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Summary. We define pseudocompact topological spaces and prove that every com-
pact space is pseudocompact. We also solve an exercise from [14] p.225 that for a topological
spaceX the following are equivalent:

• Every continuous real map fromX is bounded (i.e.X is pseudocompact).

• Every continuous real map fromX attains minimum.

• Every continuous real map fromX attains maximum.

Finally, for a compact set inE2 we define its bounding rectangle and introduce a collection of
notions associated with the box.

MML Identifier: PSCOMP_1.

WWW: http://mizar.org/JFM/Vol9/pscomp_1.html

The articles [20], [23], [1], [22], [16], [7], [18], [10], [21], [24], [3], [4], [13], [12], [15], [11], [19],
[17], [6], [5], [2], [8], and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let X be a set. Let us observe thatX has non empty elements if and only if:

(Def. 1) 0/∈ X.

We introduceX is without zero as a synonym ofX has non empty elements. We introduceX has
zero as an antonym ofX has non empty elements.

Let us mention thatR has zero andN has zero.
Let us observe that there exists a set which is non empty and without zero and there exists a set

which is non empty and has zero.
Let us observe that there exists a subset ofR which is non empty and without zero and there

exists a subset ofR which is non empty and has zero.
We now state the proposition

(1) For every setF such thatF is non empty and⊆-linear and has non empty elements holds
F is centered.

Let F be a set. One can check that every family of subsets ofF which is non empty and⊆-linear
and has non empty elements is also centered.

Let A, B be sets and letf be a function fromA into B. Then rngf is a subset ofB.
Let X, Y be non empty sets and letf be a function fromX into Y. Note thatf ◦X is non empty.
Let X, Y be sets and letf be a function fromX into Y. The functor−1 f yields a function from

2Y into 2X and is defined by:

1 c© Association of Mizar Users
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(Def. 2) For every subsety of Y holds(−1 f )(y) = f−1(y).

We now state the proposition

(2) Let X, Y, x be sets,S be a subset of 2Y, and f be a function fromX into Y. If
x∈

⋂
((−1 f )◦S), then f (x) ∈

⋂
S.

In the sequelr, s, t are real numbers.
One can prove the following propositions:

(3) If |r|+ |s|= 0, thenr = 0.

(4) If r < s ands< t, then|s|< |r|+ |t|.

(5) If −s< r andr < s, then|r|< s.

In the sequels1 is a sequence of real numbers andX, Y are subsets ofR.
We now state two propositions:

(6) If s1 is convergent and non-zero and lims1 = 0, thens1
−1 is non bounded.

(7) rngs1 is bounded iffs1 is bounded.

Let X be a real-membered set. We introduce supX as a synonym of supX. We introduce infX
as a synonym of infX.

Let X be a subset ofR. Then supX is an element ofR. Then infX is an element ofR.
We now state several propositions:

(8) For every non empty real-membered setX and for everyt such that for everys such that
s∈ X holdss≥ t holds infX ≥ t.

(9) Let X be a non empty real-membered set. Suppose for everys such thats∈ X holdss≥ r
and for everyt such that for everys such thats∈ X holdss≥ t holdsr ≥ t. Thenr = inf X.

(10) For every non empty real-membered setX and for everyr and for everyt such that for
everys such thats∈ X holdss≤ t holds supX ≤ t.

(11) LetX be a non empty real-membered set and givenr. Suppose for everys such thats∈ X
holdss≤ r and for everyt such that for everys such thats∈ X holdss≤ t holdsr ≤ t. Then
r = supX.

(12) LetX be a non empty real-membered set andY be a real-membered set. IfX ⊆Y andY is
lower bounded, then infY ≤ inf X.

(13) LetX be a non empty real-membered set andY be a real-membered set. IfX ⊆Y andY is
upper bounded, then supX ≤ supY.

Let X be a real-membered set. We say thatX has maximum if and only if:

(Def. 3) X is upper bounded and supX ∈ X.

We say thatX has minimum if and only if:

(Def. 4) X is lower bounded and infX ∈ X.

