Integer and Rational Exponents

Konrad Raczkowski Warsaw University Białystok

Summary. The article includes definitios and theorems which are needed to define real exponent. The following notions are defined: natural exponent, integer exponent and rational exponent.

MML Identifier: PREPOWER.

WWW: http://mizar.org/JFM/Vol2/prepower.html

The articles [14], [2], [10], [4], [9], [1], [8], [3], [7], [6], [13], [12], [11], and [5] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: a, b, c are real numbers, m, n are natural numbers, k, l, i are integers, p, q are rational numbers, and s_1 , s_2 are sequences of real numbers.

Next we state two propositions:

- (2)¹ If s_1 is convergent and for every n holds $s_1(n) \ge a$, then $\lim s_1 \ge a$.
- (3) If s_1 is convergent and for every n holds $s_1(n) \le a$, then $\lim s_1 \le a$.

Let a be a real number. The functor $(a^{\kappa})_{\kappa \in \mathbb{N}}$ yields a sequence of real numbers and is defined as follows:

(Def. 1) For every m holds $(a^{\kappa})_{\kappa \in \mathbb{N}}(m) = a^{m}$.

We now state two propositions:

- (4) $s_1 = (a^{\kappa})_{\kappa \in \mathbb{N}}$ iff $s_1(0) = 1$ and for every m holds $s_1(m+1) = s_1(m) \cdot a$.
- (5) For every a such that $a \neq 0$ and for every m holds $(a^{\kappa})_{\kappa \in \mathbb{N}}(m) \neq 0$.

Let a be a real number and let us consider n. Then a^n is a real number. One can prove the following propositions:

- $(12)^2$ If $0 \neq a$, then $0 \neq a^n$.
- (13) If 0 < a, then $0 < a^n$.
- $(14) \quad \left(\frac{1}{a}\right)^n = \frac{1}{a^n}.$
- $(15) \quad (\frac{b}{a})^n = \frac{b^n}{a^n}.$
- $(17)^3$ If 0 < a and $a \le b$, then $a^n \le b^n$.

¹ The proposition (1) has been removed.

² The propositions (6)–(11) have been removed.

³ The proposition (16) has been removed.

- (18) If $0 \le a$ and a < b and $1 \le n$, then $a^n < b^n$.
- (19) If $a \ge 1$, then $a^n \ge 1$.
- (20) If $1 \le a$ and $1 \le n$, then $a \le a^n$.
- (21) If 1 < a and $2 \le n$, then $a < a^n$.
- (22) If 0 < a and $a \le 1$ and $1 \le n$, then $a^n \le a$.
- (23) If 0 < a and a < 1 and 2 < n, then $a^n < a$.
- (24) If -1 < a, then $(1+a)^n \ge 1 + n \cdot a$.
- (25) If 0 < a and a < 1, then $(1+a)^n \le 1 + 3^n \cdot a$.
- (26) If s_1 is convergent and for every n holds $s_2(n) = s_1(n)^m$, then s_2 is convergent and $\lim s_2 = (\lim s_1)^m$.

Let us consider n and let a be a real number. Let us assume that $1 \le n$. The functor $\text{root}_n(a)$ yielding a real number is defined as follows:

(Def. 3)⁴(i)
$$(\text{root}_n(a))^n = a \text{ and } \text{root}_n(a) > 0 \text{ if } a > 0,$$

(ii) $root_n(a) = 0 \text{ if } a = 0.$

Let us consider n and let a be a real number. Then $root_n(a)$ is a real number.

The following propositions are true:

