# Variables in Formulae of the First Order Language ${ }^{1}$ 

Czesław Byliński<br>Warsaw University<br>Białystok

Grzegorz Bancerek<br>Warsaw University<br>Białystok


#### Abstract

Summary. We develop the first order language defined in [6]. We continue the work done in the article [1]. We prove some schemes of defining by structural induction. We deal with notions of closed subformulae and of still not bound variables in a formula. We introduce the concept of the set of all free variables and the set of all fixed variables occurring in a formula.


MML Identifier: QC_LANG3.
WWW:http://mizar.org/JFM/Vol1/qc_lang3.html

The articles [7], [5], [9], [8], [3], [4], [2], [6], and [1] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: $i, j, k$ denote natural numbers, $x$ denotes a bound variable, $a$ denotes a free variable, $p, q$ denote elements of WFF, $l$ denotes a finite sequence of elements of Var, $P$ denotes a predicate symbol, and $V$ denotes a non empty subset of Var.

In this article we present several logical schemes. The scheme QC Func Uniq deals with a non empty set $\mathcal{A}$, a function $\mathcal{B}$ from WFF into $\mathcal{A}$, a function $\mathcal{C}$ from WFF into $\mathcal{A}$, an element $\mathcal{D}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $I$ yielding an element of $\mathcal{A}$, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the following conditions are met:

- Let given $p$ and $d_{1}, d_{2}$ be elements of $\mathcal{A}$. Then
(i) if $p=$ VERUM, then $\mathcal{B}(p)=\mathcal{D}$,
(ii) if $p$ is atomic, then $\mathcal{B}(p)=\mathcal{F}(p)$,
(iii) if $p$ is negative and $d_{1}=\mathcal{B}(\operatorname{Arg}(p))$, then $\mathcal{B}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if $p$ is conjunctive and $d_{1}=\mathcal{B}(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=\mathcal{B}(\operatorname{Right} \operatorname{Arg}(p))$, then $\mathcal{B}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$, and
(v) if $p$ is universal and $d_{1}=\mathcal{B}(\operatorname{Scope}(p))$, then $\mathcal{B}(p)=I\left(p, d_{1}\right)$, and
- Let given $p$ and $d_{1}, d_{2}$ be elements of $\mathcal{A}$. Then
(i) if $p=$ VERUM, then $\mathcal{C}(p)=\mathcal{D}$,
(ii) if $p$ is atomic, then $\mathcal{C}(p)=\mathcal{F}(p)$,
(iii) if $p$ is negative and $d_{1}=\mathcal{C}(\operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if $p$ is conjunctive and $d_{1}=\mathcal{C}(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=\mathcal{C}(\operatorname{Right} \operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$, and
(v) if $p$ is universal and $d_{1}=\mathcal{C}(\operatorname{Scope}(p))$, then $\mathcal{C}(p)=I\left(p, d_{1}\right)$.

The scheme $Q C \operatorname{Def} D$ deals with a non empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary

[^0]functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $I$ yielding an element of $\mathcal{A}$, and states that:
(i) There exists an element $d$ of $\mathcal{A}$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=I\left(p, d_{1}\right)$, and
(ii) for all elements $x_{1}, x_{2}$ of $\mathcal{A}$ such that there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{1}=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=I\left(p, d_{1}\right)$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{2}=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=I\left(p, d_{1}\right)$ holds $x_{1}=x_{2}$
for all values of the parameters.
The scheme $Q C D$ Result'VERUM deals with a non empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $I$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and states that: $\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters satisfy the following condition:

- Let $p$ be a formula and $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{G}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=I\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=$ $\mathcal{I}\left(p, d_{1}\right)$.
The scheme $Q C D$ Result'atomic deals with a non empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $I$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and states that:

$$
\mathcal{F}(\mathcal{C})=\mathcal{G}(\mathcal{C})
$$

provided the parameters satisfy the following conditions:

- Let $p$ be a formula and $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{G}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=I\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=$ $\mathcal{I}\left(p, d_{1}\right)$, and
- $\mathcal{C}$ is atomic.

