The Subformula Tree of a Formula of the First Order Language

Oleg Okhotnikov
Ural University
Ekaterinburg

Abstract

Summary. A continuation of [12]. The notions of list of immediate constituents of a formula and subformula tree of a formula are introduced. The some propositions related to these notions are proved.

MML Identifier: QC_LANG4.
WWW: http://mizar.org/JFM/Vol7/qc_lang4.html

The articles [15], [11], [19], [17], [3], [20], [9], [10], [13], [8], [18], [1], [4], [5], [6], [7], [14], [2], and [16] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:
(4) For every natural number n and for every finite sequence r there exists a finite sequence q such that $q=r\lceil\operatorname{Seg} n$ and $q \preceq r$.
$(6)^{2}$ Let D be a non empty set, r be a finite sequence of elements of D, r_{1}, r_{2} be finite sequences, and k be a natural number. Suppose $k+1 \leq \operatorname{len} r$ and $r_{1}=r \upharpoonright \operatorname{Seg}(k+1)$ and $r_{2}=r \upharpoonright \operatorname{Seg} k$. Then there exists an element x of D such that $r_{1}=r_{2} \sim\langle x\rangle$.
(7) Let D be a non empty set, r be a finite sequence of elements of D, and r_{1} be a finite sequence. If $1 \leq \operatorname{len} r$ and $r_{1}=r\left\lceil\operatorname{Seg} 1\right.$, then there exists an element x of D such that $r_{1}=\langle x\rangle$.

Let D be a non empty set and let T be a tree decorated with elements of D. Observe that every element of $\operatorname{dom} T$ is function-like and relation-like.

Let D be a non empty set and let T be a tree decorated with elements of D. Note that every element of $\operatorname{dom} T$ is finite sequence-like.

Let D be a non empty set. Observe that there exists a tree decorated with elements of D which is finite.

In the sequel T denotes a decorated tree and p denotes a finite sequence of elements of \mathbb{N}.
One can prove the following proposition
(8) $\quad T(p)=(T \upharpoonright p)(0)$.

[^0]In the sequel T is a finite-branching decorated tree, t is an element of $\operatorname{dom} T, x$ is a finite sequence, and n is a natural number.

Next we state several propositions:
(9) $\operatorname{succ}(T, t)=T \cdot \operatorname{Succ} t$.
(10) $\operatorname{dom}(T \cdot \operatorname{Succ} t)=\operatorname{domSucc} t$.
(11) $\operatorname{dom} \operatorname{succ}(T, t)=\operatorname{domSucc} t$.
(12) $t^{\wedge}\langle n\rangle \in \operatorname{dom} T$ iff $n+1 \in \operatorname{dom}$ Succ t.
(13) For all T, x, n such that $x^{\curvearrowleft}\langle n\rangle \in \operatorname{dom} T$ holds $T\left(x^{\curvearrowleft}\langle n\rangle\right)=(\operatorname{succ}(T, x))(n+1)$.

In the sequel x, x^{\prime} denote elements of $\operatorname{dom} T$ and y^{\prime} denotes a set.
Next we state two propositions:
(14) If $x^{\prime} \in \operatorname{succ} x$, then $T\left(x^{\prime}\right) \in \operatorname{rng} \operatorname{succ}(T, x)$.
(15) If $y^{\prime} \in \operatorname{rng} \operatorname{succ}(T, x)$, then there exists x^{\prime} such that $y^{\prime}=T\left(x^{\prime}\right)$ and $x^{\prime} \in \operatorname{succ} x$.