- $(28)^5$ If $a \ge 0$ and $n \ge 1$, then $(\text{root}_n(a))^n = a$ and $\text{root}_n(a^n) = a$.
- (29) If $n \ge 1$, then $root_n(1) = 1$.
- (30) If $a \ge 0$, then $root_1(a) = a$.
- (31) If $a \ge 0$ and $b \ge 0$ and $n \ge 1$, then $\operatorname{root}_n(a \cdot b) = (\operatorname{root}_n(a)) \cdot (\operatorname{root}_n(b))$.
- (32) If a > 0 and $n \ge 1$, then $\operatorname{root}_n(\frac{1}{a}) = \frac{1}{\operatorname{root}_n(a)}$.
- (33) If $a \ge 0$ and b > 0 and $n \ge 1$, then $\operatorname{root}_n(\frac{a}{b}) = \frac{\operatorname{root}_n(a)}{\operatorname{root}_n(b)}$
- (34) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$, then $\text{root}_n(\text{root}_m(a)) = \text{root}_{n \cdot m}(a)$.
- (35) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$, then $(\text{root}_n(a)) \cdot (\text{root}_m(a)) = \text{root}_{n \cdot m}(a^{n+m})$.
- (36) If $0 \le a$ and $a \le b$ and $n \ge 1$, then $\text{root}_n(a) \le \text{root}_n(b)$.
- (37) If $a \ge 0$ and a < b and $n \ge 1$, then $\text{root}_n(a) < \text{root}_n(b)$.
- (38) If $a \ge 1$ and $n \ge 1$, then $\text{root}_n(a) \ge 1$ and $a \ge \text{root}_n(a)$.
- (39) If $0 \le a$ and a < 1 and $n \ge 1$, then $a \le \text{root}_n(a)$ and $\text{root}_n(a) < 1$.
- (40) If a > 0 and $n \ge 1$, then $(\text{root}_n(a)) 1 \le \frac{a-1}{n}$.
- (41) If $a \ge 0$, then $root_2(a) = \sqrt{a}$.
- (42) Let *s* be a sequence of real numbers and given *a*. Suppose a > 0 and for every *n* such that $n \ge 1$ holds $s(n) = \text{root}_n(a)$. Then *s* is convergent and $\lim s = 1$.

Let a be a real number and let us consider k. The functor $a_{\mathbb{Z}}^{k}$ is defined by:

⁴ The definition (Def. 2) has been removed.

⁵ The proposition (27) has been removed.

(Def. 4)(i)
$$a_{\mathbb{Z}}^{k} = a^{|k|}$$
 if $k \ge 0$,

(ii)
$$a_{\mathbb{Z}}^k = (a^{|k|})^{-1}$$
 if $k < 0$.

Let a be a real number and let us consider k. Note that $a_{\mathbb{Z}}^k$ is real. Let a be a real number and let us consider k. Then $a_{\mathbb{Z}}^k$ is a real number. We now state a number of propositions:

$$(44)^6$$
 $a_{\mathbb{Z}}^0 = 1$.

(45)
$$a_{\mathbb{Z}}^1 = a$$
.

(46) If
$$a \neq 0$$
 and $i = n$, then $a_{\mathbb{Z}}^i = a^n$.

(47)
$$1_{\mathbb{Z}}^{k} = 1$$
.

(48) If
$$a \neq 0$$
, then $a_{\mathbb{Z}}^k \neq 0$.

(49) If
$$a > 0$$
, then $a_{\mathbb{Z}}^k > 0$.

$$(50) \quad (a \cdot b)_{\mathbb{Z}}^k = (a_{\mathbb{Z}}^k) \cdot b_{\mathbb{Z}}^k.$$

(51) If
$$a \neq 0$$
, then $a_{\mathbb{Z}}^{-k} = \frac{1}{a_{\mathbb{Z}}^k}$.

$$(52) \quad (\frac{1}{a})_{\mathbb{Z}}^k = \frac{1}{a_{\mathbb{Z}}^k}.$$

(53) If
$$a \neq 0$$
, then $a_{\mathbb{Z}}^{m-n} = \frac{a^m}{a^n}$.

(54) If
$$a \neq 0$$
, then $a_{\mathbb{Z}}^{k+l} = (a_{\mathbb{Z}}^k) \cdot a_{\mathbb{Z}}^l$.

$$(55) \quad (a_{\mathbb{Z}}^k)_{\mathbb{Z}}^l = a_{\mathbb{Z}}^{k \cdot l}.$$

(56) If
$$a > 0$$
 and $n \ge 1$, then $(\operatorname{root}_n(a))_{\mathbb{Z}}^k = \operatorname{root}_n(a_{\mathbb{Z}}^k)$.

Let a be a real number and let us consider p. The functor $a_{\mathbb{Q}}^{p}$ is defined by:

(Def. 5)
$$a_{\mathbb{Q}}^p = \operatorname{root}_{\operatorname{den} p}(a_{\mathbb{Z}}^{\operatorname{num} p}).$$

Let a be a real number and let us consider p. Observe that $a_{\mathbb{Q}}^p$ is real. Let a be a real number and let us consider p. Then $a_{\mathbb{Q}}^p$ is a real number. The following propositions are true:

$$(58)^7 \quad \text{If } a > 0 \text{ and } p = 0 \text{, then } a^p_{\mathbb{Q}} = 1.$$

(59) If
$$a > 0$$
 and $p = 1$, then $a_{\mathbb{O}}^{p} = a$.