The scheme $Q C D$ Result'negative deals with a non empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $I$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and states that:

$$
\mathcal{I}(\mathcal{C})=\mathcal{G}(\mathcal{I}(\operatorname{Arg}(\mathcal{C})))
$$

provided the parameters meet the following requirements:

- Let $p$ be a formula and $d$ be an element of $\mathcal{A}$. Then $d=\mathscr{I}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of

WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=\mathrm{VERUM}$, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=$ $I\left(p, d_{1}\right)$, and

- $C$ is negative.

The scheme $Q C D$ Result'conjunctive deals with a non empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $I$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a formula $\mathcal{C}$, and states that:

For all elements $d_{1}, d_{2}$ of $\mathcal{A}$ such that $d_{1}=\mathcal{I}(\operatorname{Left} \operatorname{Arg}(\mathcal{C}))$ and $d_{2}=\mathcal{I}(\operatorname{Right} \operatorname{Arg}(\mathcal{C}))$ holds $\mathcal{I}(\mathcal{C})=\mathcal{H}\left(d_{1}, d_{2}\right)$
provided the following requirements are met:

- Let $p$ be a formula and $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{I}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=$ $I\left(p, d_{1}\right)$, and
- $C$ is conjunctive.

The scheme $Q C D$ Result'universal deals with a non empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $I$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and states that:

$$
\mathcal{I}(\mathcal{C})=I(\mathcal{C}, \mathcal{I}(\operatorname{Scope}(\mathcal{C})))
$$

provided the parameters satisfy the following conditions:

- Let $p$ be a formula and $d$ be an element of $\mathcal{A}$. Then $d=\mathscr{I}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ and if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{G}\left(d_{1}\right)$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=$ $I\left(p, d_{1}\right)$, and
- $C$ is universal.

We now state the proposition
(3 $1^{1} \quad P$ is a $\operatorname{Arity}(P)$-ary predicate symbol.
Let us consider $l$ and let us consider $V$. The functor variables ${ }_{V}(l)$ yielding an element of $2^{V}$ is defined as follows:
(Def. 2) ${ }^{2}$ variables $_{V}(l)=\{l(k): 1 \leq k \wedge k \leq \operatorname{len} l \wedge l(k) \in V\}$.
Next we state a number of propositions:
$(6)^{3} \operatorname{snb}(l)=$ variables $_{\text {BoundVar }}(l)$.
(7) $\operatorname{snb}($ VERUM $)=\emptyset$.
(8) For every formula $p$ such that $p$ is atomic holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Args}(p))$.
(9) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds $\operatorname{snb}(P[l])=\operatorname{snb}(l)$.
(10) For every formula $p$ such that $p$ is negative holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Arg}(p))$.

[^1](11) For every formula $p$ holds $\operatorname{snb}(\neg p)=\operatorname{snb}(p)$.
(12) $\quad \operatorname{snb}($ FALSUM $)=\emptyset$.
(13) For every formula $p$ such that $p$ is conjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Left} \operatorname{Arg}(p)) \cup$ $\operatorname{snb}(\operatorname{Right} \operatorname{Arg}(p))$.
(14) For all formulae $p, q$ holds $\operatorname{snb}(p \wedge q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(15) For every formula $p$ such that $p$ is universal holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Scope}(p)) \backslash\{\operatorname{Bound}(p)\}$.
(16) For every formula $p$ holds $\operatorname{snb}\left(\forall_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(17) For every formula $p$ such that $p$ is disjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftDisj}(p)) \cup$ $\operatorname{snb}(\operatorname{RightDisj}(p))$.
(18) For all formulae $p, q$ holds $\operatorname{snb}(p \vee q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(19) For every formula $p$ such that $p$ is conditional holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Antecedent}(p)) \cup$ $\operatorname{snb}($ Consequent $(p))$.
(20) For all formulae $p, q$ holds $\operatorname{snb}(p \Rightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(21) For every formula $p$ such that $p$ is biconditional holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftSide}(p)) \cup$ $\operatorname{snb}(\operatorname{RightSide}(p))$.
(22) For all formulae $p, q$ holds $\operatorname{snb}(p \Leftrightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(23) For every formula $p$ holds $\operatorname{snb}\left(\exists_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(24) VERUM is closed and FALSUM is closed.
(25) For every formula $p$ holds $p$ is closed iff $\neg p$ is closed.
(26) For all formulae $p, q$ holds $p$ is closed and $q$ is closed iff $p \wedge q$ is closed.
(27) For every formula $p$ holds $\forall_{x} p$ is closed iff $\operatorname{snb}(p) \subseteq\{x\}$.
(28) For every formula $p$ such that $p$ is closed holds $\forall_{x} p$ is closed.
(29) For all formulae $p, q$ holds $p$ is closed and $q$ is closed iff $p \vee q$ is closed.
(30) For all formulae $p, q$ holds $p$ is closed and $q$ is closed iff $p \Rightarrow q$ is closed.
(31) For all formulae $p, q$ holds $p$ is closed and $q$ is closed iff $p \Leftrightarrow q$ is closed.
(32) For every formula $p$ holds $\exists_{x} p$ is closed iff $\operatorname{snb}(p) \subseteq\{x\}$.
(33) For every formula $p$ such that $p$ is closed holds $\exists_{x} p$ is closed.

