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Summary. We develop the first order language defined in [6]. We continue the work
done in the article [1]. We prove some schemes of defining by structural induction. We
deal with notions of closed subformulae and of still not bound variables in a formula. We
introduce the concept of the set of all free variables and the set of all fixed variables occurring
in a formula.
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The articles [7], [5], [9], [8], [3], [4], [2], [6], and [1] provide the notation and terminology for this
paper.

For simplicity, we adopt the following convention:i, j, k denote natural numbers,x denotes a
bound variable,a denotes a free variable,p, q denote elements of WFF,l denotes a finite sequence
of elements of Var,P denotes a predicate symbol, andV denotes a non empty subset of Var.

In this article we present several logical schemes. The schemeQC Func Uniqdeals with a non
empty setA , a functionB from WFF intoA , a functionC from WFF intoA , an elementD of A ,
a unary functorF yielding an element ofA , a unary functorG yielding an element ofA , a binary
functor H yielding an element ofA , and a binary functorI yielding an element ofA , and states
that:

B = C
provided the following conditions are met:

• Let givenp andd1, d2 be elements ofA . Then
(i) if p = VERUM, thenB(p) = D,

(ii) if p is atomic, thenB(p) = F (p),
(iii) if p is negative andd1 = B(Arg(p)), thenB(p) = G(d1),
(iv) if p is conjunctive andd1 = B(LeftArg(p)) andd2 = B(RightArg(p)), then
B(p) = H (d1,d2), and
(v) if p is universal andd1 = B(Scope(p)), thenB(p) = I (p,d1),

and
• Let givenp andd1, d2 be elements ofA . Then

(i) if p = VERUM, thenC (p) = D,
(ii) if p is atomic, thenC (p) = F (p),

(iii) if p is negative andd1 = C (Arg(p)), thenC (p) = G(d1),
(iv) if p is conjunctive andd1 = C (LeftArg(p)) andd2 = C (RightArg(p)), then
C (p) = H (d1,d2), and
(v) if p is universal andd1 = C (Scope(p)), thenC (p) = I (p,d1).

The schemeQC Def Ddeals with a non empty setA , an elementB of A , an elementC of WFF,
a unary functorF yielding an element ofA , a unary functorG yielding an element ofA , a binary

1Partially supported by RPBP.III-24.C1.
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functor H yielding an element ofA , and a binary functorI yielding an element ofA , and states
that:

(i) There exists an elementd of A and there exists a functionF from WFF into
A such thatd = F(C ) and for every elementp of WFF and for all elementsd1, d2 of
A holds if p = VERUM, thenF(p) = B and if p is atomic, thenF(p) = F (p) and
if p is negative andd1 = F(Arg(p)), thenF(p) = G(d1) and if p is conjunctive and
d1 = F(LeftArg(p)) andd2 = F(RightArg(p)), thenF(p) = H (d1,d2) and if p is
universal andd1 = F(Scope(p)), thenF(p) = I (p,d1), and
(ii) for all elementsx1, x2 of A such that there exists a functionF from WFF into

A such thatx1 = F(C ) and for every elementp of WFF and for all elementsd1, d2

of A holds if p = VERUM, thenF(p) = B and if p is atomic, thenF(p) = F (p)
and if p is negative andd1 = F(Arg(p)), thenF(p) = G(d1) and if p is conjunctive
andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)), thenF(p) = H (d1,d2) and if p
is universal andd1 = F(Scope(p)), thenF(p) = I (p,d1) and there exists a function
F from WFF intoA such thatx2 = F(C ) and for every elementp of WFF and for
all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p is atomic,
then F(p) = F (p) and if p is negative andd1 = F(Arg(p)), then F(p) = G(d1)
and if p is conjunctive andd1 = F(LeftArg(p)) and d2 = F(RightArg(p)), then
F(p) = H (d1,d2) and if p is universal andd1 = F(Scope(p)), thenF(p) = I (p,d1)
holdsx1 = x2

for all values of the parameters.
The schemeQC D Result’VERUMdeals with a non empty setA , a unary functorF yielding

an element ofA , an elementB of A , a unary functorG yielding an element ofA , a unary functor
H yielding an element ofA , a binary functorI yielding an element ofA , and a binary functorJ
yielding an element ofA , and states that:

F (VERUM) = B
provided the parameters satisfy the following condition:

• Let p be a formula andd be an element ofA . Thend = F (p) if and only if there
exists a functionF from WFF intoA such thatd = F(p) and for every elementp of
WFF and for all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p
is atomic, thenF(p) = G(p) and if p is negative andd1 = F(Arg(p)), thenF(p) =
H (d1) and if p is conjunctive andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)),
then F(p) = I (d1,d2) and if p is universal andd1 = F(Scope(p)), then F(p) =
J (p,d1).

