A, s_1) = \text{Meas}(A, s_2)$ holds $s_1 = s_2$, and
 - (iii) for all elements s_1 , s_2 of $\operatorname{Sts} I_1$ and for every real number t such that $0 \le t$ and $t \le 1$ there exists an element s of $\operatorname{Sts} I_1$ such that for every element A of $\operatorname{Obs} I_1$ and for every E holds $\operatorname{Meas}(A,s)(E) = t \cdot \operatorname{Meas}(A,s_1)(E) + (1-t) \cdot \operatorname{Meas}(A,s_2)(E)$.

Let us note that there exists a quantum mechanics structure which is strict and quantum mechanicslike.

A quantum mechanics is a quantum mechanics-like quantum mechanics structure.

In the sequel Q denotes a quantum mechanics and s denotes an element of Sts Q.

Let X be a set. We consider POI structures over X as systems

 \langle an ordering, an involution \rangle ,

where the ordering is a binary relation on X and the involution is a function from X into X.

In the sequel x_1 is an element of X_1 and I_2 is a function from X_1 into X_1 .

Let us consider X_1 , I_2 . We say that I_2 is an involution in X_1 if and only if:

(Def. 6)
$$I_2(I_2(x_1)) = x_1$$
.

Let us consider X_1 and let W be a POI structure over X_1 . We say that W is a quantum logic on X_1 if and only if the condition (Def. 7) is satisfied.

- (Def. 7) There exists a binary relation O_1 on X_1 and there exists a function I_2 from X_1 into X_1 such that
 - (i) $W = \langle O_1, I_2 \rangle$,
 - (ii) O_1 partially orders X_1 ,
 - (iii) I_2 is an involution in X_1 , and
 - (iv) for all elements x, y of X_1 such that $\langle x, y \rangle \in O_1$ holds $\langle I_2(y), I_2(x) \rangle \in O_1$.

Let us consider Q. The functor Prop Q yields a set and is defined as follows:

(Def. 8) $\operatorname{Prop} Q = [\operatorname{Obs} Q, \text{ the Borel sets }:].$

Let us consider Q. Observe that Prop Q is non empty.

In the sequel p, q, r, p_1 , q_1 denote elements of Prop Q.

Let us consider Q, p. Then p_1 is an element of Obs Q. Then p_2 is an event of the Borel sets. We now state two propositions:

$$(14)^1$$
 $p = \langle p_1, p_2 \rangle.$

(16)² For every E such that
$$E = (p_2)^c$$
 holds $\operatorname{Meas}(p_1, s)(p_2) = 1 - \operatorname{Meas}(p_1, s)(E)$.

Let us consider Q, p. The functor $\neg p$ yielding an element of Prop Q is defined by:

(Def. 9)
$$\neg p = \langle p_1, (p_2)^c \rangle$$
.

Let us consider Q, p, q. The predicate $p \vdash q$ is defined by:

(Def. 10) For every s holds $\operatorname{Meas}(p_1, s)(p_2) \leq \operatorname{Meas}(q_1, s)(q_2)$.

Let us consider Q, p, q. The predicate $p \equiv q$ is defined by:

(Def. 11) $p \vdash q$ and $q \vdash p$.

¹ The propositions (1)–(13) have been removed.

² The proposition (15) has been removed.

One can prove the following propositions:

- (20)³ $p \equiv q$ iff for every s holds $\operatorname{Meas}(p_1, s)(p_2) = \operatorname{Meas}(q_1, s)(q_2)$.
- (21) $p \vdash p$.
- (22) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$.
- (23) $p \equiv p$.
- (24) If $p \equiv q$, then $q \equiv p$.
- (25) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
- (26) $(\neg p)_1 = p_1$ and $(\neg p)_2 = (p_2)^c$.
- (27) $\neg \neg p = p$.
- (28) If $p \vdash q$, then $\neg q \vdash \neg p$.

Let us consider Q. The functor PropRel Q yielding an equivalence relation of Prop Q is defined by:

(Def. 12) $\langle p, q \rangle \in \operatorname{PropRel} Q \text{ iff } p \equiv q.$

In the sequel B, C are subsets of Prop Q.

Next we state the proposition

(30)⁴ Let given B, C. Suppose $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$. Let a, b, c, d be elements of Prop Q. If $a \in B$ and $b \in B$ and $c \in C$ and $d \in C$ and $a \vdash c$, then $b \vdash d$.

Let us consider Q. The functor OrdRel Q yields a binary relation on Classes PropRel Q and is defined by:

(Def. 13) $\langle B, C \rangle \in \text{OrdRel } Q \text{ iff } B \in \text{Classes PropRel } Q \text{ and } C \in \text{Classes PropRel } Q \text{ and for all } p, q \text{ such that } p \in B \text{ and } q \in C \text{ holds } p \vdash q.$

The following propositions are true:

- $(32)^5 \quad p \vdash q \text{ iff } \langle [p]_{\text{PropRel } O}, [q]_{\text{PropRel } O} \rangle \in \text{OrdRel } Q.$
- (33) For all B, C such that $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$ and for all p_1 , q_1 such that $p_1 \in B$ and $q_1 \in B$ and $\neg p_1 \in C$ holds $\neg q_1 \in C$.
- (34) For all B, C such that $B \in \text{Classes PropRel } Q$ and $C \in \text{Classes PropRel } Q$ and for all p, q such that $\neg p \in C$ and $\neg q \in C$ and $p \in B$ holds $q \in B$.

Let us consider Q. The functor InvRel Q yielding a function from Classes PropRel Q into Classes PropRel Q is defined by:

(Def. 14)
$$(InvRel Q)([p]_{PropRel Q}) = [\neg p]_{PropRel Q}$$
.

We now state the proposition

(36)⁶ For every Q holds $\langle \text{OrdRel } Q, \text{InvRel } Q \rangle$ is a quantum logic on Classes PropRel Q.

³ The propositions (17)–(19) have been removed.

⁴ The proposition (29) has been removed.

⁵ The proposition (31) has been removed.

⁶ The proposition (35) has been removed.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html
- [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [4] G.W.Mackey. The Mathematical Foundations of Quantum Mechanics. North Holland, New York, Amsterdam, 1963.
- [5] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
- [6] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html.
- [10] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_2.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [15] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received December 18, 1989

Published January 2, 2004