One can check that there exists a subset ofR which is non empty, closed, and bounded.
Let Rbe a family of subsets ofR. We say thatR is open if and only if:

(Def. 5) For every subsetX of R such thatX ∈ RholdsX is open.

We say thatR is closed if and only if:

(Def. 6) For every subsetX of R such thatX ∈ RholdsX is closed.
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In the sequelr3, r1, r2, q3, p3 denote real numbers.
Let X be a subset ofR. The functor−X yields a subset ofR and is defined as follows:

(Def. 7) −X = {−r3 : r3 ∈ X}.

Let us notice that the functor−X is involutive.
We now state the proposition

(14) r ∈ X iff −r ∈ −X.

Let X be a non empty subset ofR. One can check that−X is non empty.
Next we state several propositions:

(15) X is upper bounded iff−X is lower bounded.

(16) X is lower bounded iff−X is upper bounded.

(17) For every non empty subsetX of R such thatX is lower bounded holds infX =−sup(−X).

(18) For every non empty subsetX of R such thatX is upper bounded holds supX =−inf(−X).

(19) X is closed iff−X is closed.

Let X be a subset ofR and letp be a real number. The functorp+X yields a subset ofR and is
defined as follows:

(Def. 8) p+X = {p+ r3 : r3 ∈ X}.

Next we state the proposition

(20) r ∈ X iff q3 + r ∈ q3 +X.

Let X be a non empty subset ofR and lets be a real number. One can verify thats+X is non
empty.

Next we state several propositions:

(21) X = 0+X.

(22) q3 +(p3 +X) = (q3 + p3)+X.

(23) X is upper bounded iffq3 +X is upper bounded.

(24) X is lower bounded iffq3 +X is lower bounded.

(25) For every non empty subsetX of R such thatX is lower bounded holds inf(q3 + X) =
q3 + inf X.

(26) For every non empty subsetX of R such thatX is upper bounded holds sup(q3 + X) =
q3 +supX.

(27) X is closed iffq3 +X is closed.

Let X be a subset ofR. The functor InvX yielding a subset ofR is defined as follows:

(Def. 9) InvX = { 1
r3

: r3 ∈ X}.

The following proposition is true

(28) For every without zero subsetX of R holdsr ∈ X iff 1
r ∈ InvX.

Let X be a non empty without zero subset ofR. Note that InvX is non empty and without zero.
Let X be a without zero subset ofR. Observe that InvX is without zero.
The following three propositions are true:
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(29) For every without zero subsetX of R holds InvInvX = X.

(30) For every without zero subsetX of R such thatX is closed and bounded holds InvX is
closed.

(31) For every familyZ of subsets ofR such thatZ is closed holds
⋂

Z is closed.

Let X be a subset ofR. The functorX yields a subset ofR and is defined by:

(Def. 10) X =
⋂
{A;A ranges over elements of 2R: X ⊆ A ∧ Ais closed}.

Let us note that the functorX is projective.
Let X be a subset ofR. One can check thatX is closed.
One can prove the following propositions:

(32) For every closed subsetY of R such thatX ⊆Y holdsX ⊆Y.

(33) X ⊆ X.

(34) X is closed iffX = X.

(35) /0R = /0.

(36) ΩR = R.

(37) If X ⊆Y, thenX ⊆Y.

(38) r3 ∈ X iff for every open subsetO of R such thatr3 ∈O holdsO∩X is non empty.

(39) If r3 ∈ X, then there existss1 such that rngs1 ⊆ X ands1 is convergent and lims1 = r3.

2. FUNCTIONS INTO REALS

Let X be a set and letf be a function fromX into R. Let us observe thatf is lower bounded if and
only if:

(Def. 11) f ◦X is lower bounded.

Let us observe thatf is upper bounded if and only if:

(Def. 12) f ◦X is upper bounded.

Let X be a set and letf be a function fromX into R. We say thatf has maximum if and only if:

(Def. 14)1 f ◦X has maximum.

We say thatf has minimum if and only if:

(Def. 15) f ◦X has minimum.