In the sequel n, k, m denote natural numbers.
The scheme ExDecTrees deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a unary functor \mathcal{F} yielding a finite sequence of elements of \mathcal{A}, and states that:

There exists a finite-branching tree T decorated with elements of \mathcal{A} such that $T(\emptyset)=$
\mathcal{B} and for every element t of $\operatorname{dom} T$ and for every element w of \mathcal{A} such that $w=T(t)$ holds $\operatorname{succ}(T, t)=\mathcal{F}(w)$
for all values of the parameters.
We now state a number of propositions:
(16) For every tree T and for every element t of T holds $\operatorname{Seg}_{\preceq}(t)$ is a finite chain of T.
(17) For every tree T holds T-level $(0)=\{\emptyset\}$.
(18) For every tree T holds T-level $(n+1)=\bigcup\{\operatorname{succ} w ; w$ ranges over elements of T : len $w=n\}$.
(19) For every finite-branching tree T and for every natural number n holds T-level (n) is finite.
(20) For every finite-branching tree T holds T is finite iff there exists a natural number n such that $T-\operatorname{level}(n)=\emptyset$.
(21) For every finite-branching tree T such that T is not finite there exists a chain C of T such that C is not finite.
(22) For every finite-branching tree T such that T is not finite there exists a branch B of T such that B is not finite.
(23) Let T be a tree, C be a chain of T, and t be an element of T. If $t \in C$ and C is not finite, then there exists an element t^{\prime} of T such that $t^{\prime} \in C$ and $t \prec t^{\prime}$.
(24) Let T be a tree, B be a branch of T, and t be an element of T. Suppose $t \in B$ and B is not finite. Then there exists an element t^{\prime} of T such that $t^{\prime} \in B$ and $t^{\prime} \in \operatorname{succ} t$.
(25) Let f be a function from \mathbb{N} into \mathbb{N}. Suppose that for every n holds $f(n+1)$ qua natural number $\leq f(n)$ qua natural number. Then there exists m such that for every n such that $m \leq n$ holds $f(n)=f(m)$.
The scheme FinDecTree deals with a non empty set \mathcal{A}, a finite-branching tree \mathcal{B} decorated with elements of \mathcal{A}, and a unary functor \mathcal{F} yielding a natural number, and states that: \mathcal{B} is finite provided the parameters meet the following condition:

- For all elements t, t^{\prime} of $\operatorname{dom} \mathcal{B}$ and for every element d of \mathcal{A} such that $t^{\prime} \in \operatorname{succ} t$ and $d=\mathcal{B}\left(t^{\prime}\right)$ holds $\mathcal{F}(d)<\mathcal{F}(\mathcal{B}(t))$.
In the sequel D denotes a non empty set and T denotes a tree decorated with elements of D.
One can prove the following two propositions:
(26) For every set y such that $y \in \operatorname{rng} T$ holds y is an element of D.
(27) For every set x such that $x \in \operatorname{dom} T$ holds $T(x)$ is an element of D.

2. Subformula tree

In the sequel F, G, H denote elements of WFF.
The following two propositions are true:
(28) If F is a subformula of G, then len $\left({ }^{@} F\right) \leq \operatorname{len}\left({ }^{@} G\right)$.
(29) If F is a subformula of G and len $\left({ }^{@} F\right)=\operatorname{len}\left({ }^{@} G\right)$, then $F=G$.

Let p be an element of WFF. The list of immediate constituents of p yielding a finite sequence of elements of WFF is defined by:
(Def. 1) The list of immediate constituents of $p=\left\{\begin{array}{l}\varepsilon_{\mathrm{WFF}}, \text { if } p=\mathrm{VERUM} \text { or } p \text { is atomic, } \\ \langle\operatorname{Arg}(p)\rangle, \text { if } p \text { is negative, } \\ \langle\operatorname{Left} \operatorname{Arg}(p), \operatorname{Right} \operatorname{Arg}(p)\rangle, \text { if } p \text { is conjunctive, } \\ \langle\operatorname{Scope}(p)\rangle, \text { otherwise. }\end{array}\right.$
We now state two propositions:
(30) Suppose $k \in \operatorname{dom}($ the list of immediate constituents of F) and $G=$ (the list of immediate constituents of $F)(k)$. Then G is an immediate constituent of F.
(31) rng (the list of immediate constituents of $F)=\{G ; G$ ranges over elements of WFF: G is an immediate constituent of $F\}$.

