Variables in Formulae of the First Order Language¹

Czesław Byliński Warsaw University Białystok Grzegorz Bancerek Warsaw University Białystok

Summary. We develop the first order language defined in [6]. We continue the work done in the article [1]. We prove some schemes of defining by structural induction. We deal with notions of closed subformulae and of still not bound variables in a formula. We introduce the concept of the set of all free variables and the set of all fixed variables occurring in a formula.

MML Identifier: QC_LANG3.
WWW: http://mizar.org/JFM/Vol1/qc_lang3.html

The articles [7], [5], [9], [8], [3], [4], [2], [6], and [1] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: i, j, k denote natural numbers, x denotes a bound variable, a denotes a free variable, p, q denote elements of WFF, l denotes a finite sequence of elements of Var, P denotes a predicate symbol, and V denotes a non empty subset of Var.

In this article we present several logical schemes. The scheme *QC Func Uniq* deals with a non empty set \mathcal{A} , a function \mathcal{B} from WFF into \mathcal{A} , a function \mathcal{C} from WFF into \mathcal{A} , an element \mathcal{D} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor I yielding an element of \mathcal{A} , and states that:

 $\mathcal{B} = \mathcal{C}$

provided the following conditions are met:

- Let given p and d_1 , d_2 be elements of \mathcal{A} . Then
 - (i) if p = VERUM, then $\mathcal{B}(p) = \mathcal{D}$,
 - (ii) if *p* is atomic, then $\mathcal{B}(p) = \mathcal{F}(p)$,
 - (iii) if *p* is negative and $d_1 = \mathcal{B}(\operatorname{Arg}(p))$, then $\mathcal{B}(p) = \mathcal{G}(d_1)$,
 - (iv) if p is conjunctive and $d_1 = \mathcal{B}(\text{LeftArg}(p))$ and $d_2 = \mathcal{B}(\text{RightArg}(p))$, then $\mathcal{B}(p) = \mathcal{B}(p)$ and $d_1 = \mathcal{B}(p)$.
 - $\mathcal{B}(p) = \mathcal{H}(d_1, d_2), \text{ and }$
 - (v) if p is universal and $d_1 = \mathcal{B}(\text{Scope}(p))$, then $\mathcal{B}(p) = I(p, d_1)$, and
- Let given p and d_1 , d_2 be elements of \mathcal{A} . Then
 - (i) if p = VERUM, then $\mathcal{C}(p) = \mathcal{D}$,
 - (ii) if *p* is atomic, then $C(p) = \mathcal{F}(p)$,
 - (iii) if p is negative and $d_1 = C(\operatorname{Arg}(p))$, then $C(p) = \mathcal{G}(d_1)$,
 - (iv) if p is conjunctive and $d_1 = C(\text{LeftArg}(p))$ and $d_2 = C(\text{RightArg}(p))$, then $C(p) = \frac{d}{d}(d_1, d_2)$ and
 - $\mathcal{C}(p) = \mathcal{H}(d_1, d_2), \text{ and }$
 - (v) if p is universal and $d_1 = C(\text{Scope}(p))$, then $C(p) = I(p, d_1)$.

The scheme QC Def D deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary

¹Partially supported by RPBP.III-24.C1.

functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor I yielding an element of \mathcal{A} , and states that:

(i) There exists an element *d* of \mathcal{A} and there exists a function *F* from WFF into \mathcal{A} such that $d = F(\mathcal{C})$ and for every element *p* of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if *p* is atomic, then $F(p) = \mathcal{F}(p)$ and if *p* is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if *p* is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ and if *p* is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$, and

(ii) for all elements x_1 , x_2 of \mathcal{A} such that there exists a function F from WFF into \mathcal{A} such that $x_1 = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if p is atomic, then $F(p) = \mathcal{F}(p)$ and if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ and if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$ and there exists a function F from WFF into \mathcal{A} such that $x_2 = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if p is atomic, then $F(p) = \mathcal{F}(p)$ and if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if p is universal and $d_1 = F(\text{LeftArg}(p))$, then $F(p) = \mathcal{I}(p, d_1, d_2)$ and if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$ holds $x_1 = x_2$

for all values of the parameters.