Let X be a set and letf be a function fromX into R. The functor− f yielding a function from
X into R is defined as follows:

(Def. 16) For every setp such thatp∈ X holds(− f )(p) =− f (p).

Let us note that the functor− f is involutive.
One can prove the following propositions:

(40) For all setsX, A and for every functionf from X into R holds(− f )◦A =− f ◦A.

(41) For every non empty setX and for every functionf from X into R holds f has minimum
iff − f has maximum.

1 The definition (Def. 13) has been removed.
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(42) For every non empty setX and for every functionf from X into R holds f has maximum
iff − f has minimum.

(43) For every setX and for every subsetA of R and for every functionf from X into R holds
(− f )−1(A) = f−1(−A).

Let X be a set, letr be a real number, and letf be a function fromX into R. The functorr + f
yields a function fromX into R and is defined as follows:

(Def. 17) For every setp such thatp∈ X holds(r + f )(p) = r + f (p).

One can prove the following propositions:

(44) For all setsX, A and for every functionf from X into R and for every real numbers holds
(s+ f )◦A = s+ f ◦A.

(45) For every setX and for every subsetA of R and for every functionf from X into R and for
everyq3 holds(q3 + f )−1(A) = f−1(−q3 +A).

Let X be a set and letf be a function fromX into R. The functor Invf yields a function fromX
into R and is defined as follows:

(Def. 18) For every setp such thatp∈ X holds(Inv f )(p) = 1
f (p) .

Let us observe that the functor Invf is involutive.
The following proposition is true

(46) For every setX and for every without zero subsetA of R and for every functionf from X
into R holds(Inv f )−1(A) = f−1(InvA).

3. REAL MAPS

Let T be a 1-sorted structure. A real map ofT is a function from the carrier ofT into R.
Let T be a non empty 1-sorted structure. Observe that there exists a real map ofT which is

bounded.
In this article we present several logical schemes. The schemeNonUniqExRFdeals with a non

empty topological structureA and a binary predicateP , and states that:
There exists a real mapf of A such that for every elementx of A holdsP [x, f (x)]

provided the following condition is met:
• For every setx such thatx∈ the carrier ofA there existsr3 such thatP [x, r3].

The schemeLambdaRFdeals with a non empty topological structureA and a unary functorF
yielding a real number, and states that:

There exists a real mapf of A such that for every elementx of A holds f (x) = F (x)
for all values of the parameters.

Let T be a 1-sorted structure, letf be a real map ofT, and letP be a set. Thenf−1(P) is a
subset ofT.

Let T be a 1-sorted structure and letf be a real map ofT. The functor inff yielding a real
number is defined by:

(Def. 20)2 inf f = inf( f ◦(the carrier ofT)).

The functor supf yields a real number and is defined by:

(Def. 21) supf = sup( f ◦(the carrier ofT)).

The following propositions are true:

(47) LetT be a non empty topological space,f be a lower bounded real map ofT, andp be a
point ofT. Then f (p)≥ inf f .

2 The definition (Def. 19) has been removed.
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(48) LetT be a non empty topological space,f be a lower bounded real map ofT, ands be a
real number. If for every pointt of T holds f (t)≥ s, then inf f ≥ s.

(49) LetT be a non empty topological space andf be a real map ofT. Suppose for every point
p of T holds f (p) ≥ r and for everyt such that for every pointp of T holds f (p) ≥ t holds
r ≥ t. Thenr = inf f .

(50) LetT be a non empty topological space,f be an upper bounded real map ofT, andp be a
point ofT. Then f (p)≤ supf .

(51) LetT be a non empty topological space,f be an upper bounded real map ofT, and given
t. If for every pointp of T holds f (p)≤ t, then supf ≤ t.

(52) LetT be a non empty topological space andf be a real map ofT. Suppose for every point
p of T holds f (p) ≤ r and for everyt such that for every pointp of T holds f (p) ≤ t holds
r ≤ t. Thenr = supf .

(53) For every non empty 1-sorted structureT and for every bounded real mapf of T holds
inf f ≤ supf .