Let us consider $k$. The functor $\mathrm{x}_{k}$ yields a bound variable and is defined as follows:
(Def. 3) $\quad \mathrm{x}_{k}=\langle 4, k\rangle$.
One can prove the following two propositions:
$(35)^{4}$ If $\mathrm{x}_{i}=\mathrm{x}_{j}$, then $i=j$.
(36) There exists $i$ such that $\mathrm{x}_{i}=x$.

Let us consider $k$. The functor $\mathbf{a}_{k}$ yields a free variable and is defined by:
(Def. 4) $\quad \mathbf{a}_{k}=\langle 6, k\rangle$.

[^2]One can prove the following propositions:
$(38)^{5}$ If $\mathbf{a}_{i}=\mathbf{a}_{j}$, then $i=j$.
(39) There exists $i$ such that $\mathbf{a}_{i}=a$.
(40) For every element $c$ of FixedVar and for every element $a$ of FreeVar holds $c \neq a$.
(41) For every element $c$ of FixedVar and for every element $x$ of BoundVar holds $c \neq x$.
(42) For every element $a$ of FreeVar and for every element $x$ of BoundVar holds $a \neq x$.

Let us consider $V$ and let $V_{1}, V_{2}$ be elements of $2^{V}$. Then $V_{1} \cup V_{2}$ is an element of $2^{V}$.
Let us consider $V$ and let us consider $p$. The functor $\operatorname{Vars}_{V}(p)$ yields an element of $2^{V}$ and is defined by the condition (Def. 5).
(Def. 5) There exists a function $F$ from WFF into $2^{V}$ such that
(i) $\operatorname{Vars}_{V}(p)=F(p)$, and
(ii) for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $2^{V}$ holds if $p=$ VERUM, then $F(p)=\emptyset_{V}$ and if $p$ is atomic, then $F(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ and if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=d_{1}$ and if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=d_{1} \cup d_{2}$ and if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=d_{1}$.

The following propositions are true:
$(46)^{6} \quad \operatorname{Vars}_{V}($ VERUM $)=\emptyset$.
(47) If $p$ is atomic, then $\operatorname{Vars}_{V}(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ and $\operatorname{Vars}_{V}(p)=\{\operatorname{Args}(p)(k): 1 \leq$ $k \wedge k \leq \operatorname{len} \operatorname{Args}(p) \wedge \operatorname{Args}(p)(k) \in V\}$.
(48) Let $P$ be a $k$-ary predicate symbol and $l$ be a list of variables of the length $k$. Then $\operatorname{Vars}_{V}(P[l])=\operatorname{variables}_{V}(l)$ and $\operatorname{Vars}_{V}(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in V\}$.
(49) If $p$ is negative, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(p))$.
(50) $\operatorname{Vars}_{V}(\neg p)=\operatorname{Vars}_{V}(p)$.
(51) $\quad \operatorname{Vars}_{V}($ FALSUM $)=\emptyset$.
(52) If $p$ is conjunctive, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Left} \operatorname{Arg}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Right} \operatorname{Arg}(p))$.
(53) $\operatorname{Vars}_{V}(p \wedge q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(54) If $p$ is universal, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Scope}(p))$.
(55) $\operatorname{Vars}_{V}\left(\forall_{x} p\right)=\operatorname{Vars}_{V}(p)$.
(56) If $p$ is disjunctive, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftDisj}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightDisj}(p))$.
(57) $\operatorname{Vars}_{V}(p \vee q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(58) If $p$ is conditional, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Antecedent}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Consequent}(p))$.
(59) $\operatorname{Vars}_{V}(p \Rightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(60) If $p$ is biconditional, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftSide}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightSide}(p))$.
(61) $\operatorname{Vars}_{V}(p \Leftrightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(62) If $p$ is existential, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(p))))$.