The schemeQC D Result’atomicdeals with a non empty setA , an elementB of A , a unary
functor F yielding an element ofA , a formulaC , a unary functorG yielding an element ofA , a
unary functorH yielding an element ofA , a binary functorI yielding an element ofA , and a binary
functorJ yielding an element ofA , and states that:

F (C ) = G(C )
provided the parameters satisfy the following conditions:

• Let p be a formula andd be an element ofA . Thend = F (p) if and only if there
exists a functionF from WFF intoA such thatd = F(p) and for every elementp of
WFF and for all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p
is atomic, thenF(p) = G(p) and if p is negative andd1 = F(Arg(p)), thenF(p) =
H (d1) and if p is conjunctive andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)),
then F(p) = I (d1,d2) and if p is universal andd1 = F(Scope(p)), then F(p) =
J (p,d1), and

• C is atomic.
The schemeQC D Result’negativedeals with a non empty setA , an elementB of A , a formula

C , a unary functorF yielding an element ofA , a unary functorG yielding an element ofA , a
binary functorH yielding an element ofA , a binary functorI yielding an element ofA , and a
unary functorJ yielding an element ofA , and states that:

J (C ) = G(J (Arg(C )))
provided the parameters meet the following requirements:

• Let p be a formula andd be an element ofA . Thend = J (p) if and only if there
exists a functionF from WFF intoA such thatd = F(p) and for every elementp of
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WFF and for all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p
is atomic, thenF(p) = F (p) and if p is negative andd1 = F(Arg(p)), thenF(p) =
G(d1) and if p is conjunctive andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)),
thenF(p) = H (d1,d2) and if p is universal andd1 = F(Scope(p)), thenF(p) =
I (p,d1), and

• C is negative.
The schemeQC D Result’conjunctivedeals with a non empty setA , an elementB of A , a unary

functorF yielding an element ofA , a unary functorG yielding an element ofA , a binary functor
H yielding an element ofA , a binary functorI yielding an element ofA , a unary functorJ yielding
an element ofA , and a formulaC , and states that:

For all elementsd1, d2 of A such thatd1 = J (LeftArg(C )) andd2 = J (RightArg(C ))
holdsJ (C ) = H (d1,d2)

provided the following requirements are met:
• Let p be a formula andd be an element ofA . Thend = J (p) if and only if there

exists a functionF from WFF intoA such thatd = F(p) and for every elementp of
WFF and for all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p
is atomic, thenF(p) = F (p) and if p is negative andd1 = F(Arg(p)), thenF(p) =
G(d1) and if p is conjunctive andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)),
thenF(p) = H (d1,d2) and if p is universal andd1 = F(Scope(p)), thenF(p) =
I (p,d1), and

• C is conjunctive.
The schemeQC D Result’universaldeals with a non empty setA , an elementB of A , a formula

C , a unary functorF yielding an element ofA , a unary functorG yielding an element ofA , a
binary functorH yielding an element ofA , a binary functorI yielding an element ofA , and a
unary functorJ yielding an element ofA , and states that:

J (C ) = I (C ,J (Scope(C )))
provided the parameters satisfy the following conditions:

• Let p be a formula andd be an element ofA . Thend = J (p) if and only if there
exists a functionF from WFF intoA such thatd = F(p) and for every elementp of
WFF and for all elementsd1, d2 of A holds if p = VERUM, thenF(p) = B and if p
is atomic, thenF(p) = F (p) and if p is negative andd1 = F(Arg(p)), thenF(p) =
G(d1) and if p is conjunctive andd1 = F(LeftArg(p)) andd2 = F(RightArg(p)),
thenF(p) = H (d1,d2) and if p is universal andd1 = F(Scope(p)), thenF(p) =
I (p,d1), and

• C is universal.
We now state the proposition

(3)1 P is a Arity(P)-ary predicate symbol.