Let T be a topological structure and letf be a real map ofT. We say thatf is continuous if and
only if:

(Def. 25)3 For every subsetY of R such thatY is closed holdsf−1(Y) is closed.

Let T be a non empty topological space. Observe that there exists a real map ofT which is
continuous.

Let T be a non empty topological space and letSbe a non empty subspace ofT. Observe that
there exists a real map ofSwhich is continuous.

In the sequelT denotes a topological structure andf denotes a real map ofT.
Next we state four propositions:

(54) f is continuous iff for every subsetY of R such thatY is open holdsf−1(Y) is open.

(55) If f is continuous, then− f is continuous.

(56) If f is continuous, thenr3 + f is continuous.

(57) If f is continuous and 0/∈ rng f , then Invf is continuous.

Let X, Y be sets, letf be a function from 2X into 2Y, and letRbe a family of subsets ofX. Then
f ◦R is a family of subsets ofY.

The following two propositions are true:

(58) For every familyR of subsets ofR such thatf is continuous andR is open holds(−1 f )◦R
is open.

(59) For every familyRof subsets ofR such thatf is continuous andR is closed holds(−1 f )◦R
is closed.

Let T be a non empty topological structure, letX be a subset ofT, and let f be a real map ofT.
The functorf � X yielding a real map ofT�X is defined by:

(Def. 26) f � X = f �X.

Let T be a non empty topological space. Note that there exists a subset ofT which is compact
and non empty.

Let T be a non empty topological space, letf be a continuous real map ofT, and letX be a
subset ofT. One can verify thatf � X is continuous.

Let T be a non empty topological space and letP be a compact non empty subset ofT. One can
check thatT�P is compact.

3 The definitions (Def. 22)–(Def. 24) have been removed.
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4. PSEUDOCOMPACT SPACES

We now state two propositions:

(60) Let T be a non empty topological space. Then for every real mapf of T such thatf is
continuous holdsf has maximum if and only if for every real mapf of T such thatf is
continuous holdsf has minimum.

(61) Let T be a non empty topological space. Then for every real mapf of T such thatf
is continuous holdsf is bounded if and only if for every real mapf of T such thatf is
continuous holdsf has maximum.

Let T be a topological structure. We say thatT is pseudocompact if and only if:

(Def. 27) For every real mapf of T such thatf is continuous holdsf is bounded.

Let us observe that every non empty topological space which is compact is also pseudocompact.
Let us note that there exists a topological space which is compact and non empty.
Let T be a pseudocompact non empty topological space. Note that every real map ofT which

is continuous is also bounded and has maximum and minimum.
One can prove the following two propositions:

(62) Let T be a non empty topological space,X be a non empty subset ofT, Y be a compact
subset ofT, and f be a continuous real map ofT. If X ⊆Y, then inf( f � Y)≤ inf( f � X).

(63) Let T be a non empty topological space,X be a non empty subset ofT, Y be a compact
subset ofT, and f be a continuous real map ofT. If X ⊆Y, then sup( f � X)≤ sup( f � Y).

5. BOUNDING BOXES FOR COMPACT SETS INE2

Let n be a natural number and letp1, p2 be points ofEn
T. One can check thatL(p1, p2) is compact.

We now state the proposition

(64) For every natural numbern and for all compact subsetsX, Y of En
T holdsX∩Y is compact.

In the sequelp is a point ofE2
T, P is a subset ofE2

T, Z is a non empty subset ofE2
T, andX is a

non empty compact subset ofE2
T.

The real map proj1 ofE2
T is defined by:

(Def. 28) For every pointp of E2
T holds proj1(p) = p1.

The real map proj2 ofE2
T is defined by:

(Def. 29) For every pointp of E2
T holds proj2(p) = p2.

We now state four propositions:

(65) proj1−1(]r,s[) = {[r1, r2] : r < r1 ∧ r1 < s}.

(66) For allr3, q3 such thatP = {[r1, r2] : r3 < r1 ∧ r1 < q3} holdsP is open.