(60) If
$$a > 0$$
 and $p = n$, then $a_{\mathbb{Q}}^p = a^n$.

(61) If
$$a > 0$$
 and $n \ge 1$ and $p = n^{-1}$, then $a_{\mathbb{Q}}^p = \operatorname{root}_n(a)$.

(62)
$$1_{\mathbb{Q}}^{p} = 1.$$

(63) If
$$a > 0$$
, then $a_{\mathbb{Q}}^p > 0$.

(64) If
$$a > 0$$
, then $(a_{\mathbb{Q}}^p) \cdot a_{\mathbb{Q}}^q = a_{\mathbb{Q}}^{p+q}$.

(65) If
$$a > 0$$
, then $\frac{1}{a_{\mathbb{Q}}^{p}} = a_{\mathbb{Q}}^{-p}$.

(66) If
$$a > 0$$
, then $\frac{a_{\mathbb{Q}}^p}{a_{\mathbb{Q}}^q} = a_{\mathbb{Q}}^{p-q}$.

⁶ The proposition (43) has been removed.

⁷ The proposition (57) has been removed.

- (67) If a > 0 and b > 0, then $(a \cdot b)_{\mathbb{Q}}^p = (a_{\mathbb{Q}}^p) \cdot b_{\mathbb{Q}}^p$.
- (68) If a > 0, then $\left(\frac{1}{a}\right)_{\mathbb{Q}}^{p} = \frac{1}{a_{\mathbb{D}}^{p}}$.
- (69) If a > 0 and b > 0, then $\left(\frac{a}{b}\right)_{\mathbb{Q}}^{p} = \frac{a_{\mathbb{Q}}^{p}}{b_{\mathbb{Q}}^{p}}$.
- (70) If a > 0, then $(a_{\mathbb{Q}}^p)_{\mathbb{Q}}^q = a_{\mathbb{Q}}^{p \cdot q}$.
- (71) If $a \ge 1$ and $p \ge 0$, then $a_{\mathbb{O}}^p \ge 1$.
- (72) If $a \ge 1$ and $p \le 0$, then $a_{\mathbb{Q}}^p \le 1$.
- (73) If a > 1 and p > 0, then $a_{\mathbb{Q}}^p > 1$.
- (74) If $a \ge 1$ and $p \ge q$, then $a_{\mathbb{Q}}^p \ge a_{\mathbb{Q}}^q$.
- (75) If a > 1 and p > q, then $a_{\mathbb{O}}^p > a_{\mathbb{O}}^q$.
- (76) If a > 0 and a < 1 and p > 0, then $a_{\mathbb{Q}}^p < 1$.
- (77) If a > 0 and $a \le 1$ and $p \le 0$, then $a_{\mathbb{Q}}^p \ge 1$.

Let I_1 be a sequence of real numbers. We say that I_1 is rational sequence-like if and only if:

(Def. 6) For every n holds $I_1(n)$ is a rational number.

Let us observe that there exists a sequence of real numbers which is rational sequence-like.

A rational sequence is a rational sequence-like sequence of real numbers.

Let s be a rational sequence and let us consider n. Then s(n) is a rational number.

One can prove the following propositions:

- (79)⁸ For every real number a there exists a rational sequence s such that s is convergent and $\lim s = a$ and for every n holds $s(n) \le a$.
- (80) For every a there exists a rational sequence s such that s is convergent and $\lim s = a$ and for every n holds $s(n) \ge a$.

Let a be a real number and let s be a rational sequence. The functor $a_{\mathbb{Q}}^{s}$ yielding a sequence of real numbers is defined by:

(Def. 7) For every n holds $(a_{\mathbb{Q}}^s)(n) = a_{\mathbb{Q}}^{s(n)}$.

Next we state two propositions:

- (82) For every rational sequence s such that s is convergent and a > 0 holds $a_{\mathbb{O}}^s$ is convergent.
- (83) Let s_1 , s_2 be rational sequences and given a. Suppose s_1 is convergent and s_2 is convergent and $\lim s_1 = \lim s_2$ and a > 0. Then $a_{\mathbb{Q}}^{s_1}$ is convergent and $a_{\mathbb{Q}}^{s_2}$ is convergent and $\lim (a_{\mathbb{Q}}^{s_1}) = \lim (a_{\mathbb{Q}}^{s_2})$.

