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Summary. We define pseudocompact topological spaces and prove that every com-
pact space is pseudocompact. We also solve an exercise from [14] p.225 that for a topological
spaceX the following are equivalent:

e Every continuous real map froXis bounded (i.eX is pseudocompact).
e Every continuous real map frok attains minimum.
e Every continuous real map froi attains maximum.

Finally, for a compact set iB2 we define its bounding rectangle and introduce a collection of
notions associated with the box.

MML Identifier: PSCoMP_1.

WWW: http://mizar.orqg/JFM/Vol9/pscomp_1.html

The articles[[20],[[28],[[1],[[22] [[16]17],[[18] [[10] [[21]/[24][[3] . 14] [ [13]/ [12] L[15] [ T11][19],
[17], [6], [5], [2], [8], and [€] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let X be a set. Let us observe thahas non empty elements if and only if:
(Def. 1) 0¢ X.

We introduceX is without zero as a synonym &f has non empty elements. We introdutdas
zero as an antonym &f has non empty elements.

Let us mention thaR has zero an®¥ has zero.

Let us observe that there exists a set which is non empty and without zero and there exists a set
which is non empty and has zero.

Let us observe that there exists a subseRafhich is non empty and without zero and there
exists a subset d& which is non empty and has zero.

We now state the proposition

(1) For every seF such thaf is non empty and_-linear and has non empty elements holds
F is centered.

LetF be a set. One can check that every family of subsefswlhich is non empty and -linear
and has non empty elements is also centered.

Let A, B be sets and let be a function fromA into B. Then rngf is a subset oB.

Let X, Y be non empty sets and létbe a function fronX into Y. Note thatf°X is non empty.

Let X, Y be sets and let be a function fronX into Y. The functor 1f yields a function from
2¥ into 2¥ and is defined by:

1 © Association of Mizar Users
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(Def. 2)  For every subsstof Y holds(~1f)(y) = f~1(y).

We now state the proposition

(2) Let X, Y, x be sets,S be a subset of 2 and f be a function fromX into Y. If
x€N((71f)°9), thenf(x) eNS

In the sequet, s, t are real numbers.
One can prove the following propositions:

(3) If|r|+1s| =0, thenr =0.
(4) Ifr <sands<t,then|s| < |r|+]t].
(5) If —s<randr <s, then|r| <s.

In the seque$; is a sequence of real numbers afdy are subsets dR.
We now state two propositions:

(6) If s is convergent and non-zero and kmn= 0, thens; ! is non bounded.

(7) rngs; is bounded iffs; is bounded.

Let X be a real-membered set. We introduce Xgs a synonym of sug. We introduce inK
as a synonym of inX.

Let X be a subset dR. Then suiX is an element oR. Then infX is an element oR.

We now state several propositions:

(8) For every non empty real-membered Xeand for evenyt such that for everg such that
se X holdss>t holds infX >1t.

(9) LetX be a non empty real-membered set. Suppose for esugh thats € X holdss>r
and for everyt such that for everg such thas € X holdss >t holdsr >t. Thenr = inf X.

(10) For every non empty real-membered Xeand for everyr and for everyt such that for
everyssuch thas € X holdss <t holds suX <t.

(11) LetX be a non empty real-membered set and giveBuppose for evergsuch that € X
holdss < r and for everyt such that for everg such thas € X holdss <t holdsr <t. Then
r = supX.

(12) LetX be a non empty real-membered set &hge a real-membered set XfC Y andY is
lower bounded, then it < infX.

(13) LetX be a non empty real-membered set &noe a real-membered set XfC Y andY is
upper bounded, then sXp< supyY.

Let X be a real-membered set. We say tkdias maximum if and only if:
(Def. 3) X is upper bounded and sMpe X.
We say thaiX has minimum if and only if:
(Def. 4) X is lower bounded and i€ € X.

One can check that there exists a subs@& afhich is non empty, closed, and bounded.
Let Rbe a family of subsets d&&. We say thaR is open if and only if:

(Def. 5) For every subsét of R such thatX € RholdsX is open.
We say thaRis closed if and only if:
(Def. 6) For every subset of R such thatX € RholdsX is closed.
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In the sequets, rq, r2, g3, p3 denote real numbers.
Let X be a subset dR. The functor—X yields a subset dR and is defined as follows:

(Def.7) —X={-rz:rzeX}.

Let us notice that the functerX is involutive.
We now state the proposition

(14) reXiff —r e —X.