(67) proj2−1(]r,s[) = {[r1, r2] : r < r2 ∧ r2 < s}.

(68) For allr3, q3 such thatP = {[r1, r2] : r3 < r2 ∧ r2 < q3} holdsP is open.

One can check that proj1 is continuous and proj2 is continuous.
Next we state two propositions:

(69) For every subsetX of E2
T and for every pointp of E2

T such thatp∈X holds(proj1� X)(p) =
p1.
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(70) For every subsetX of E2
T and for every pointp of E2

T such thatp∈X holds(proj2� X)(p) =
p2.

Let X be a subset ofE2
T. The functor W-bound(X) yielding a real number is defined as follows:

(Def. 30) W-bound(X) = inf(proj1� X).

The functor N-bound(X) yielding a real number is defined as follows:

(Def. 31) N-bound(X) = sup(proj2� X).

The functor E-bound(X) yielding a real number is defined by:

(Def. 32) E-bound(X) = sup(proj1� X).

The functor S-bound(X) yielding a real number is defined by:

(Def. 33) S-bound(X) = inf(proj2� X).

We now state the proposition

(71) If p∈ X, then W-bound(X) ≤ p1 and p1 ≤ E-bound(X) and S-bound(X) ≤ p2 and p2 ≤
N-bound(X).

Let X be a subset ofE2
T. The functor SW-corner(X) yielding a point ofE2

T is defined by:

(Def. 34) SW-corner(X) = [W-bound(X),S-bound(X)].

The functor NW-corner(X) yields a point ofE2
T and is defined as follows:

(Def. 35) NW-corner(X) = [W-bound(X),N-bound(X)].

The functor NE-corner(X) yielding a point ofE2
T is defined by:

(Def. 36) NE-corner(X) = [E-bound(X),N-bound(X)].

The functor SE-corner(X) yielding a point ofE2
T is defined by:

(Def. 37) SE-corner(X) = [E-bound(X),S-bound(X)].

We now state a number of propositions:

(72) (SW-corner(P))1 = W-bound(P).

(73) (SW-corner(P))2 = S-bound(P).

(74) (NW-corner(P))1 = W-bound(P).

(75) (NW-corner(P))2 = N-bound(P).

(76) (NE-corner(P))1 = E-bound(P).

(77) (NE-corner(P))2 = N-bound(P).

(78) (SE-corner(P))1 = E-bound(P).

(79) (SE-corner(P))2 = S-bound(P).

(80) (SW-corner(P))1 = (NW-corner(P))1.

(81) (SE-corner(P))1 = (NE-corner(P))1.

(82) (NW-corner(P))2 = (NE-corner(P))2.

(83) (SW-corner(P))2 = (SE-corner(P))2.

Let X be a subset ofE2
T. The functor Wmost(X) yields a subset ofE2

T and is defined as follows:
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(Def. 38) Wmost(X) = L(SW-corner(X),NW-corner(X))∩X.

The functor Nmost(X) yielding a subset ofE2
T is defined by:

(Def. 39) Nmost(X) = L(NW-corner(X),NE-corner(X))∩X.

The functor Emost(X) yields a subset ofE2
T and is defined as follows:

(Def. 40) Emost(X) = L(SE-corner(X),NE-corner(X))∩X.

The functor Smost(X) yielding a subset ofE2
T is defined by:

(Def. 41) Smost(X) = L(SW-corner(X),SE-corner(X))∩X.

Let X be a non empty compact subset ofE2
T. One can verify the following observations:

∗ Wmost(X) is non empty and compact,

∗ Nmost(X) is non empty and compact,

∗ Emost(X) is non empty and compact, and

∗ Smost(X) is non empty and compact.

Let X be a subset ofE2
T. The functor Wmin(X) yields a point ofE2

T and is defined by:

(Def. 42) Wmin(X) = [W-bound(X), inf(proj2� Wmost(X))].

The functor Wmax(X) yielding a point ofE2
T is defined as follows:

(Def. 43) Wmax(X) = [W-bound(X),sup(proj2� Wmost(X))].

