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Summary. The line of pointsa, b, denoted bya- b and the point of line#, B denoted
by A-B are defined. A few basic theorems related to these notions are proved. An inspira-
tion for such approach comes from so called Leibniz program. Let us recall that the Leibniz
program is a program of algebraization of geometry using purely geometric notions. Leibniz
formulated his program in opposition to algebraization method developed by Descartes.

MML Identifier: PROJPL_1.
WWW: http://mizar.org/JFM/Vol6/projpl 1.html

The articlesl[1],[[5],[13],[[4], and 2] provide the notation and terminology for this paper.

1. PROJECTIVESPACES

We adopt the following conventiorG is a projective incidence structura,a;, a, b, by, by, ¢, d,
p, g, r are points ofG, andA, B, M, N, P, Q, Rare lines ofG.
Let us conside6, a, b, P. The predicata, b P is defined as follows:

(Def. 1) atPandbtP.

Let us conside6, a, P, Q. We say that lies onP, Q if and only if:
(Def. 2) alies onP andalies onQ.

Let us conside@, a, P, Q, R. We say that lies onP, Q, Rif and only if:
(Def. 3) alies onP andalies onQ andalies onR.

One can prove the following proposition

(D) () If a blie onP, thenb, alie onP,

(i) if a, b,clieonP, thena, c, blie onP andb, a, clie onP andb, c, alie onP andc, a, b lie
onP andc, b, alie onP,

(i) if aliesonP, Q, thenalies onQ, P, and

(iv) if aliesonP, Q, R, thenalies onP, R, Q andalies onQ, P, Randalies onQ, R, P anda
lies onR, P, Q andalies onR, Q, P.

Let I; be a projective incidence structure. We say thais configuration if and only if the
condition (Def. 4) is satisfied.

(Def. 4) Letp, g be points ofl; andP, Q be lines ofl;. Supposep lies onP andq lies onP andp
lies onQ andqg lies onQ. Thenp=qorP=0Q.
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Next we state three propositions:

(2) Gis configuration iff for allp, g, P, Q such thatp, q lie onP andp, g lie onQ holdsp=q
orP=Q.

(3) Gis configuration if and only if for alp, g, P, Q such thatp lies onP, Q andq lies onP,
Qholdsp=qorP=Q.

(4) The following statements are equivalent

(i) Gisa projective space defined in terms of incidence,

(i)  Gis configuration and for alp, g there exist$ such thatp, g lie on P and there exisp, P
such thatp t P and for everyP there exist, b, ¢ such that, b, ¢ are mutually different and
a, b, clieonPand foralla, b, ¢, d, p, M, N, P, Q such thag, b, plie onM andc, d, p lie on
N anda, clie onP andb, d lie onQ andp{P andptQandM # N there existg| such thag
lies onP, Q.

An incidence projective plane is a 2-dimensional projective space defined in terms of incidence.
Let us conside®, a, b, c. We say thah, b andc are collinear if and only if:

(Def.5) There exist® such thag, b, clie onP.

We introduces, b, c form a triangle as an antonym afb andc are collinear.
The following two propositions are true:

(5) a, bandc are collinear iff there existB such that lies onP andb lies onP andc lies on
P.

(6) a, b, cform atriangle iff for everyP holdsat P orbfPorctP.

Let us consideG, a, b, ¢, d. We say thag, b, ¢, d form a quadrangle if and only if the conditions
(Def. 6) are satisfied.
(Def. 6)()) a, b, cform a triangle,
(i) b, c,dform atriangle,
(i) ¢, d,aform atriangle, and
(iv) d,a, bform atriangle.

Next we state several propositions:

(7) If Gis a projective space defined in terms of incidence, then there &xBtsuch that
A+#£B.

(8) Supposés is a projective space defined in terms of incidence ahes onA. Then there
existh, ¢ such thab, c lie on A anda, b, c are mutually different.

(9) Supposés is a projective space defined in terms of incidence ahids onA andA # B.
Then there existb such thab lies onA andbt B anda # b.

(10) If Gis configuration andy, a; lie on A anda; # ap andbt A, thenay, az, b form a triangle.

(11) Supposea, b andc are collinear. Then
(i) &, candbare collinear,
(i) b,aandcare collinear,

(i) b, candaare collinear,

(iv) c,aandb are collinear, and
(v) ¢, bandaare collinear.
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(12) Supposa, b, cform a triangle. Then
(i) & c, bform atriangle,

(i) b, a, cform atriangle,

(i) b, c,aform atriangle,

(iv) ¢, a, bform atriangle, and

(v) c, b,aformatriangle.

(13) Supposa, b, ¢, d form a quadrangle. Thes c, b, d form a quadrangle anlg a, ¢, d form
a quadrangle anl, c, a, d form a quadrangle and a, b, d form a quadrangle and b, a, d
form a quadrangle and b, d, c form a quadrangle ana c, d, b form a quadrangle anlg a,
d, c form a quadrangle anld c, d, a form a quadrangle andl a, d, b form a quadrangle and
¢, b, d, aform a quadrangle ana d, b, ¢ form a quadrangle anal d, c, b form a quadrangle
andb, d, a, c form a quadrangle anl, d, c, a form a quadrangle and, d, a, b form a
guadrangle and, d, b, a form a quadrangle and, a, b, ¢ form a quadrangle and, a, c, b

form a quadrangle and, b, a, c form a quadrangle and| b, c, a form a quadrangle andi, c,
a, b form a quadrangle and, c, b, aform a quadrangle.