Let X be a non empty subset Bf. One can check thatX is non empty.
Next we state several propositions:

(15) Xis upper bounded iff-X is lower bounded.

(16) X is lower bounded iff-X is upper bounded.

(17) For every non empty subsétof R such thak is lower bounded holds i€ = —sup(—X).
(18) For every non empty subsébof R such thakX is upper bounded holds sXp= —inf(—X).
(19) Xisclosed iff—X is closed.

Let X be a subset dR and letp be a real number. The functpr+ X yields a subset dR and is
defined as follows:

(Def. 8) p+X={p+rz:rzeX}.
Next we state the proposition
(20) reXiff gz+regz+X.

Let X be a non empty subset &f and lets be a real number. One can verify tlsat X is non
empty.
Next we state several propositions:

(21) X=0+X.

(22) gz+(ps+X) = (Gz+ps) +X.

(23) Xis upper bounded iffiz + X is upper bounded.
(24) Xis lower bounded iffyz + X is lower bounded.

(25) For every non empty subsktof R such thatX is lower bounded holds if@z + X) =
gz +inf X.

(26) For every non empty subsktof R such thatxX is upper bounded holds s{g + X) =
Oz + supX.

(27) Xis closed iffgs + X is closed.
Let X be a subset dR. The functor InX yielding a subset oR is defined as follows:
(Def. 9) InvX = {X :rzeX}.
The following proposition is true
(28) For every without zero subs¥tof R holdsr € X iff % e lnvX.

Let X be a non empty without zero subsetRf Note that In¥X is non empty and without zero.
Let X be a without zero subset &. Observe that InX is without zero.
The following three propositions are true:
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(29) For every without zero subs¥tof R holds InvinuX = X.

(30) For every without zero subsitof R such thatX is closed and bounded holds Kvis
closed.

(31) For every familyZ of subsets oR such that is closed hold$) Z is closed.

Let X be a subset dR. The functorX yields a subset dR and is defined by:
(Def. 10) X =({A;Aranges over elements of 2X C A A Ais closed.

Let us note that the functof is projective.
Let X be a subset dR. One can check tha¢ is closed.
One can prove the following propositions:

(32) For every closed subsétof R such thatX C Y holdsX C Y.

(33) XCX.

(34) Xisclosed iffX = X.

(35) Or=0.

(36) Qr =R.

(37) IfXCY,thenXCY.

(38) r3 < X iff for every open subsed of R such thatz € O holdsON X is non empty.

(39) Ifrz € X, then there exists; such that rng; C X ands; is convergent and lirs, = r3.

2. FUNCTIONS INTOREALS

Let X be a set and let be a function fromX into R. Let us observe thdt is lower bounded if and
only if:

(Def. 11) f°Xis lower bounded.
Let us observe that is upper bounded if and only if:
(Def. 12) f°Xis upper bounded.
Let X be a set and let be a function fronX into R. We say thatf has maximum if and only if:
(Def. 14f] °X has maximum.
We say thatf has minimum if and only if:
(Def. 15) f°X has minimum.

Let X be a set and let be a function fromX into R. The functor—f yielding a function from
X into R is defined as follows:

(Def. 16) For every sap such thatp € X holds(—f)(p) = — f(p).

Let us note that the functer f is involutive.
One can prove the following propositions:

(40) For all set, A and for every functiorf from X into R holds(—f)°A= —f°A.

(41) For every non empty set and for every functiorf from X into R holds f has minimum
iff —f has maximum.

1 The definition (Def. 13) has been removed.



BOUNDING BOXES FOR COMPACT SETS IN. . 5

(42) For every non empty s&t and for every functiorf from X into R holds f has maximum
iff —f has minimum.

(43) For every seX and for every subset of R and for every functiorf from X into R holds
(—=1)7HA) = FH(-A).

Let X be a set, let be a real number, and Iétbe a function fronX into R. The functomr + f
yields a function fronX into R and is defined as follows:

(Def. 17) For every sep such thatp € X holds(r + f)(p) =r + f(p).
One can prove the following propositions:

(44) For all setX, A and for every functiorf from X into R and for every real numberholds
(s+ f)°A=s+ f°A

(45) For every seX and for every subseé of R and for every functiorf from X into R and for
everygs holds(gz + f)"1(A) = f1(—gz +A).