The functor Nmin(X) yields a point ofE2
T and is defined as follows:

(Def. 44) Nmin(X) = [inf(proj1� Nmost(X)),N-bound(X)].

The functor Nmax(X) yields a point ofE2
T and is defined as follows:

(Def. 45) Nmax(X) = [sup(proj1� Nmost(X)),N-bound(X)].

The functor Emax(X) yields a point ofE2
T and is defined by:

(Def. 46) Emax(X) = [E-bound(X),sup(proj2� Emost(X))].

The functor Emin(X) yielding a point ofE2
T is defined as follows:

(Def. 47) Emin(X) = [E-bound(X), inf(proj2� Emost(X))].

The functor Smax(X) yielding a point ofE2
T is defined as follows:

(Def. 48) Smax(X) = [sup(proj1� Smost(X)),S-bound(X)].

The functor Smin(X) yielding a point ofE2
T is defined by:

(Def. 49) Smin(X) = [inf(proj1� Smost(X)),S-bound(X)].

One can prove the following propositions:

(84) (Wmin(P))1 = W-bound(P) and(Wmax(P))1 = W-bound(P).

(85) (SW-corner(P))1 = (Wmin(P))1 and(SW-corner(P))1 = (Wmax(P))1 and(Wmin(P))1 =
(Wmax(P))1 and(Wmin(P))1 = (NW-corner(P))1 and(Wmax(P))1 = (NW-corner(P))1.

(86) (Wmin(P))2 = inf(proj2� Wmost(P)) and(Wmax(P))2 = sup(proj2� Wmost(P)).

(87) (SW-corner(X))2≤ (Wmin(X))2 and(SW-corner(X))2≤ (Wmax(X))2 and(SW-corner(X))2≤
(NW-corner(X))2 and(Wmin(X))2 ≤ (Wmax(X))2 and(Wmin(X))2 ≤ (NW-corner(X))2 and
(Wmax(X))2 ≤ (NW-corner(X))2.
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(88) If p ∈ Wmost(Z), then p1 = (Wmin(Z))1 and if Z is compact, then(Wmin(Z))2 ≤ p2 and
p2 ≤ (Wmax(Z))2.

(89) Wmost(X)⊆ L(Wmin(X),Wmax(X)).

(90) L(Wmin(X),Wmax(X))⊆ L(SW-corner(X),NW-corner(X)).

(91) Wmin(X) ∈Wmost(X) and Wmax(X) ∈Wmost(X).

(92) L(SW-corner(X),Wmin(X)) ∩ X = {Wmin(X)} and L(Wmax(X),NW-corner(X)) ∩ X =
{Wmax(X)}.

(93) If Wmin(X) = Wmax(X), then Wmost(X) = {Wmin(X)}.

(94) (Nmin(P))2 = N-bound(P) and(Nmax(P))2 = N-bound(P).

(95) (NW-corner(P))2 = (Nmin(P))2 and (NW-corner(P))2 = (Nmax(P))2 and (Nmin(P))2 =
(Nmax(P))2 and(Nmin(P))2 = (NE-corner(P))2 and(Nmax(P))2 = (NE-corner(P))2.

(96) (Nmin(P))1 = inf(proj1� Nmost(P)) and(Nmax(P))1 = sup(proj1� Nmost(P)).

(97) (NW-corner(X))1≤ (Nmin(X))1 and(NW-corner(X))1≤ (Nmax(X))1 and(NW-corner(X))1≤
(NE-corner(X))1 and (Nmin(X))1 ≤ (Nmax(X))1 and (Nmin(X))1 ≤ (NE-corner(X))1 and
(Nmax(X))1 ≤ (NE-corner(X))1.

(98) If p ∈ Nmost(Z), then p2 = (Nmin(Z))2 and if Z is compact, then(Nmin(Z))1 ≤ p1 and
p1 ≤ (Nmax(Z))1.

(99) Nmost(X)⊆ L(Nmin(X),Nmax(X)).

