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Summary. The article includes definitios and theorems which are needed to define
real exponent. The following notions are defined: natural exponent, integer exponent and
rational exponent.
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The articles[[14],[[2],[[10],[14],[19],1], 18], 18], [7], [6], [13], [12],[11], and 5] provide the notation
and terminology for this paper.

For simplicity, we adopt the following rules, b, c are real numbersn, n are natural numbers,
k, I, i are integersp, g are rational numbers, arsg, s, are sequences of real numbers.

Next we state two propositions:

(ZH If s1 is convergent and for everyholdss;(n) > a, then lims; > a.

(3) If 1 is convergent and for everyholdss; (n) < a, then lims; < a.

Letabe areal number. The functe®)«cn yields a sequence of real numbers and is defined as
follows:

(Def. 1) For everymholds(a*)xen(m) = a™
We now state two propositions:
(4) s = (a)ken iff 51(0) =1 and for everynholdss;(m+1) = s;(m) - a.
(5) For everyasuch that # 0 and for everym holds(a¥ )xen(m) # 0.

Let a be a real number and let us consideiThena" is a real number.
One can prove the following propositions:

(12F] 150 # a, then 0+ a".
(13) If0<a, thenO<a".
(14 "=
(15) (®)"=15

(17§ 10 <aanda< b, thena? <b".

1 The proposition (1) has been removed.
2 The propositions (6)—(11) have been removed.
3 The proposition (16) has been removed.
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(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
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If 0 <aanda< band 1< n, thena" < b".
Ifa> 1, thena" > 1.

If 1<aand 1< n, thena<a".

If 1 <aand 2< n, thena< a".
If0<aanda<1and 1< n, thena" <a.
If0<aanda< 1and2<n, thena" < a.

If -1<a,then(l+a)">1+n-a
IfO0<aanda< 1,then(l4+a)"<1+3"-a

If 51 is convergent and for everyholdss;(n) = s1(n)™, thens, is convergent and lirg, =

(lims)™.

Let us considen and leta be a real number. Let us assume that b. The functor roat(a)
yielding a real number is defined as follows:

(Def. 3fi)

(ii)

(rooty(a))" =aand roog(a) > 0if a> 0,
root,(a) =0if a=0.

Let us considen and leta be a real number. Then rega) is a real number.
The following propositions are true:

(ZSE] If a>0andn> 1, then(root,(a))" = aand roog(a") = a.

(29)
(30)
(1)
(32)
(33)
(34)
(39)
(36)
(37)
(38)
(39)
(40)
(41)
(42)

Ifn>1, thenrook(l) = 1.
Ifa> 0, thenrooi(a) = a.
Ifa>0andb> 0andn > 1 then roog(a-b) = (rooty,(a)) - (rooty(b)).

Ifa> 0 andn > 1, then roof(2) = m

n
If a> 0 andb > 0 andn > 1, then roo§(8) = ;gghgﬁg

Ifa>0andn>1andm> 1, then roof(rooty(a)) = root,.m(a).

If a> 0 andn > 1 andm > 1, then(root,(a)) - (rootn(a)) = root, m(a™™m).
If 0 <aanda<bandn> 1 then roog(a) < root,(b).

Ifa> 0 anda< bandn > 1 then roog(a) < root,(b).

Ifa>1andn> 1, then root(a) > 1 anda > rooty(a).

If0<aanda< 1andn> 1 thena < root,(a) and roog(a) < 1.

If a> 0 andn > 1, then(rooty(a)) — 1 < 21,

If a> 0, then root(a) = \/a.

Letsbe a sequence of real numbers and gigeBSuppose > 0 and for everyn such that

n > 1 holdss(n) = root,(a). Thensis convergent and lim= 1.

Letabe a real number and let us consi#eihe functorak is defined by:

4 The definition (Def. 2) has been removed.
5 The proposition (27) has been removed.
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(Def. 4)(i) & =alif k>0,
iy ak=(@)"tifk<o.

Let a be a real number and let us consiéeNote that is real.
Leta be a real number and let us consiéteThena¥ is a real number.
We now state a number of propositions:

(a4f] =1
(45) al=a

(46) Ifa+0andi = n, thena, = a".
@7 K=1

(48) Ifa#0,thenal #0.

(49) Ifa>0,thena > 0.

(50) (a-b)k = (e) bk,

(51) Ifa#0,thena* = 5215.