Let X be a set and let be a function fronX into R. The functor Invf yields a function fronX
into R and is defined as follows:
(Def. 18) For every sap such thatp € X holds(Inv f)(p) = ﬁ
Let us observe that the functor Ifiis involutive.
The following proposition is true

(46) For every seX and for every without zero subsatof R and for every functiorf from X
into R holds(Inv f)~1(A) = f~1(InvA).

3. REAL MAPS

LetT be a 1-sorted structure. A real mapTofs a function from the carrier of into R.
Let T be a non empty 1-sorted structure. Observe that there exists a real mawto€h is

bounded.
In this article we present several logical schemes. The scivanenigExRFdeals with a non

empty topological structurd and a binary predicat®@, and states that:
There exists a real mapof 4 such that for every elemertof 4 holdsP[x, f (x)]
provided the following condition is met:
e For every sek such thak € the carrier of4 there existss such thatP[x,r3].
The scheméambdaRFdeals with a non empty topological structufeand a unary functof
yielding a real number, and states that:
There exists a real mapof 4 such that for every elemerof 4 holdsf (x) = F(x)

for all values of the parameters.
Let T be a 1-sorted structure, létbe a real map of, and letP be a set. Theri~1(P) is a

subset ofT .
Let T be a 1-sorted structure and letbe a real map of. The functor inff yielding a real

number is defined by:
(Def. 20 inf f = inf(f°(the carrier ofT)).
The functor sug yields a real number and is defined by:
(Def. 21) supf = supf°(the carrier ofT)).
The following propositions are true:

(47) LetT be a non empty topological spadepe a lower bounded real map ©f andp be a
point of T. Thenf(p) > inf f.

2 The definition (Def. 19) has been removed.



BOUNDING BOXES FOR COMPACT SETS IN. . 6

(48) LetT be a non empty topological spadebe a lower bounded real map ©f ands be a
real number. If for every poirttof T holdsf(t) > s, then inff > s.

(49) LetT be a non empty topological space ahlle a real map of . Suppose for every point
p of T holds f(p) > r and for evenyt such that for every poinp of T holds f (p) >t holds
r >t. Thenr =inf f.

(50) LetT be a non empty topological spadebe an upper bounded real mapTafandp be a
point of T. Thenf(p) < supf.

(51) LetT be a non empty topological spadebe an upper bounded real mapTafand given
t. If for every pointp of T holds f (p) <t, then sug <t.

(52) LetT be a non empty topological space ahlle a real map of . Suppose for every point
p of T holds f(p) <r and for everyt such that for every poinp of T holds f(p) <t holds
r <t. Thenr = supf.

(53) For every non empty 1-sorted structdreand for every bounded real mépof T holds
inf f < supf.

Let T be a topological structure and [ebe a real map of . We say thaff is continuous if and
only if:

(Def. 25@ For every subset of R such that is closed holds ~(Y) is closed.

Let T be a non empty topological space. Observe that there exists a real mawtuth is
continuous.

Let T be a non empty topological space andSdte a non empty subspace bf Observe that
there exists a real map &fwhich is continuous.

In the sequeTl denotes a topological structure ahdenotes a real map af.

Next we state four propositions:

(54) f is continuous iff for every subs#tof R such that is open holdsf ~%(Y) is open.
(55) If f is continuous, then-f is continuous.
(56) If f is continuous, theng + f is continuous.

(57) If fis continuous and @ rngf, then Invf is continuous.

Let X, Y be sets, lef be a function from 2 into 2¥, and letR be a family of subsets of. Then
f°Ris a family of subsets of .
The following two propositions are true:

(58) For every familyR of subsets oR such thatf is continuous an® is open holdg~1f)°R
is open.

(59) For every familyR of subsets oR such thatf is continuous an& s closed hold$~*f)°R
is closed.

Let T be a non empty topological structure, ¥ebe a subset of , and letf be a real map of .
The functorf | X yielding a real map of [X is defined by:

(Def. 26) f X = f[X.

Let T be a non empty topological space. Note that there exists a subEetleich is compact
and non empty.

Let T be a non empty topological space, febe a continuous real map df, and letX be a
subset off . One can verify thaf | X is continuous.

Let T be a non empty topological space andRdte a compact non empty subseflofOne can
check thafl [P is compact.

3 The definitions (Def. 22)—(Def. 24) have been removed.
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4. PSEUDOCOMPACT SPACES
We now state two propositions:

(60) LetT be a non empty topological space. Then for every real fhap T such thatf is
continuous holdd has maximum if and only if for every real mapof T such thatf is
continuous holdg has minimum.