Let us considerl and let us considerV. The functor variablesV(l) yielding an element of 2V is
defined as follows:

(Def. 2)2 variablesV(l) = {l(k) : 1≤ k ∧ k≤ lenl ∧ l(k) ∈V}.

Next we state a number of propositions:

(6)3 snb(l) = variablesBoundVar(l).

(7) snb(VERUM) = /0.

(8) For every formulap such thatp is atomic holds snb(p) = snb(Args(p)).

(9) For everyk-ary predicate symbolP and for every list of variablesl of the lengthk holds
snb(P[l ]) = snb(l).

(10) For every formulap such thatp is negative holds snb(p) = snb(Arg(p)).
1 The propositions (1) and (2) have been removed.
2 The definition (Def. 1) has been removed.
3 The propositions (4) and (5) have been removed.
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(11) For every formulap holds snb(¬p) = snb(p).

(12) snb(FALSUM) = /0.

(13) For every formulap such that p is conjunctive holds snb(p) = snb(LeftArg(p)) ∪
snb(RightArg(p)).

(14) For all formulaep, q holds snb(p∧q) = snb(p)∪snb(q).

(15) For every formulap such thatp is universal holds snb(p) = snb(Scope(p))\{Bound(p)}.

(16) For every formulap holds snb(∀xp) = snb(p)\{x}.

(17) For every formulap such that p is disjunctive holds snb(p) = snb(LeftDisj(p)) ∪
snb(RightDisj(p)).

(18) For all formulaep, q holds snb(p∨q) = snb(p)∪snb(q).

(19) For every formulap such thatp is conditional holds snb(p) = snb(Antecedent(p)) ∪
snb(Consequent(p)).

(20) For all formulaep, q holds snb(p⇒ q) = snb(p)∪snb(q).

(21) For every formulap such thatp is biconditional holds snb(p) = snb(LeftSide(p)) ∪
snb(RightSide(p)).

(22) For all formulaep, q holds snb(p⇔ q) = snb(p)∪snb(q).

(23) For every formulap holds snb(∃xp) = snb(p)\{x}.

(24) VERUM is closed and FALSUM is closed.

(25) For every formulap holdsp is closed iff¬p is closed.

(26) For all formulaep, q holdsp is closed andq is closed iffp∧q is closed.

(27) For every formulap holds∀xp is closed iff snb(p)⊆ {x}.

(28) For every formulap such thatp is closed holds∀xp is closed.

(29) For all formulaep, q holdsp is closed andq is closed iffp∨q is closed.

(30) For all formulaep, q holdsp is closed andq is closed iffp⇒ q is closed.

(31) For all formulaep, q holdsp is closed andq is closed iffp⇔ q is closed.

(32) For every formulap holds∃xp is closed iff snb(p)⊆ {x}.

(33) For every formulap such thatp is closed holds∃xp is closed.

Let us considerk. The functor xk yields a bound variable and is defined as follows:

(Def. 3) xk = 〈〈4, k〉〉.

One can prove the following two propositions:

(35)4 If x i = x j , theni = j.

(36) There existsi such that xi = x.

Let us considerk. The functorak yields a free variable and is defined by:

(Def. 4) ak = 〈〈6, k〉〉.
4 The proposition (34) has been removed.
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One can prove the following propositions:

(38)5 If ai = a j , theni = j.

(39) There existsi such thatai = a.

(40) For every elementc of FixedVar and for every elementa of FreeVar holdsc 6= a.

(41) For every elementc of FixedVar and for every elementx of BoundVar holdsc 6= x.

(42) For every elementa of FreeVar and for every elementx of BoundVar holdsa 6= x.

Let us considerV and letV1, V2 be elements of 2V . ThenV1∪V2 is an element of 2V .
Let us considerV and let us considerp. The functor VarsV(p) yields an element of 2V and is

defined by the condition (Def. 5).

