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Summary. Some preliminary facts concerning completeness and decidability prob-
lems for the Lambek Calculus [[14] are proved as well as some theses and derived rules of the
calculus itself.
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The articles([16],[[9],[19],[118],[1183],11],[16],[[21],[1B],[[10],[[12],[117],[[20] [17],. 18], [15],.111],
[2], [3], and [4] provide the notation and terminology for this paper.
We consider structures of the type algebra as extensions of 1-sorted structure as systems
( a carrier, a left quotient, a right quotient, an inner product
where the carrier is a set and the left quotient, the right quotient, and the inner product are binary
operations on the carrier.
One can check that there exists a structure of the type algebra which is nhon empty and strict.
Let sbe a non empty structure of the type algebra. A typgisfan element o$.
We follow the rules:s denotes a non empty structure of the type algebra, Y denote finite
sequences of elements of the carries,aindx, y, zdenote types doé.
Let us consides, X, y. The functorx\ y yields a type ofand is defined by:

(Def. 1) x\y= (the left quotient oE)(x, y).

The functorx/y yields a type ofand is defined as follows:
(Def. 2) x/y = (the right quotient o) (X, y).

The functorx-y yielding a type ofsis defined as follows:
(Def. 3) x-y= (the inner product o$)(x, y).

Let T; be a finite tree and latbe an element of;. One can check that sueds finite.
Let Ty be afinite tree and letbe an element of;. The branch degree ofis defined as follows:

(Def. 4) The branch degree vf= cardsuce.

Let us note that there exists a decorated tree which is finite.

Let D be a non empty set. One can verify that there exists a tree decorated with elem@nts of
which is finite.

Let us consides. A preproof ofsis a finite tree decorated with elementd.¢{the carrier o)*,
the carrier o], NJ.

In the sequeTy is a preproof of.

Let Rbe a finite binary relation. One can verify that dBris finite.

Let us consides, T, and letv be an element of dom . We say that is correct if and only if:
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(Def. 5)(i) The branch degree wvf= 0 and there exists such thafly(v)1 = ((X), x} if T1(v)2 =0,

(i)  the branch degree of = 1 and there existT, x, y such thatTi(v); = (T, x/y) and
Ti(v7™(0)1 = (T~ (y), x) if Ta(v)2 =1,

(i)  the branch degree of = 1 and there exist, x, y such thatT;(v); = (T,y\ x) and
Ti(v(0)1=({y) " T, x) if Ta(v)2 =2,

(iv) the branch degree of= 2 and there exist, X, Y, X, y, zsuch thafl; (v)1 ( (x/y) -
TV, z) andTy(v™ (0)1 = (T, y) andTa(v™ (1)1 = (X~ () Y, 2) if Ta(v)2 =

(v) the branch degree @f= 2 and there exist, X, Y, X, y, zsuch thafl; (v); = ( ~{y\
X) Y, 2) andTy(v™ (0))1 = (T, y) andTi(v™ (1)1 = (X" (x) 7Y, 2) if Ty(v)2 =

(vi) the branch degree of= 1 and there exisX, X, y, Y such thaff; (v); = (X~ (x- >
andTy(v™ (0)1 = (X" X" (y) Y, 2) if Ty(v)2 =5,
(vii) the branch degree of = 2 and there exisX, Y, x, y such thafT;(v); = (XY, x-y) and
Ti(v™ (0)1 = (X, x) andT1(v" (1)1 = (Y, y) if T1(v)2 =6,
(vii)  the branch degree of = 2 and there exist, X, Y, y, zsuch thafli(v); = (X" T Y, 2)
andTy(v™ (0))1 = (T,y) andTi(v" (1)1 = (X~ (Y)Y, 2) if Ti(v)2 =7,
(ix) contradictioff] otherwise.

Y, 2)

Let us considesand letl; be a type ok. We say that; is left if and only if:

(Def. 6) There exisk, y such that; = x\y.
We say that is right if and only if:

(Def. 7) There exisk, y such thal; = x/y.
We say that is middle if and only if:

(Def. 8) There exisk, ysuch that; = x-y.