(61) LetT be a non empty topological space. Then for every real hab T such thatf
is continuous holdd is bounded if and only if for every real map of T such thatf is
continuous holdg$ has maximum.

Let T be a topological structure. We say tfats pseudocompact if and only if:
(Def. 27) For every real map of T such thatf is continuous holds is bounded.

Let us observe that every non empty topological space which is compact is also pseudocompact.
Let us note that there exists a topological space which is compact and non empty.
Let T be a pseudocompact non empty topological space. Note that every real maphi¢h
is continuous is also bounded and has maximum and minimum.
One can prove the following two propositions:

(62) LetT be a non empty topological spacébe a non empty subset @f, Y be a compact
subset ofT, and f be a continuous real map of If X CY, theninf{f [Y) <inf(f | X).

(63) LetT be a non empty topological spacébe a non empty subset @f Y be a compact
subset ofT, andf be a continuous real map ®f If X CY, then supf | X) <supf 'Y).

5. BOUNDING BOXES FOR COMPACT SETS INE?

Let n be a natural number and Ipt, p» be points ofEf. One can check that(pz, p2) is compact.
We now state the proposition

(64) For every natural numberand for all compact subseX§ Y of Z£7 holdsXNY is compact.

In the sequep is a point of £2, P is a subset of£2, Z is a non empty subset @2, andX is a
non empty compact subset £.
The real map projl o2 is defined by:

(Def. 28)  For every poinp of £2 holds proj{p) = p;.
The real map proj2 of2 is defined by:
(Def. 29)  For every poinp of £2 holds projZp) = pz.
We now state four propositions:
(65) projl=t(Jr,s) = {[r1,r2] :r <ri A ry <s}.
(66) Forallrs, gz such thaP = {[r1,r2] : r3 <r1 A r1 < gz} holdsP is open.
(67) proj2 1(Jr,s) = {[r1,r2) :r <rz A rz <s}.
(68) Forallrs, gz such thaP = {[r1,r2] : r3 <ry A rz < gz} holdsP is open.

One can check that projl is continuous and proj2 is continuous.
Next we state two propositions:

(69) Forevery subsét of £2 and for every poinp of 2 such thap € X holds(proj1 | X)(p) =
p1.
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(70) For every subset of £2 and for every poinp of £2 such thap € X holds(proj2 | X)(p) =
p2.

Let X be a subset of2. The functor W-boun(X) yielding a real number is defined as follows:
(Def. 30) W-boundX) = inf(proj1 | X).
The functor N-boun(X) yielding a real number is defined as follows:
(Def. 31) N-boundX) = sup(proj2 | X).
The functor E-boun(X) yielding a real number is defined by:
(Def. 32) E-boundX) = sup(projl| X).
The functor S-boun(X) yielding a real number is defined by:
(Def. 33) S-boun@X) = inf(proj2 [ X).
We now state the proposition

(71) If pe X, then W-boun@X) < p; and p; < E-boundX) and S-boun@X) < p, and p, <
N-boundX).

Let X be a subset of2. The functor SW-cornéK) yielding a point of£2 is defined by:

(Def. 34) SW-corngiX) = [W-boundX), S-boundX)].

The functor NW-corngix) yields a point of£2 and is defined as follows:
(Def. 35) NW-cornefX) = [W-boundX), N-boundX)].

The functor NE-cornéiX) yielding a point of£2 is defined by:
(Def. 36) NE-corngfX) = [E-boundX), N-boundX)].

The functor SE-corn€¢K) yielding a point of‘Z% is defined by:
(Def. 37) SE-cornéiX) = [E-boundX), S-boundX)].

We now state a number of propositions:

(72) (SW-corne(P))1 = W-boundP).
(73) (SW-corne(P)), = S-boundP).

(74) (NW-corne(P)); = W-boundP).
(75) (NW-corne(P))> = N-boundP).
(76) (NE-corne(P))1 = E-boundP).

(77) (NE-cornefP)), = N-boundP).

(78) (SE-cornetP)); = E-boundP).

(79) (SE-cornetP)), = S-boundP).

(80) (SW-corne(P))1 = (NW-corne(P));.
(81) (SE-cornetP)); = (NE-corne(P));.
(82) (NW-corne(P)), = (NE-corne(P)),.
(83) (SW-corne(P)), = (SE-corne(P)),.