[^3](63) $\operatorname{Vars}_{V}\left(\exists_{x} p\right)=\operatorname{Vars}_{V}(p)$.

Let us consider $p$. The functor Free $p$ yields an element of $2^{\mathrm{FreeVar}}$ and is defined as follows:
(Def. 6) Free $p=\operatorname{Vars}_{\text {FreeVar }}(p)$.
Next we state a number of propositions:
(65 $)^{7}$ Free VERUM $=0$.
(66) Let $P$ be a $k$-ary predicate symbol and $l$ be a list of variables of the length $k$. Then Free $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}$.
(67) Free $\neg p=$ Free $p$.
(68) FreeFALSUM $=\emptyset$.
(69) Free $(p \wedge q)=$ Free $p \cup$ Free $q$.
(70) Free $\forall_{x} p=$ Free $p$.
(71) Free $(p \vee q)=$ Free $p \cup$ Free $q$.
(72) Free $(p \Rightarrow q)=$ Free $p \cup$ Free $q$.
(73) $\operatorname{Free}(p \Leftrightarrow q)=$ Free $p \cup$ Free $q$.
(74) Free $\exists_{x} p=$ Free $p$.

Let us consider $p$. The functor Fixed $p$ yields an element of $2{ }^{\text {FixedVar }}$ and is defined as follows:
(Def. 7) Fixed $p=\operatorname{Vars}_{\text {FixedVar }}(p)$.
The following propositions are true:
$(76)^{8}$ FixedVERUM $=0$.
(77) Let $P$ be a $k$-ary predicate symbol and $l$ be a list of variables of the length $k$. Then Fixed $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FixedVar $\}$.
(78) $\quad$ Fixed $\neg p=$ Fixed $p$.
(79) $\quad$ FixedFALSUM $=0$.
(80) $\operatorname{Fixed}(p \wedge q)=$ Fixed $p \cup$ Fixed $q$.
(81) Fixed $\forall_{x} p=\operatorname{Fixed} p$.
(82) $\operatorname{Fixed}(p \vee q)=$ Fixed $p \cup$ Fixed $q$.
(83) Fixed $(p \Rightarrow q)=$ Fixed $p \cup$ Fixed $q$.
(84) $\operatorname{Fixed}(p \Leftrightarrow q)=$ Fixed $p \cup$ Fixed $q$.
(85) Fixed $\exists_{x} p=$ Fixed $p$.

[^4]
## REFERENCES

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Vol1/qc_lang2.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[6] Piotr Rudnicki and Andrzej Trybulec. A first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/qc_lang1.html
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[8] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html

Received November 23, 1989
Published January 2, 2004


[^0]:    ${ }^{1}$ Partially supported by RPBP.III-24.C1

[^1]:    ${ }^{1}$ The propositions (1) and (2) have been removed.
    ${ }^{2}$ The definition (Def. 1) has been removed.
    ${ }^{3}$ The propositions (4) and (5) have been removed.

[^2]:    ${ }^{4}$ The proposition (34) has been removed.

[^3]:    ${ }^{5}$ The proposition (37) has been removed.
    ${ }^{6}$ The propositions (43)-(45) have been removed.

[^4]:    ${ }^{7}$ The proposition (64) has been removed.
    ${ }^{8}$ The proposition (75) has been removed.