Let a, b be real numbers. Let us assume that a > 0. The functor $a^b_{\mathbb{R}}$ yields a real number and is defined as follows:

(Def. 8) There exists a rational sequence s such that s is convergent and $\lim s = b$ and $a_{\mathbb{Q}}^{s}$ is convergent and $\lim (a_{\mathbb{Q}}^{s}) = a_{\mathbb{R}}^{b}$.

Let a,b be real numbers. Then $a^b_{\mathbb{R}}$ is a real number.

Next we state a number of propositions:

⁸ The proposition (78) has been removed.

⁹ The proposition (81) has been removed.

- $(85)^{10}$ If a > 0, then $a_{\mathbb{P}}^0 = 1$.
- (86) If a > 0, then $a_{\mathbb{R}}^{1} = a$.
- (87) $1^a_{\mathbb{R}} = 1$.
- (88) If a > 0, then $a_{\mathbb{R}}^p = a_{\mathbb{O}}^p$.
- (89) If a > 0, then $a_{\mathbb{R}}^{b+c} = (a_{\mathbb{R}}^b) \cdot a_{\mathbb{R}}^c$.
- (90) If a > 0, then $a_{\mathbb{R}}^{-c} = \frac{1}{a_{\mathbb{D}}^{c}}$.
- (91) If a > 0, then $a_{\mathbb{R}}^{b-c} = \frac{a_{\mathbb{R}}^b}{a_{\mathbb{R}}^c}$.
- (92) If a > 0 and b > 0, then $(a \cdot b)_{\mathbb{R}}^c = (a_{\mathbb{R}}^c) \cdot b_{\mathbb{R}}^c$.
- (93) If a > 0, then $(\frac{1}{a})_{\mathbb{R}}^c = \frac{1}{a_{\mathbb{D}}^c}$.
- (94) If a > 0 and b > 0, then $(\frac{a}{b})_{\mathbb{R}}^{c} = \frac{a_{\mathbb{R}}^{c}}{b_{\mathbb{C}}^{c}}$.
- (95) If a > 0, then $a_{\mathbb{R}}^b > 0$.
- (96) If $a \ge 1$ and $c \ge b$, then $a_{\mathbb{R}}^c \ge a_{\mathbb{R}}^b$.
- (97) If a > 1 and c > b, then $a_{\mathbb{R}}^c > a_{\mathbb{R}}^b$.
- (98) If a > 0 and $a \le 1$ and $c \ge b$, then $a_{\mathbb{R}}^c \le a_{\mathbb{R}}^b$.
- (99) If $a \ge 1$ and $b \ge 0$, then $a_{\mathbb{R}}^b \ge 1$.
- (100) If a > 1 and b > 0, then $a_{\mathbb{R}}^b > 1$.
- (101) If $a \ge 1$ and $b \le 0$, then $a_{\mathbb{R}}^b \le 1$.
- (102) If a > 1 and b < 0, then $a_{\mathbb{R}}^b < 1$.
- (103) If s_1 is convergent and s_2 is convergent and $\lim s_1 > 0$ and for every n holds $s_1(n) > 0$ and $s_2(n) = s_1(n)_{\mathbb{Q}}^p$, then $\lim s_2 = (\lim s_1)_{\mathbb{Q}}^p$.
- (104) If a > 0 and s_1 is convergent and s_2 is convergent and for every n holds $s_2(n) = a_{\mathbb{R}}^{s_1(n)}$, then $\lim s_2 = a_{\mathbb{R}}^{\lim s_1}$.
- (105) If a > 0, then $(a_{\mathbb{R}}^b)_{\mathbb{R}}^c = a_{\mathbb{R}}^{b \cdot c}$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [5] Andrzej Kondracki. Basic properties of rational numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rat_1.html.
- [6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.

¹⁰ The proposition (84) has been removed.

- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [8] Rafał Kwiatek. Factorial and Newton coefficients. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/newton.html.
- [9] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [11] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- $\textbf{[12]} \quad \textbf{Michał J. Trybulec. Integers. } \textit{Journal of Formalized Mathematics}, \textbf{2}, \textbf{1990}. \ \texttt{http://mizar.org/JFM/Vol2/int_1.html}.$
- [13] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received September 21, 1990

Published January 2, 2004