Let X be a subset 0£$ The functor Whos( X) yields a subset of,% and is defined as follows:
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(Def. 38)  Winost(X) = L(SW-cornefX), NW-corne(X)) N X.
The functor Nhost(X) yielding a subset OE% is defined by:
(Def. 39)  NnostX) = L(NW-cornefX),NE-corne(X)) N X.
The functor Enes(X) yields a subset of% and is defined as follows:
(Def. 40)  Bnos X) = L(SE-cornefX),NE-corne(X)) N X.
The functor $esfX) yielding a subset OE% is defined by:
(Def. 41)  Snost(X) = L(SW-cornefX), SE-cornefX)) N X.
Let X be a non empty compact subse&cﬁ. One can verify the following observations:
% Wmost X) is non empty and compact,
% Nmost(X) iS non empty and compact,
*  EmostX) is non empty and compact, and
*  SmostX) is non empty and compact.
Let X be a subset of2. The functor Whin(X) yields a point of£2 and is defined by:
(Def. 42)  Wnin(X) = [W-bound X), inf(proj2 | Wmest X))].
The functor Whax(X) yielding a point of‘E% is defined as follows:
(Def. 43)  Whax(X) = [W-bound X), sup(proj2 | Wmest(X))].
The functor Nin(X) yields a point off% and is defined as follows:
(Def. 44)  Npin(X) = [inf(proj1 | Nmost(X)), N-bound X)].
The functor Nhax(X) yields a point om% and is defined as follows:
(Def. 45)  Nnax(X) = [sup(proj1 [ Nmost X)), N-bound X)].
The functor EBax(X) yields a point of‘B? and is defined by:
(Def. 46)  Enax(X) = [E-boundX), sup(proj2 | Emos(X))].
The functor E,n(X) yielding a point of@% is defined as follows:
(Def. 47)  Bnin(X) = [E-boundX), inf(proj2 | EmostX))]-
The functor $ax(X) yielding a point of£2 is defined as follows:
(Def. 48)  Syax(X) = [SUP(PrOj1 | Smosi(X)), S-boundX)].
The functor $in(X) yielding a point of£2 is defined by:
(Def. 49)  Shin(X) = [inf(proj1 | Smost X)), S-boundX)].
One can prove the following propositions:
(84) (Wmin(P))1 = W-boundP) and(Wmax(P))1 = W-boundP).

(85) (SW-corne(P))1 = (Wmin(P))1 and (SW-corne(P))1 = (Wmax(P))1 and (Wmin(P))1 =
(Wmax(P))1 and(Wmin(P))1 = (NW-cornefP))1 and(Wmax(P))1 = (NW-corne(P));.

(86) (Wmin(P))2 =inf(proj2 | WmoestP)) and(Wmax(P))2 = supproj2 | Wmes(P)).

(87) (SW-corne(X))2 < (Wmin(X))2 and(SW-cornetX))2 < (Wnax(X))2 and(SW-corne(X)), <
(NW-cornefX))2 and(Wnin(X))2 < (Wmax(X))2 and(Wmin(X))2 < (NW-cornefX)), and
(Wmax(X))2 < (NW-corne(X)),.
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(88) If p€ Wnos(Z), thenpy = (Wmin(Z))1 and if Z is compact, theffWmin(Z))2 < p2 and
P2 § (Wmax(z))z-

(89) Wmosl(x) C L(Wmin(x),wmax(x))~
(90) L(Wnin(X),Wmax(X)) € L(SW-corne(X),NW-cornefX)).
(91) Wmin(X) € WmostX) and Whax(X) € Wmost(X).

(92) L(SW-cornetX),Wnin(X)) N X = {Wnin(X)} and L(Wmax(X), NW-cornefX)) N X =
{Wmax(X)}-

(93)  If Win(X) = Wmax(X), then Whos( X) = {Wmin(X)}.
(94)  (Npin(P))2 = N-boundP) and(Nmax(P))2 = N-boundP).

(95) (NW-corne(P))2 = (Nmin(P))2 and (NW-cornekP))2 = (Nmax(P))2 and (Nmin(P))2 =
(Nmax(P))2 and(Nmin(P))2 = (NE-corne(P)); and(Nmax(P))2 = (NE-corne(P)),.