(100) L(Nmin(X),Nmax(X))⊆ L(NW-corner(X),NE-corner(X)).

(101) Nmin(X) ∈ Nmost(X) and Nmax(X) ∈ Nmost(X).

(102) L(NW-corner(X),Nmin(X)) ∩ X = {Nmin(X)} and L(Nmax(X),NE-corner(X)) ∩ X =
{Nmax(X)}.

(103) If Nmin(X) = Nmax(X), then Nmost(X) = {Nmin(X)}.

(104) (Emin(P))1 = E-bound(P) and(Emax(P))1 = E-bound(P).

(105) (SE-corner(P))1 = (Emin(P))1 and (SE-corner(P))1 = (Emax(P))1 and (Emin(P))1 =
(Emax(P))1 and(Emin(P))1 = (NE-corner(P))1 and(Emax(P))1 = (NE-corner(P))1.

(106) (Emin(P))2 = inf(proj2� Emost(P)) and(Emax(P))2 = sup(proj2� Emost(P)).

(107) (SE-corner(X))2≤ (Emin(X))2 and(SE-corner(X))2≤ (Emax(X))2 and(SE-corner(X))2≤
(NE-corner(X))2 and (Emin(X))2 ≤ (Emax(X))2 and (Emin(X))2 ≤ (NE-corner(X))2 and
(Emax(X))2 ≤ (NE-corner(X))2.

(108) If p ∈ Emost(Z), then p1 = (Emin(Z))1 and if Z is compact, then(Emin(Z))2 ≤ p2 and
p2 ≤ (Emax(Z))2.

(109) Emost(X)⊆ L(Emin(X),Emax(X)).

(110) L(Emin(X),Emax(X))⊆ L(SE-corner(X),NE-corner(X)).

(111) Emin(X) ∈ Emost(X) and Emax(X) ∈ Emost(X).

(112) L(SE-corner(X),Emin(X)) ∩ X = {Emin(X)} and L(Emax(X),NE-corner(X)) ∩ X =
{Emax(X)}.

(113) If Emin(X) = Emax(X), then Emost(X) = {Emin(X)}.

(114) (Smin(P))2 = S-bound(P) and(Smax(P))2 = S-bound(P).
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(115) (SW-corner(P))2 = (Smin(P))2 and (SW-corner(P))2 = (Smax(P))2 and (Smin(P))2 =
(Smax(P))2 and(Smin(P))2 = (SE-corner(P))2 and(Smax(P))2 = (SE-corner(P))2.

(116) (Smin(P))1 = inf(proj1� Smost(P)) and(Smax(P))1 = sup(proj1� Smost(P)).

(117) (SW-corner(X))1≤ (Smin(X))1 and(SW-corner(X))1≤ (Smax(X))1 and(SW-corner(X))1≤
(SE-corner(X))1 and (Smin(X))1 ≤ (Smax(X))1 and (Smin(X))1 ≤ (SE-corner(X))1 and
(Smax(X))1 ≤ (SE-corner(X))1.

(118) If p∈ Smost(Z), thenp2 = (Smin(Z))2 and if Z is compact, then(Smin(Z))1 ≤ p1 andp1 ≤
(Smax(Z))1.

(119) Smost(X)⊆ L(Smin(X),Smax(X)).

(120) L(Smin(X),Smax(X))⊆ L(SW-corner(X),SE-corner(X)).

(121) Smin(X) ∈ Smost(X) and Smax(X) ∈ Smost(X).

(122) L(SW-corner(X),Smin(X)) ∩ X = {Smin(X)} and L(Smax(X),SE-corner(X)) ∩ X =
{Smax(X)}.

(123) If Smin(X) = Smax(X), then Smost(X) = {Smin(X)}.

(124) If Wmax(P) = Nmin(P), then Wmax(P) = NW-corner(P).

(125) If Nmax(P) = Emax(P), then Nmax(P) = NE-corner(P).

(126) If Emin(P) = Smax(P), then Emin(P) = SE-corner(P).

(127) If Smin(P) = Wmin(P), then Smin(P) = SW-corner(P).
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