Let p be an element of WFF. The tree of subformulae of p yields a finite tree decorated with elements of WFF and is defined by the conditions (Def. 2).
(Def. 2)(i) (The tree of subformulae of $p)(0)=p$, and
(ii) for every element x of dom (the tree of subformulae of p) holds succ(the tree of subformulae of $p, x)=$ the list of immediate constituents of (the tree of subformulae of $p)(x)$.

In the sequel t, t^{\prime} denote elements of dom(the tree of subformulae of F).
Next we state a number of propositions:
$(34)^{3} F \in \operatorname{rng}$ (the tree of subformulae of F).
(35) Suppose $t^{\wedge}\langle n\rangle \in \operatorname{dom}$ (the tree of subformulae of F). Then there exists G such that
(i) $\quad G=($ the tree of subformulae of $F)\left(t^{\wedge}\langle n\rangle\right)$, and
(ii) G is an immediate constituent of (the tree of subformulae of $F)(t)$.
(36) The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of $F)(t)$,
(ii) there exists n such that $t^{\wedge}\langle n\rangle \in \operatorname{dom}$ (the tree of subformulae of F) and $H=$ (the tree of subformulae of $F)\left(t^{\frown}\langle n\rangle\right)$.
(37) Suppose $G \in \operatorname{rng}$ (the tree of subformulae of F) and H is an immediate constituent of G. Then $H \in \operatorname{rng}$ (the tree of subformulae of F).
(38) If $G \in \operatorname{rng}($ the tree of subformulae of F) and H is a subformula of G, then $H \in \operatorname{rng}$ (the tree of subformulae of F).
(39) $G \in \operatorname{rng}$ (the tree of subformulae of F) iff G is a subformula of F.

[^1](40) $\quad \operatorname{rng}($ the tree of subformulae of $F)=$ Subformulae F.
(41) Suppose $t^{\prime} \in \operatorname{succ} t$. Then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is an immediate constituent of (the tree of subformulae of $F)(t)$.
(42) If $t \preceq t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is a subformula of (the tree of subformulae of $F)(t)$.
(43) If $t \prec t^{\prime}$, then len $\left({ }^{@}\right.$ (the tree of subformulae of $\left.\left.F\right)\left(t^{\prime}\right)\right)<\operatorname{len}\left({ }^{@}(\right.$ the tree of subformulae of $F)(t))$.
(44) If $t \prec t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right) \neq$ (the tree of subformulae of $\left.F\right)(t)$.
(45) If $t \prec t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is a proper subformula of (the tree of subformulae of $F)(t)$.
(46) (The tree of subformulae of $F)(t)=F$ iff $t=\emptyset$.
(47) Suppose $t \neq t^{\prime}$ and (the tree of subformulae of $\left.F\right)(t)=($ the tree of subformulae of $F)\left(t^{\prime}\right)$. Then t and t^{\prime} are not \subseteq-comparable.

Let F, G be elements of WFF. The F-entry points in subformula tree of G yields an antichain of prefixes of dom (the tree of subformulae of F) and is defined by the condition (Def. 3).
(Def. 3) Let t be an element of dom (the tree of subformulae of F). Then $t \in$ the F-entry points in subformula tree of G if and only if (the tree of subformulae of $F)(t)=G$.