(96) (Nmin(P))1 = Inf(proj1 [ NmostP)) and(Nmax(P))1 = sup(proj1 [ NmostP))-

(97) (NW-cornefX))1 < (Nmin(X))1 and(NW-cornefX))1 < (Nmax(X))1 and(NW-corne(X))1 <
(NE-cornefX))1 and (Nmin(X))1 < (Nmax(X))1 and (Nmin(X))1 < (NE-cornefX)); and
(Nmax(X))1 < (NE-cornefX))s.

(98) If p € Nmosi(Z), then p; = (Nmin(Z))2 and if Z is compact, ther{Nmin(Z))1 < p1 and
P1 < (Nmax(Z))1-

(99)  NnostX) € L(Nmin(X), Nmax(X)).
(100) L(Nmin(X),Nmax(X)) € L(NW-corne(X),NE-cornetX)).
(101)  Nmin(X) € Nmost(X) and Nnax(X) € Nmos{X)-

(102) L(NW-cornefX),Nmin(X)) N X = {Npnin(X)} and L(Nmax(X),NE-cornefX)) N X =
{Nmax(X)}.

(103)  If Nmin(X) = Nmax(X), then Npost(X) = {Nmin(X)}.
(104) (Emin(P))1 = E-boundP) and(Emax(P))1 = E-boundP).

(105) (SE-cornetP))1 = (Emin(P))1 and (SE-cornetP)); = (Emax(P))1 and (Emin(P))1 =
(Emax(P))1 and(Emin(P))1 = (NE-corne(P))1 and(Emax(P))1 = (NE-corne(P));.

(106) (Emin(P))2 = inf(proj2 [ Emost(P)) and(Emax(P))2 = supproj2 | EmostP)).

(107) (SE-cornetX))2 < (Emin(X))2 and(SE-cornetX)), < (Emax(X))2 and(SE-cornefX)), <
(NE-cornefX))2 and (Emin(X))2 < (Emax(X))2 and (Emin(X))2 < (NE-cornefX)), and
(Emax(X))2 < (NE-corne(X))s.

(108) If p € Emos{Z), then py = (Emin(Z))1 and if Z is compact, thenEmin(Z))2 < pz and
P2 < (Emax(2))2.

(109) Emost(x) - L(Emin(x)7 Emax(x))-
(110) L(Emin(X),Emax(X)) C L(SE-cornefX),NE-corne(X)).
(111)  Enin(X) € Emos(X) and Enax(X) € Emost(X).

(112) L(SE-cornefX),Emin(X)) N X = {Emin(X)} and L(Emax(X),NE-cornefX)) n X =
{Emax(X)}-

(113)  If Emin(X) = Emax(X), then Bnos(X) = {Emin(X)}.
(114) (Smin(P))2 = S-boundP) and(Smax(P))2 = S-boundP).
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(115) (SW-corne(P))2 = (Smin(P))2 and (SW-come(P))2 = (Smax(P))2 and (Smin(P))2 =
(Smax(P))2 and(Snin(P))2 = (SE-cornetP) ), and(Smax(P))2 = (SE-cornetP))».
(116) (Smin(P))1 = inf(proj1 [ SmostP)) and(Smax(P))1 = SUAProj1 | Smost(P)).

(117) (SW-cornefX))1 < (Smin(X))1 and(SW-corne(X))1 < (Smax(X))1 and(SW-corne(X)); <
(SE-cornefX))1 and (Smin(X))1 < (Smax(X))1 and (Smin(X))1 < (SE-cornetX)); and
(Smax(X))1 < (SE-cornetX))s.

(118) If p € Smost(Z), thenpz = (Smin(Z))2 and ifZ is compact, thefiSmin(2))1 < p1 andp; <
(Smax(2))1.-

(119)  Snost(X) € L(Smin(X), Smax(X))-

(120) L(Smin(X),Smax(X)) € L(SW-corne(X), SE-cornefX)).

(121)  Snin(X) € SmostX) and Snax(X) € Smost(X).

(122) L(SW-cornetX),Smin(X)) N X = {Snin(X)} and L(Smax(X),SE-cornefX)) N X =
{Smax(X)}.

(123)  If Snin(X) = Smax(X), then Sos( X) = {Smin(X)}.

(124)  If Wmax(P) = Npmin(P), then Winax(P) = NW-corne(P).

(125)  1If Nmax(P) = Emax(P), then Nnax(P) = NE-corne(P).

(126)  If Enin(P) = Smax(P), then Eyin(P) = SE-cornetP).

(127)  If Smin(P) = Whin(P), then Sin(P) = SW-corne(P).
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