(Def. 5) There exists a functionF from WFF into 2V such that

(i) VarsV(p) = F(p), and

(ii) for every elementp of WFF and for all elementsd1, d2 of 2V holds if p = VERUM,
thenF(p) = /0V and if p is atomic, thenF(p) = variablesV(Args(p)) and if p is negative
andd1 = F(Arg(p)), thenF(p) = d1 and if p is conjunctive andd1 = F(LeftArg(p)) and
d2 = F(RightArg(p)), thenF(p) = d1∪d2 and if p is universal andd1 = F(Scope(p)), then
F(p) = d1.

The following propositions are true:

(46)6 VarsV(VERUM) = /0.

(47) If p is atomic, then VarsV(p) = variablesV(Args(p)) and VarsV(p) = {Args(p)(k) : 1≤
k ∧ k≤ lenArgs(p) ∧ Args(p)(k) ∈V}.

(48) Let P be a k-ary predicate symbol andl be a list of variables of the lengthk. Then
VarsV(P[l ]) = variablesV(l) and VarsV(P[l ]) = {l(i) : 1≤ i ∧ i ≤ lenl ∧ l(i) ∈V}.

(49) If p is negative, then VarsV(p) = VarsV(Arg(p)).

(50) VarsV(¬p) = VarsV(p).

(51) VarsV(FALSUM) = /0.

(52) If p is conjunctive, then VarsV(p) = VarsV(LeftArg(p))∪VarsV(RightArg(p)).

(53) VarsV(p∧q) = VarsV(p)∪VarsV(q).

(54) If p is universal, then VarsV(p) = VarsV(Scope(p)).

(55) VarsV(∀xp) = VarsV(p).

(56) If p is disjunctive, then VarsV(p) = VarsV(LeftDisj(p))∪VarsV(RightDisj(p)).

(57) VarsV(p∨q) = VarsV(p)∪VarsV(q).

(58) If p is conditional, then VarsV(p) = VarsV(Antecedent(p))∪VarsV(Consequent(p)).

(59) VarsV(p⇒ q) = VarsV(p)∪VarsV(q).

(60) If p is biconditional, then VarsV(p) = VarsV(LeftSide(p))∪VarsV(RightSide(p)).

(61) VarsV(p⇔ q) = VarsV(p)∪VarsV(q).

(62) If p is existential, then VarsV(p) = VarsV(Arg(Scope(Arg(p)))).

5 The proposition (37) has been removed.
6 The propositions (43)–(45) have been removed.
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(63) VarsV(∃xp) = VarsV(p).

Let us considerp. The functor Freep yields an element of 2FreeVarand is defined as follows:

(Def. 6) Freep = VarsFreeVar(p).

Next we state a number of propositions:

(65)7 FreeVERUM= /0.

(66) Let P be a k-ary predicate symbol andl be a list of variables of the lengthk. Then
Free(P[l ]) = {l(i) : 1≤ i ∧ i ≤ lenl ∧ l(i) ∈ FreeVar}.

(67) Free¬p = Freep.

(68) FreeFALSUM= /0.

(69) Free(p∧q) = Freep∪Freeq.

(70) Free∀xp = Freep.

(71) Free(p∨q) = Freep∪Freeq.

(72) Free(p⇒ q) = Freep∪Freeq.

(73) Free(p⇔ q) = Freep∪Freeq.

(74) Free∃xp = Freep.

Let us considerp. The functor Fixedp yields an element of 2FixedVar and is defined as follows:

(Def. 7) Fixedp = VarsFixedVar(p).

The following propositions are true:

(76)8 FixedVERUM= /0.

(77) Let P be a k-ary predicate symbol andl be a list of variables of the lengthk. Then
Fixed(P[l ]) = {l(i) : 1≤ i ∧ i ≤ lenl ∧ l(i) ∈ FixedVar}.

(78) Fixed¬p = Fixedp.

(79) FixedFALSUM= /0.

(80) Fixed(p∧q) = Fixedp∪Fixedq.

(81) Fixed∀xp = Fixedp.

(82) Fixed(p∨q) = Fixedp∪Fixedq.

(83) Fixed(p⇒ q) = Fixedp∪Fixedq.

(84) Fixed(p⇔ q) = Fixedp∪Fixedq.

(85) Fixed∃xp = Fixedp.

7 The proposition (64) has been removed.
8 The proposition (75) has been removed.
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