Next we state several propositions:
(49 $]^{4}$ The F-entry points in subformula tree of $G=\{t ; t$ ranges over elements of dom(the tree of subformulae of F): (the tree of subformulae of $F)(t)=G\}$.
(50) $\quad G$ is a subformula of F iff the F-entry points in subformula tree of $G \neq \emptyset$.
(51) Suppose $t^{\prime}=t^{\complement}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is negative. Then (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Arg}(($ the tree of subformulae of $F)(t))$ and $m=0$.
(52) Suppose $t^{\prime}=t^{\wedge}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is conjunctive. Then
(i) (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Left} \operatorname{Arg}(($ the tree of subformulae of $F)(t))$ and $m=0$, or
(ii) (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Right} \operatorname{Arg}($ (the tree of subformulae of $F)(t)$) and $m=1$.
(53) Suppose $t^{\prime}=t^{\frown}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is universal. Then (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Scope}(($ the tree of subformulae of $F)(t))$ and $m=0$.
(54) Suppose (the tree of subformulae of $F)(t)$ is negative. Then
(i) $t^{\wedge}\langle 0\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(ii) (the tree of subformulae of $F)\left(t^{\wedge}\langle 0\rangle\right)=\operatorname{Arg}(($ the tree of subformulae of $F)(t))$.
(55) Suppose (the tree of subformulae of $F)(t)$ is conjunctive. Then
(i) $\quad t^{\curvearrowleft}\langle 0\rangle \in \operatorname{dom}$ (the tree of subformulae of F),
(ii) (the tree of subformulae of $F)\left(t^{\wedge}\langle 0\rangle\right)=\operatorname{Left} \operatorname{Arg}(($ the tree of subformulae of $F)(t))$,
(iii) $t^{\curvearrowright}\langle 1\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(iv) (the tree of subformulae of $F)\left(t^{\wedge}\langle 1\rangle\right)=\operatorname{Right} \operatorname{Arg}(($ the tree of subformulae of $F)(t))$.

[^2](56) Suppose (the tree of subformulae of $F)(t)$ is universal. Then
(i) $t^{\wedge}\langle 0\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(ii) (the tree of subformulae of $F)\left(t^{\wedge}\langle 0\rangle\right)=\operatorname{Scope}(($ the tree of subformulae of $F)(t))$.

In the sequel t denotes an element of dom (the tree of subformulae of F) and s denotes an element of dom (the tree of subformulae of G).

Next we state the proposition
(57) Suppose $t \in$ the F-entry points in subformula tree of G and $s \in$ the G-entry points in subformula tree of H. Then $t^{\wedge} s \in$ the F-entry points in subformula tree of H.

In the sequel t denotes an element of dom(the tree of subformulae of F) and s denotes a finite sequence.

Next we state several propositions:
(58) Suppose $t \in$ the F-entry points in subformula tree of G and $t^{\wedge} s \in$ the F-entry points in subformula tree of H. Then $s \in$ the G-entry points in subformula tree of H.
(59) Let given F, G, H. Then $\left\{t^{\wedge} s ; t\right.$ ranges over elements of dom(the tree of subformulae of F), s ranges over elements of dom(the tree of subformulae of G): $t \in$ the F-entry points in subformula tree of $G \wedge s \in$ the G-entry points in subformula tree of $H\} \subseteq$ the F-entry points in subformula tree of H.
(60) (The tree of subformulae of $F) \mid t=$ the tree of subformulae of (the tree of subformulae of $F)(t)$.
(61) $t \in$ the F-entry points in subformula tree of G if and only if (the tree of subformulae of $F) \upharpoonright t=$ the tree of subformulae of G.
(62) The F-entry points in subformula tree of $G=\{t ; t$ ranges over elements of dom(the tree of subformulae of F): (the tree of subformulae of $F) \mid t=$ the tree of subformulae of $G\}$.

In the sequel C is a chain of dom(the tree of subformulae of F).
One can prove the following proposition
(63) Let given F, G, H, C. Suppose that
(i) $\quad G \in\{$ (the tree of subformulae of $F)(t) ; t$ ranges over elements of dom(the tree of subformulae of F): $t \in C\}$, and
(ii) $\quad H \in\{($ the tree of subformulae of $F)(t) ; t$ ranges over elements of dom(the tree of subformulae of F): $t \in C\}$.
Then G is a subformula of H or H is a subformula of G.
Let F be an element of WFF. An element of WFF is called a subformula of F if:
(Def. 4) It is a subformula of F.
Let F be an element of WFF and let G be a subformula of F. An element of dom(the tree of subformulae of F) is said to be an entry point in subformula tree of G if:
(Def. 5) $\quad($ The tree of subformulae of $F)(\mathrm{it})=G$.
In the sequel G denotes a subformula of F and t, t^{\prime} denote entry points in subformula tree of G. Next we state the proposition

$$
(65]^{5} \text { If } t \neq t^{\prime} \text {, then } t \text { and } t^{\prime} \text { are not } \subseteq \text {-comparable. }
$$

