On Projections in Projective Planes - Part II ${ }^{\text {| }}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. We study in greater details projectivities on Desarguesian projective planes. We are particularly interested in the situation when the composition of given two projectivities can be replaced by another two, with given axis or centre of one of them.

MML Identifier: PROJRED2.
WWW:http://mizar.org/JFM/Vol2/projred2.html

The articles [4], [6], [7], [8], [5], [3], [1], and [2] provide the notation and terminology for this paper.

In this paper I_{1} is a projective space defined in terms of incidence and z is a point of I_{1}.
Let us consider I_{1} and let A, B, C be lines of I_{1}. We say that A, B, C are concurrent if and only if:
(Def. 1) There exists an element o of the points of I_{1} such that o lies on A and o lies on B and o lies on C.

Let us consider I_{1} and let Z be a line of I_{1}. The functor chain (Z) yielding a subset of the points of I_{1} is defined as follows:
(Def. 2) chain $(Z)=\{z: z$ lies on $Z\}$.
For simplicity, we follow the rules: I_{2} is a Desarguesian 2-dimensional projective space defined in terms of incidence, $a, b, c, d, p, p_{1}^{\prime}, q, o, o^{\prime}, o^{\prime \prime}, o_{1}^{\prime}$ are points of $I_{2}, r, s, x, y, o_{1}, o_{2}$ are points of I_{2}, and $O_{1}, O_{2}, O_{3}, A, B, C, O, Q, R, S$ are lines of I_{2}.

Let us consider I_{2}. A partial function from the points of I_{2} to the points of I_{2} is said to be a projection of I_{2} if:
(Def. 3) There exist a, A, B such that a does not lie on A and a does not lie on B and it $=\pi_{a}(A \rightarrow B)$.
The following propositions are true:
(1) If $A=B$ or $B=C$ or $C=A$, then A, B, C are concurrent.
(2) Suppose A, B, C are concurrent. Then
(i) A, C, B are concurrent,
(ii) B, A, C are concurrent,
(iii) B, C, A are concurrent,
(iv) C, A, B are concurrent, and
(v) C, B, A are concurrent.

[^0](3) If o does not lie on A and o does not lie on B and y lies on B, then there exists x such that x lies on A and $\pi_{o}(A \rightarrow B)(x)=y$.
(51) If o does not lie on A and o does not lie on B, then $\operatorname{dom} \pi_{o}(A \rightarrow B)=$ chain (A).
(6) If o does not lie on A and o does not lie on B, then $\operatorname{rng} \pi_{o}(A \rightarrow B)=$ chain (B).
(7) For every set x holds $x \in \operatorname{chain}(A)$ iff there exists a such that $x=a$ and a lies on A.
(8) If o does not lie on A and o does not lie on B, then $\pi_{o}(A \rightarrow B)$ is one-to-one.
(9) If o does not lie on A and o does not lie on B, then $\pi_{o}(A \rightarrow B)^{-1}=\pi_{o}(B \rightarrow A)$.
(10) For every projection f of I_{2} holds f^{-1} is a projection of I_{2}.
(11) If o does not lie on A, then $\pi_{o}(A \rightarrow A)=\operatorname{id}_{\text {chain }(A)}$.
(12) $\quad \mathrm{id}_{\mathrm{chain}(A)}$ is a projection of I_{2}.
(13) If o does not lie on A and o does not lie on B and o does not lie on C, then $\pi_{o}(C \rightarrow$ $B) \cdot \pi_{o}(A \rightarrow C)=\pi_{o}(A \rightarrow B)$.
(14) Suppose o_{1} does not lie on O_{1} and o_{1} does not lie on O_{2} and o_{2} does not lie on O_{2} and o_{2} does not lie on O_{3} and O_{1}, O_{2}, O_{3} are concurrent and $O_{1} \neq O_{3}$. Then there exists o such that o does not lie on O_{1} and o does not lie on O_{3} and $\pi_{o_{2}}\left(O_{2} \rightarrow O_{3}\right) \cdot \pi_{o_{1}}\left(O_{1} \rightarrow O_{2}\right)=\pi_{o}\left(O_{1} \rightarrow O_{3}\right)$.
(15) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and A, B, C are not concurrent and c lies on A and c lies on C and c lies on Q and b does not lie on Q and $A \neq Q$ and $a \neq b$ and $b \neq q$ and a lies on O and b lies on O and B, C, O are not concurrent and d lies on C and d lies on B and a lies on O_{1} and d lies on O_{1} and p lies on A and p lies on O_{1} and q lies on O and q lies on O_{2} and p lies on O_{2} and p_{1}^{\prime} lies on O_{2} and d lies on O_{3} and b lies on O_{3} and p_{1}^{\prime} lies on O_{3} and p_{1}^{\prime} lies on Q and $Q \neq C$ and $q \neq a$ and q does not lie on A and q does not lie on Q. Then $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)$.
(16) Suppose that a does not lie on A and a does not lie on C and b does not lie on B and b does not lie on C and b does not lie on Q and A, B, C are not concurrent and $a \neq b$ and $b \neq q$ and $A \neq Q$ and c, o lie on A and $o, o^{\prime \prime}, d$ lie on B and c, d, o^{\prime} lie on C and a, b, d lie on O and c, o_{1}^{\prime} lie on Q and a, o, o^{\prime} lie on O_{1} and $b, o^{\prime}, o_{1}^{\prime}$ lie on O_{2} and o, o_{1}^{\prime}, q lie on O_{3} and q lies on O. Then $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)$.
(17) Suppose that a does not lie on A and a does not lie on C and b does not lie on B and b does not lie on C and b does not lie on Q and A, B, C are not concurrent and B, C, O are not concurrent and $A \neq Q$ and $Q \neq C$ and $a \neq b$ and c, p lie on A and d lies on B and c, d lie on C and a, b, q lie on O and c, p_{1}^{\prime} lie on Q and a, d, p lie on O_{1} and q, p, p_{1}^{\prime} lie on O_{2} and b, d, p_{1}^{\prime} lie on O_{3}. Then $q \neq a$ and $q \neq b$ and q does not lie on A and q does not lie on Q.
(18) Suppose that a does not lie on A and a does not lie on C and b does not lie on B and b does not lie on C and b does not lie on Q and A, B, C are not concurrent and $a \neq b$ and $A \neq Q$ and c, o lie on A and $o, o^{\prime \prime}, d$ lie on B and c, d, o^{\prime} lie on C and a, b, d lie on O and c, o_{1}^{\prime} lie on Q and a, o, o^{\prime} lie on O_{1} and $b, o^{\prime}, o_{1}^{\prime}$ lie on O_{2} and o, o_{1}^{\prime}, q lie on O_{3} and q lies on O. Then q does not lie on A and q does not lie on Q and $b \neq q$.
(19) Suppose that a does not lie on A and a does not lie on C and b does not lie on B and b does not lie on C and q does not lie on A and A, B, C are not concurrent and B, C, O are not concurrent and $a \neq b$ and $b \neq q$ and $q \neq a$ and c, p lie on A and d lies on B and c, d lie on C and a, b, q lie on O and c, p_{1}^{\prime} lie on Q and a, d, p lie on O_{1} and q, p, p_{1}^{\prime} lie on O_{2} and b, d, p_{1}^{\prime} lie on O_{3}. Then $Q \neq A$ and $Q \neq C$ and q does not lie on Q and b does not lie on Q.