The scheme *QC D Result'VERUM* deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor I yielding an element of \mathcal{A} , and a binary functor \mathcal{J} yielding an element of \mathcal{A} , and states that:

 $\mathcal{F}(\text{VERUM}) = \mathcal{B}$

provided the parameters satisfy the following condition:

• Let *p* be a formula and *d* be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function *F* from WFF into \mathcal{A} such that d = F(p) and for every element *p* of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if *p* is atomic, then $F(p) = \mathcal{G}(p)$ and if *p* is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ and if *p* is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ and if *p* is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$.

The scheme *QC D Result'atomic* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor I yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} , and states that:

 $\mathcal{F}(\mathcal{C}) = \mathcal{G}(\mathcal{C})$

provided the parameters satisfy the following conditions:

- Let *p* be a formula and *d* be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function *F* from WFF into \mathcal{A} such that d = F(p) and for every element *p* of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if *p* is atomic, then $F(p) = \mathcal{G}(p)$ and if *p* is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ and if *p* is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ and if *p* is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$, and
- C is atomic.

The scheme *QC D Result'negative* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{I} yielding an element of \mathcal{A} , and states that:

$$\mathcal{I}(\mathcal{C}) = \mathcal{G}(\mathcal{I}(\operatorname{Arg}(\mathcal{C})))$$

provided the parameters meet the following requirements:

• Let *p* be a formula and *d* be an element of \mathcal{A} . Then $d = \mathcal{I}(p)$ if and only if there exists a function *F* from WFF into \mathcal{A} such that d = F(p) and for every element *p* of

WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if p is atomic, then $F(p) = \mathcal{F}(p)$ and if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ and if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$, and

• C is negative.

The scheme QCD Result'conjunctive deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a formula \mathcal{C} , and states that:

For all elements d_1 , d_2 of \mathcal{A} such that $d_1 = \mathcal{I}(\text{LeftArg}(\mathcal{C}))$ and $d_2 = \mathcal{I}(\text{RightArg}(\mathcal{C}))$ holds $\mathcal{I}(\mathcal{C}) = \mathcal{H}(d_1, d_2)$

provided the following requirements are met:

- Let *p* be a formula and *d* be an element of \mathcal{A} . Then $d = \mathcal{I}(p)$ if and only if there exists a function *F* from WFF into \mathcal{A} such that d = F(p) and for every element *p* of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if *p* is atomic, then $F(p) = \mathcal{F}(p)$ and if *p* is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if *p* is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ and if *p* is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$, and
- *C* is conjunctive.

The scheme *QC D Result'universal* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{I} yielding an element of \mathcal{A} , and states that:

 $\mathcal{I}(\mathcal{C}) = I(\mathcal{C}, \mathcal{I}(\text{Scope}(\mathcal{C})))$

provided the parameters satisfy the following conditions:

- Let *p* be a formula and *d* be an element of \mathcal{A} . Then $d = \mathcal{I}(p)$ if and only if there exists a function *F* from WFF into \mathcal{A} such that d = F(p) and for every element *p* of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ and if *p* is atomic, then $F(p) = \mathcal{F}(p)$ and if *p* is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ and if *p* is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ and if *p* is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = I(p, d_1)$, and
- *C* is universal.

We now state the proposition

 $(3)^1$ *P* is a Arity(*P*)-ary predicate symbol.

Let us consider l and let us consider V. The functor variables_V(l) yielding an element of 2^{V} is defined as follows:

(Def. 2)² variables_V(l) = { $l(k) : 1 \le k \land k \le \text{len } l \land l(k) \in V$ }.

Next we state a number of propositions:

- (6)³ $\operatorname{snb}(l) = \operatorname{variables}_{\operatorname{BoundVar}}(l).$
- (7) $\operatorname{snb}(\operatorname{VERUM}) = \emptyset$.
- (8) For every formula p such that p is atomic holds snb(p) = snb(Args(p)).
- (9) For every *k*-ary predicate symbol *P* and for every list of variables *l* of the length *k* holds $\operatorname{snb}(P[l]) = \operatorname{snb}(l)$.
- (10) For every formula p such that p is negative holds snb(p) = snb(Arg(p)).

¹ The propositions (1) and (2) have been removed.

 $^{^{2}}$ The definition (Def. 1) has been removed.

³ The propositions (4) and (5) have been removed.

