Pythagorean Triples

Freek Wiedijk University of Nijmegen

Summary. A Pythagorean triple is a set of positive integers $\{a,b,c\}$ with $a^2+b^2=c^2$. We prove that every Pythagorean triple is of the form

$$a = n^2 - m^2$$
 $b = 2mn$ $c = n^2 + m^2$

or is a multiple of such a triple. Using this characterization we show that for every n > 2 there exists a Pythagorean triple X with $n \in X$. Also we show that even the set of *simplified* Pythagorean triples is infinite.

MML Identifier: PYTHTRIP.

WWW: http://mizar.org/JFM/Vol13/pythtrip.html

The articles [11], [15], [5], [3], [12], [7], [14], [8], [1], [13], [9], [6], [10], [16], [4], and [2] provide the notation and terminology for this paper.

1. RELATIVE PRIMENESS

We follow the rules: a, b, c, k, m, n are natural numbers and i is an integer. Let us consider m, n. Let us observe that m and n are relative prime if and only if:

(Def. 1) For every k such that $k \mid m$ and $k \mid n$ holds k = 1.

Let us consider m, n. Let us observe that m and n are relative prime if and only if:

(Def. 2) For every prime natural number p holds $p \nmid m$ or $p \nmid n$.

2. SQUARES

Let n be a number. We say that n is square if and only if:

(Def. 3) There exists m such that $n = m^2$.

Let us note that every number which is square is also natural.

Let n be a natural number. Note that n^2 is square.

Let us observe that there exists a natural number which is even and square.

Let us observe that there exists a natural number which is odd and square.

Let us mention that there exists a number which is even and square.

One can verify that there exists a number which is odd and square.

Let m, n be square numbers. Observe that $m \cdot n$ is square.

Next we state the proposition

(1) If $m \cdot n$ is square and m and n are relative prime, then m is square and n is square.

Let i be an even integer. Note that i^2 is even.

Let i be an odd integer. One can verify that i^2 is odd.

We now state three propositions:

- (2) i is even iff i^2 is even.
- (3) If *i* is even, then $i^2 \mod 4 = 0$.
- (4) If i is odd, then $i^2 \mod 4 = 1$.

Let m, n be odd square numbers. Note that m + n is non square.

We now state two propositions:

- (5) If $m^2 = n^2$, then m = n.
- (6) $m \mid n \text{ iff } m^2 \mid n^2$.

3. DISTRIBUTIVE LAW FOR HCF

The following propositions are true:

- (7) $m \mid n \text{ or } k = 0 \text{ iff } k \cdot m \mid k \cdot n.$
- (8) $gcd(k \cdot m, k \cdot n) = k \cdot gcd(m, n)$.

4. Unbounded Sets are Infinite

Next we state the proposition

(9) For every set X such that for every m there exists n such that $n \ge m$ and $n \in X$ holds X is infinite.

5. PYTHAGOREAN TRIPLES

We now state three propositions:

- (10) If a and b are relative prime, then a is odd or b is odd.
- (11) Suppose $a^2 + b^2 = c^2$ and a and b are relative prime and a is odd. Then there exist m, n such that $m \le n$ and $a = n^2 m^2$ and $b = 2 \cdot m \cdot n$ and $c = n^2 + m^2$.

(12) If
$$a = n^2 - m^2$$
 and $b = 2 \cdot m \cdot n$ and $c = n^2 + m^2$, then $a^2 + b^2 = c^2$.

A subset of \mathbb{N} is called a Pythagorean triple if:

(Def. 4) There exist a, b, c such that $a^2 + b^2 = c^2$ and it $= \{a, b, c\}$.

In the sequel *X* is a Pythagorean triple.

Let us observe that every Pythagorean triple is finite.

Let us note that the Pythagorean triple can be characterized by the following (equivalent) condition:

(Def. 5) There exist k, m, n such that $m \le n$ and it = $\{k \cdot (n^2 - m^2), k \cdot (2 \cdot m \cdot n), k \cdot (n^2 + m^2)\}$.

Let us consider *X*. We say that *X* is degenerate if and only if:

(Def. 6) $0 \in X$.

We now state the proposition

(13) If n > 2, then there exists X such that X is non degenerate and $n \in X$.

Let us consider *X*. We say that *X* is simplified if and only if:

- (Def. 7) For every k such that for every n such that $n \in X$ holds $k \mid n$ holds k = 1.
 - Let us consider *X*. Let us observe that *X* is simplified if and only if:
- (Def. 8) There exist m, n such that $m \in X$ and $n \in X$ and m and n are relative prime.
 - The following proposition is true
 - (14) If n > 0, then there exists X such that X is non degenerate and simplified and $4 \cdot n \in X$.
 - Let us note that there exists a Pythagorean triple which is non degenerate and simplified. We now state two propositions:
 - (15) $\{3,4,5\}$ is a non degenerate simplified Pythagorean triple.
 - (16) $\{X : X \text{ is non degenerate } \land X \text{ is simplified} \}$ is infinite.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [6] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. *Journal of Formalized Mathematics*, 10, 1998. http://mizar.org/JFM/Vol10/pepin.html.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/int_2.html.
- [9] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/ JFM/Vol9/abian.html.
- [10] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
- [14] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 26, 2001

Published January 2, 2004