[^1](20) Suppose that a does not lie on A and a does not lie on C and b does not lie on B and b does not lie on C and q does not lie on A and A, B, C are not concurrent and $a \neq b$ and $b \neq q$ and c, o lie on A and $o, o^{\prime \prime}, d$ lie on B and c, d, o^{\prime} lie on C and a, b, d lie on O and c, o_{1}^{\prime} lie on Q and a, o, o^{\prime} lie on O_{1} and $b, o^{\prime}, o_{1}^{\prime}$ lie on O_{2} and o, o_{1}^{\prime}, q lie on O_{3} and q lies on O. Then b does not lie on Q and q does not lie on Q and $A \neq Q$.
(21) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and A, B, C are not concurrent and A, C, Q are concurrent and b does not lie on Q and $A \neq Q$ and $a \neq b$ and a lies on O and b lies on O. Then there exists q such that q lies on O and q does not lie on A and q does not lie on Q and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow$ $B) \cdot \pi_{q}(A \rightarrow Q)$.
(22) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and A, B, C are not concurrent and B, C, Q are concurrent and a does not lie on Q and $B \neq Q$ and $a \neq b$ and a lies on O and b lies on O. Then there exists q such that q lies on O and q does not lie on B and q does not lie on Q and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{q}(Q \rightarrow$ $B) \cdot \pi_{a}(A \rightarrow Q)$.
(23) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and a does not lie on B and b does not lie on A and c lies on A and c lies on C and d lies on B and d lies on C and a lies on S and d lies on S and c lies on R and b lies on R and s lies on A and s lies on S and r lies on B and r lies on R and s lies on Q and r lies on Q and A, B, C are not concurrent. Then $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{a}(Q \rightarrow B) \cdot \pi_{b}(A \rightarrow Q)$.
(24) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and $a \neq b$ and a lies on O and b lies on O and q lies on O and q does not lie on A and $q \neq b$ and A, B, C are not concurrent. Then there exists Q such that A, C, Q are concurrent and b does not lie on Q and q does not lie on Q and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=$ $\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)$.
(25) Suppose that a does not lie on A and b does not lie on B and a does not lie on C and b does not lie on C and $a \neq b$ and a lies on O and b lies on O and q lies on O and q does not lie on B and $q \neq a$ and A, B, C are not concurrent. Then there exists Q such that B, C, Q are concurrent and a does not lie on Q and q does not lie on Q and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=$ $\pi_{q}(Q \rightarrow B) \cdot \pi_{a}(A \rightarrow Q)$.

References

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Eugeniusz Kusak and Wojciech Leończuk. Incidence projective space (a reduction theorem in a plane). Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/projred1.html
[3] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Journal of Formalized Mathematics, 2, 1990. http //mizar.org/JFM/Vol2/incproj.html
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[5] Wojciech A. Trybulec. Axioms of incidency. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/incsp_1. html.
[6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[7] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html
[8] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html

Received October 31, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

[^1]: ${ }^{1}$ The proposition (4) has been removed.