- (11) For every formula p holds $\operatorname{snb}(\neg p) = \operatorname{snb}(p)$.
- (12) $\operatorname{snb}(\operatorname{FALSUM}) = \emptyset$.
- (13) For every formula p such that p is conjunctive holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftArg}(p)) \cup \operatorname{snb}(\operatorname{RightArg}(p))$.
- (14) For all formulae p, q holds $\operatorname{snb}(p \wedge q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (15) For every formula p such that p is universal holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Scope}(p)) \setminus \{\operatorname{Bound}(p)\}$.
- (16) For every formula *p* holds $\operatorname{snb}(\forall_x p) = \operatorname{snb}(p) \setminus \{x\}$.
- (17) For every formula p such that p is disjunctive holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftDisj}(p)) \cup \operatorname{snb}(\operatorname{RightDisj}(p))$.
- (18) For all formulae p, q holds $\operatorname{snb}(p \lor q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (19) For every formula p such that p is conditional holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Antecedent}(p)) \cup \operatorname{snb}(\operatorname{Consequent}(p))$.
- (20) For all formulae p, q holds $\operatorname{snb}(p \Rightarrow q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (21) For every formula p such that p is biconditional holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftSide}(p)) \cup \operatorname{snb}(\operatorname{RightSide}(p))$.
- (22) For all formulae p, q holds $\operatorname{snb}(p \Leftrightarrow q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (23) For every formula *p* holds $\operatorname{snb}(\exists_x p) = \operatorname{snb}(p) \setminus \{x\}$.
- (24) VERUM is closed and FALSUM is closed.
- (25) For every formula p holds p is closed iff $\neg p$ is closed.
- (26) For all formulae p, q holds p is closed and q is closed iff $p \land q$ is closed.
- (27) For every formula *p* holds $\forall_x p$ is closed iff $\operatorname{snb}(p) \subseteq \{x\}$.
- (28) For every formula *p* such that *p* is closed holds $\forall_x p$ is closed.
- (29) For all formulae p, q holds p is closed and q is closed iff $p \lor q$ is closed.
- (30) For all formulae p, q holds p is closed and q is closed iff $p \Rightarrow q$ is closed.
- (31) For all formulae p, q holds p is closed and q is closed iff $p \Leftrightarrow q$ is closed.
- (32) For every formula *p* holds $\exists_x p$ is closed iff $\operatorname{snb}(p) \subseteq \{x\}$.
- (33) For every formula p such that p is closed holds $\exists_x p$ is closed.

Let us consider k. The functor x_k yields a bound variable and is defined as follows:

(Def. 3) $x_k = \langle 4, k \rangle$.

One can prove the following two propositions:

- $(35)^4$ If $x_i = x_j$, then i = j.
- (36) There exists *i* such that $x_i = x$.

Let us consider k. The functor \mathbf{a}_k yields a free variable and is defined by:

(Def. 4) $\mathbf{a}_k = \langle 6, k \rangle.$

⁴ The proposition (34) has been removed.

One can prove the following propositions:

- $(38)^5$ If **a**_{*i*} = **a**_{*j*}, then *i* = *j*.
- (39) There exists *i* such that $\mathbf{a}_i = a$.
- (40) For every element c of FixedVar and for every element a of FreeVar holds $c \neq a$.
- (41) For every element *c* of FixedVar and for every element *x* of BoundVar holds $c \neq x$.
- (42) For every element *a* of FreeVar and for every element *x* of BoundVar holds $a \neq x$.

Let us consider V and let V_1 , V_2 be elements of 2^V . Then $V_1 \cup V_2$ is an element of 2^V . Let us consider V and let us consider p. The functor $Vars_V(p)$ yields an element of 2^V and is defined by the condition (Def. 5).

(Def. 5) There exists a function F from WFF into 2^V such that

- (i) $\operatorname{Vars}_V(p) = F(p)$, and
- (ii) for every element p of WFF and for all elements d_1 , d_2 of 2^V holds if p = VERUM, then $F(p) = \emptyset_V$ and if p is atomic, then $F(p) = \text{variables}_V(\text{Args}(p))$ and if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = d_1$ and if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = d_1 \cup d_2$ and if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = d_1$.