(62) (3)i=F-

(53) Ifa#0, thenal "= at.
(54) Ifa#0,thenas™ = (ak)-d,.
(55) (af),=af'.
(56) Ifa>0andn> 1, then(root(a))X = root,(ak).

Leta be a real number and let us consigeiThe functora(g is defined by:
numpy

(Def. 5) af) = rootyenp(ay;

Letabe areal number and let us consigeiObserve thaaa(’j2 is real.

Letabe areal number and let us consitﬂner‘l’hena% is a real number.
The following propositions are true:

(58)] If a>0andp=0, thenaf = 1.

(59) Ifa>0andp=1,thena) =a

(60) Ifa>o0andp=n,thenal =a".

(61) Ilfa>0andn>1andp=n1t, thena% = root,(a).
(62) =1

(63) Ifa>0,thena] > 0.

d p+q

(64) Ifa>0,then(al)-a =af
(65) Ifa>0,then%:a@p,

P
(66) Ifa>0, then% =ah .

6 The proposition (43) has been removed.
" The proposition (57) has been removed.
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(67) Ifa>0andb>0,then(a-b); = (af)-bf.

(68) Ifa>0,then(:)f = 5%

(69) Ifa>o0andb> 0, then(3)} =

S

(70) Ifa>0,then(af)d =af".

(71) Ifa>1andp>0,thena > 1.

(72) Ifa>1andp<O0,thena] <1

(73) Ifa>1andp> 0, thena > 1.

(74) Ifa>1andp> g, thenal > af.

(75) Ifa>1andp> g, thenal) > af.

(76) Ifa>0anda< 1andp> 0, thenal) < 1.

(77) lfa>0anda<1andp<0, thena& > 1.

LetI; be a sequence of real numbers. We say thatrational sequence-like if and only if:

(Def. 6) For evenyn holdsly(n) is a rational number.

Let us observe that there exists a sequence of real numbers which is rational sequence-like.
A rational sequence is a rational sequence-like sequence of real numbers.

Let sbe a rational sequence and let us considdrhens(n) is a rational number.

One can prove the following propositions:

(79 For every real numbea there exists a rational sequengsuch thats is convergent and
lims=aand for everyn holdss(n) < a.

(80) For everathere exists a rational sequergguch thasis convergent and lim= a and for
everyn holdss(n) > a.

Let a be a real number and lstbe a rational sequence. The funoﬁ@yielding a sequence of
real numbers is defined by:

(Def. 7) For evenyn holds(a$))(n) = a%”).
Next we state two propositions:
(82ﬂ For every rational sequenssuch thasis convergent and > 0 holdsap, is convergent.

(83) Letsy, s, be rational sequences and giveerSupposes; is convergent ane is convergent
and lims; = lims; anda > 0. Thena? is convergent andg’ is convergent and lirfag) =
Iim(ag).

Leta, b be real numbers. Let us assume that 0. The functora? yields a real number and is
defined as follows:
(Def. 8) There exists a rational sequescich thasis convergent and lim= b andap, is conver-
gent and linfaf)) = a8.

Let a, b be real numbers. Thead, is a real number.
Next we state a number of propositions:

8 The proposition (78) has been removed.
9 The proposition (81) has been removed.
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@59 If a> 0, thenad = 1.
(86) Ifa>0,thenal =a.
67) B=1

(88) Ifa>0,thenaf =af.

(89) Ifa>0,thenalc = (ab)-as.

(90) Ifa>0,thena,®= 3;5
b
(91) Ifa>0,thenal = %];f

(92) Ifa>0andb>0,then(a-b); = (a%)-b%.
(93) Ifa>0,then(1)§ =

£

(94) Ifa>0andb>0,then(2)s = %%

(95) Ifa>0,thenal > 0.

(96) Ifa>1andc> b, thenag > al.

(97) Ifa>1andc>b,thenal > ad.

(98) Ifa>0anda< 1andc>b,thena$ < ab.

(99) Ifa>1andb>0,thenal > 1.

(100) Ifa> 1 andb> 0, thenal > 1.

(101) Ifa>1andb<O0,thenal <1.

(102) Ifa>1andb< 0, thenal < 1.

(103) If s is convergent ang; is convergent and lirsy > 0 and for everyn holdss; (n) > 0 and

s2(n) = s1(n)§, then lims; = (lim s1)§.

(104) Ifa> 0ands is convergent ane, is convergent and for everyholdss,(n) = a;fg(”), then

H _ Jlimsy
lims, =ap ™.

(105) Ifa> 0, then(al)s = aBC.

L
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