[^3]Let F be an element of WFF and let G be a subformula of F. The entry points in subformula tree of G yields a non empty antichain of prefixes of dom (the tree of subformulae of F) and is defined by:
(Def. 6) The entry points in subformula tree of $G=$ the F-entry points in subformula tree of G.
We now state two propositions:
(67) $t \in$ the entry points in subformula tree of G.
(68) The entry points in subformula tree of $G=\{t ; t$ ranges over entry points in subformula tree of $G: t=t\}$.

In the sequel G_{1}, G_{2} denote subformulae of F, t_{1} denotes an entry point in subformula tree of G_{1}, and s denotes an element of dom (the tree of subformulae of G_{1}).

Next we state the proposition
(69) If $s \in$ the G_{1}-entry points in subformula tree of G_{2}, then $t_{1}{ }^{\wedge} s$ is an entry point in subformula tree of G_{2}.

In the sequel s is a finite sequence.
We now state three propositions:
(70) If $t_{1}{ }^{\wedge} s$ is an entry point in subformula tree of G_{2}, then $s \in$ the G_{1}-entry points in subformula tree of G_{2}.
(71) Let given F, G_{1}, G_{2}. Then $\left\{t^{\wedge} s ; t\right.$ ranges over entry points in subformula tree of G_{1}, s ranges over elements of dom (the tree of subformulae of G_{1}): $s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\}=\left\{t^{\wedge} s ; t\right.$ ranges over elements of dom(the tree of subformulae of F), s ranges over elements of dom (the tree of subformulae of G_{1}): $t \in$ the F-entry points in subformula tree of $G_{1} \wedge s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\}$.
(72) Let given F, G_{1}, G_{2}. Then $\left\{t^{\wedge} s ; t\right.$ ranges over entry points in subformula tree of G_{1}, s ranges over elements of dom (the tree of subformulae of G_{1}): $s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\} \subseteq$ the entry points in subformula tree of G_{2}.

In the sequel G_{1}, G_{2} are subformulae of F, t_{1} is an entry point in subformula tree of G_{1}, and t_{2} is an entry point in subformula tree of G_{2}.

Next we state two propositions:
(73) If there exist t_{1}, t_{2} such that $t_{1} \preceq t_{2}$, then G_{2} is a subformula of G_{1}.
(74) If G_{2} is a subformula of G_{1}, then for every t_{1} there exists t_{2} such that $t_{1} \preceq t_{2}$.

Acknowledgments

The author wishes to thank to G. Bancerek for his assistance during the preparation of this paper.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. Connectives and subformulae of the first order language. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Vol1/qc_lang2.html
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[4] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1. html.
[5] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/trees_2.html

[^4][6] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_ 4.html
[7] Grzegorz Bancerek. Subtrees. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/trees_9.html
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funct_1.html
[10] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[12] Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/qc_lang3.html
[13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[14] Piotr Rudnicki and Andrzej Trybulec. A first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/qc_lang1.html.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html
[17] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[18] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html
[19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html

Received October 2, 1995
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (1)-(3) have been removed.
 ${ }^{2}$ The proposition (5) has been removed.

[^1]: ${ }^{3}$ The propositions (32) and (33) have been removed.

[^2]: ${ }^{4}$ The proposition (48) has been removed.

[^3]: ${ }^{5}$ The proposition (64) has been removed.

[^4]: ${ }^{6}$ The proposition (66) has been removed.