The following propositions are true:

- $(46)^6$ Vars_V(VERUM) = \emptyset .
- (47) If p is atomic, then $\operatorname{Vars}_V(p) = \operatorname{Variables}_V(\operatorname{Args}(p))$ and $\operatorname{Vars}_V(p) = \{\operatorname{Args}(p)(k) : 1 \le k \land k \le \operatorname{len}\operatorname{Args}(p) \land \operatorname{Args}(p)(k) \in V\}.$
- (48) Let *P* be a *k*-ary predicate symbol and *l* be a list of variables of the length *k*. Then $\operatorname{Vars}_V(P[l]) = \operatorname{variables}_V(l)$ and $\operatorname{Vars}_V(P[l]) = \{l(i) : 1 \le i \land i \le \operatorname{len} l \land l(i) \in V\}$.
- (49) If *p* is negative, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Arg}(p))$.
- (50) $\operatorname{Vars}_V(\neg p) = \operatorname{Vars}_V(p).$
- (51) $\operatorname{Vars}_V(\operatorname{FALSUM}) = \emptyset.$
- (52) If *p* is conjunctive, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftArg}(p)) \cup \operatorname{Vars}_V(\operatorname{RightArg}(p))$.
- (53) $\operatorname{Vars}_V(p \wedge q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (54) If *p* is universal, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Scope}(p))$.
- (55) $\operatorname{Vars}_V(\forall_x p) = \operatorname{Vars}_V(p).$
- (56) If *p* is disjunctive, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftDisj}(p)) \cup \operatorname{Vars}_V(\operatorname{RightDisj}(p))$.
- (57) $\operatorname{Vars}_V(p \lor q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (58) If *p* is conditional, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Antecedent}(p)) \cup \operatorname{Vars}_V(\operatorname{Consequent}(p))$.
- (59) $\operatorname{Vars}_V(p \Rightarrow q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (60) If *p* is biconditional, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftSide}(p)) \cup \operatorname{Vars}_V(\operatorname{RightSide}(p))$.
- (61) $\operatorname{Vars}_V(p \Leftrightarrow q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (62) If p is existential, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(p))))$.

⁵ The proposition (37) has been removed.

⁶ The propositions (43)–(45) have been removed.

(63) $\operatorname{Vars}_V(\exists_x p) = \operatorname{Vars}_V(p).$

Let us consider p. The functor Free p yields an element of 2^{FreeVar} and is defined as follows:

(Def. 6) Free $p = \text{Vars}_{\text{FreeVar}}(p)$.

Next we state a number of propositions:

- (65)⁷ Free VERUM = \emptyset .
- (66) Let *P* be a *k*-ary predicate symbol and *l* be a list of variables of the length *k*. Then $\operatorname{Free}(P[l]) = \{l(i) : 1 \le i \land i \le \operatorname{len} l \land l(i) \in \operatorname{FreeVar}\}.$
- (67) Free $\neg p$ = Free p.
- (68) Free FALSUM = \emptyset .
- (69) Free $(p \land q)$ = Free $p \cup$ Free q.
- (70) Free $\forall_x p =$ Free p.
- (71) $\operatorname{Free}(p \lor q) = \operatorname{Free} p \cup \operatorname{Free} q.$
- (72) $\operatorname{Free}(p \Rightarrow q) = \operatorname{Free} p \cup \operatorname{Free} q.$
- (73) Free $(p \Leftrightarrow q)$ = Free $p \cup$ Free q.
- (74) Free $\exists_x p = \text{Free } p$.

Let us consider p. The functor Fixed p yields an element of $2^{FixedVar}$ and is defined as follows:

(Def. 7) Fixed $p = \text{Vars}_{\text{FixedVar}}(p)$.

The following propositions are true:

- (76)⁸ Fixed VERUM = \emptyset .
- (77) Let P be a k-ary predicate symbol and l be a list of variables of the length k. Then $Fixed(P[l]) = \{l(i) : 1 \le i \land i \le len l \land l(i) \in FixedVar\}.$
- (78) Fixed $\neg p =$ Fixed p.
- (79) Fixed FALSUM = \emptyset .
- (80) Fixed $(p \land q)$ = Fixed $p \cup$ Fixed q.
- (81) Fixed $\forall_x p = \text{Fixed } p$.
- (82) Fixed $(p \lor q) =$ Fixed $p \cup$ Fixed q.
- (83) Fixed $(p \Rightarrow q) =$ Fixed $p \cup$ Fixed q.
- (84) Fixed $(p \Leftrightarrow q) =$ Fixed $p \cup$ Fixed q.
- (85) Fixed $\exists_x p = \text{Fixed } p$.

⁷ The proposition (64) has been removed.

⁸ The proposition (75) has been removed.

REFERENCES

- Grzegorz Bancerek. Connectives and subformulae of the first order language. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Voll/qc_lang2.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [6] Piotr Rudnicki and Andrzej Trybulec. A first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/qc_langl.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received November 23, 1989

Published January 2, 2004