(14) Suppos&is configuration andy, ap lie onAandby, by lie onB andas, ax 1 Bandby, byt A
anda; # ap andb; # by. Thenay, ap, by, by form a quadrangle.

(15) Supposés is a projective space defined in terms of incidence. Then thereaist, d
such thag, b, ¢, d form a quadrangle.

Let G be a projective space defined in terms of incidence. An elemdrthefpoints ofG, the
points ofG, the points ofG, the points oG] is said to be a quadrangle fif:

(Def. 7) ity ity, it3, ity form a quadrangle.

Let G be a projective space defined in terms of incidence and, lbtbe points ofG. Let us
assume thad £ b. The functora- b yielding a line ofG is defined by:

(Def.8) a,blieona-h.

Next we state the proposition

(16) LetG be a projective space defined in terms of incidemcd, be points ofG, andL be a
line of G. Supposea # b. Thenalies ona-bandblies ona-banda-b=b-aand ifalies on
L andblies onL, thenL =a-h.

2. PROJECTIVEPLANES
One can prove the following propositions:

(17) Suppose there exiat b, ¢ such that, b, ¢ form a triangle and for alp, q there existvi
such thatp, g lie on M. Then there exisp, P such thatp{ P.

(18) If there existg, b, ¢, d such that, b, ¢, d form a quadrangle, then there exésth, ¢ such
thata, b, c form a triangle.

(19) Ifa, b, cform atriangle and, b lie onP anda, clie onQ, thenP # Q.

(20) Suppose, b, c, d form a quadrangle anal b lie on P anda, c lie on Q anda, d lie onR.
ThenP, Q, Rare mutually different.

(21) Suppose thab is configuration and lies onP, Q, RandP, Q, R are mutually different
andat A andp lies onA, P andq lies onA, Q andr lies onA, R. Thenp, g, r are mutually
different.
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(22) Suppose that
(i) Gis configuration,
(i) forall p, gthere existdM such thatp, g lie on M,
(iii) forall P, Qthere exista such that lies onP, Q, and
(iv) there exista, b, c, d such thag, b, ¢, d form a quadrangle.
Let givenP. Then there exisa, b, c such that, b, c are mutually different and, b, c lie on
P.
(23) Gis an incidence projective plane if and only if the following conditions are satisfied:
(i) Gis configuration,
(i) forall p, gthere existdM such thatp, g lie onM,
(i)  forall P, Qthere exista such that lies onP, Q, and
(iv) there exista, b, c, d such thag, b, ¢, d form a quadrangle.

We use the following conventiorG is an incidence projective plana, q are points ofG, and

A, Bare lines ofG.
Let us conside6, A, B. Let us assume tha& # B. The functorA- B yielding a point ofG is

defined as follows:
(Def.9) A-BliesonA, B.
We now state two propositions:

(24) Suppos@ # B. ThenA-B lies onA andA-Blies onB andA-B = B-Aand ifalies onA
anda lies onB, thena=A-B.

(25) If A#Bandalies onAandqtAanda##A-B, theng-a-BliesonBandg-a-BfA.

3. SOME USEFUL PROPOSITIONS

We adopt the following rulesG denotes a projective space defined in terms of incidenceand

¢, d denote points o6.
Next we state two propositions:

(26) If a, b, cform a triangle, them, b, c are mutually different.
(27) Ifa, b, ¢, d form a quadrangle, them b, c, d are mutually different.

In the sequet denotes an incidence projective plane.
Next we state a number of propositions:

(28) Forall pointsa, b, ¢, d of Gsuch that-c=b-d holdsa=corb=dorc=dora-c=c-d.

(29) Forall pointsa, b, ¢, d of Gsuch thata-c=b-d holdsa=corb=dorc=doralieson
c-d.

(30) LetG be an incidence projective plane, m, m' be points ofG, andl be a line ofG.
Supposen lies onl andn? lies onl andm= m' andef1. Thenm-e= ' -eande-m=#£e-n.

(31) LetG be an incidence projective planebe a point ofG, andl, L;, L, be lines ofG.
Supposelies onL; andelies onL, andL; # Ly andet 1. Thenl -L; #1-LyandLy-| #Lo-1.

(32) LetG be a projective space defined in terms of incidenceari g, g; be points ofG.
Suppose] lies ona-b andq lies ona-q; andqg # a andq; # a anda # b. Thenq, lies on
a-h.

(33) LetG be a projective space defined in terms of incidencear] c be points ofG. If ¢
lies ona-b anda # c, thenb lies ona-c.
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(34) LetG be an incidence projective plarg, g, r1, r2 be points ofG, andH be a line ofG.
Suppose; # rp andrq lies onH andr; lies onH andq; tH andgz t H. Thendy -r1 # g ro.

(35) For all points, b, c of G such that lies onb-choldsa=corb=corbliesonc-a.
(36) For all points, b, c of G such thata lies onb-choldsb=aorb=corclies onb-a.

(37) Lete, x1, X2, p1, p2 be points ofG andH, | be lines ofG. Suppose that; lies onl andx,
lies onl andelies onH andef | andx; # x andp; # eandp; # eandp; lies one-x; and
p2 lies one- x,. Then there exists a pointof G such that lies onp; - p2 andr lies onH and

r#e
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