Let us consides and letl; be a type ok. We say that; is primitive if and only if:
(Def. 9) 11 is left, right, and middle.

Let us consides, let T; be a finite tree decorated with elements of the carries; ahd letv be
an element of dorfy. ThenT;(v) is a type ofs.

Let us consides, let T be a finite tree decorated with elements of the carries, @ind let us
considerx. We say thafl; represents if and only if the conditions (Def. 10) are satisfied.

(Def. 10)()) domy is finite, and

(i)  for every element of domT; holds the branch degree vf= 0 or the branch degree of
v= 2 but if the branch degree wf= 0, thenT; (v) is primitive but if the branch degree of= 2,
then there exisy, z such thafli(v) = y/zor Ti(v) = y\zor Toi(v) = y-zbut Ty (v™ (0)) =y
butTi(v~ (1)) =z

We introducel; does not represertas an antonym of; represents.

Let I1 be a non empty structure of the type algebra. We saylihiztfree if and only if the

conditions (Def. 11) are satisfied.

(Def. 11)()) There exists no type of which is left, right, left, middle, right, and middle, and

(i) for every typex of 1; there exists a finite tre® decorated with elements of the carrier

of 11 such that for every finite tre€, decorated with elements of the carrierlgfholdsT,
representg iff T, = To.

Let us consides, x. Let us assume thatis free. The representation ®fyielding a finite tree
decorated with elements of the carriersa$ defined by the condition (Def. 12).

1 This definition is absolutely permissive, i.e. we assuncertradiction but we are interested only in
the type of the functor ‘choose’.
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(Def. 12) LetT; be a finite tree decorated with elements of the carries: athenT; represents if
and only if the representation &= T;.

Let us consides, let f be a finite sequence of elements of the carries; aind lett be a type of
s. Then{f,t) is an element of (the carrier of)*, the carrier ofs].
Let us consides. A preproof ofsis called a proof osif:

(Def. 13) domitis finite and every element of domit is correct.

In the sequep denotes a proof of andv denotes an element of dgm
One can prove the following propositions:

(1) Ifthe branch degree of= 1, thenv™ (0) € domp.
(2) Ifthe branch degree of= 2, thenv™ (0) € domp andv™ (1) € domp.
(3) If p(v)2 =0, then there exists such thatp(v); = {({(x), X).

(4)

v)
(v) =1, then there exists an elementof domp and there existT, X, y such that
) andp(v)1 = (T, x/y) andp(w)1 = (T = (y), X).

v (0

5 If (v)z = 2, then there exists an elementof domp and there exisT, x, y such that
w=v" (0) andp(v)1 = (T, y\x) andp(w)1 = ({y) " T, X).

(6) Suppose(v), = 3. Then there exist elements u of domp and there exist, X, Y, x,y, z
such thatv=v~ (0) andu= v~ (1) andp(v)1 = (X~ X/y) T Y, z) andp(w); = (T, y)
andp(u)1 = (X~ (x) Y. 2).

(7) Suppose(v), = 4. Then there exist elements u of domp and there exist, X, Y, x,y, z
such thatv=v~ (0) andu= v~ (1) andp(v)1 = (X" T~ {y\x) " Y, 2) andp(w); = (T, y)
andp(u)1 = (X~ (x) Y. 2).

(8) Suppose(v), =5. Then there exists an elemembf domp and there exisX, x, y, Y such
thatw = v~ (0) andp(v)1 = (X~ (x-y) "Y, 2) andp(w)1 = (X~ () ~ (y) " Y, 2).

(9) Suppose(v), = 6. Then there exist elements u of domp and there exisX, Y, x, y such
thatw= v~ (0) andu= v~ (1) andp(v)1 = (XY, x-y) andp(w)1 = (X, x) andp(u)1 = (Y,
y)-

(10) Supposep(v), = 7. Then there exist elementg u of domp and there exisT, X, Y, y,
zsuch thatv=v~ (0) andu=v~ (1) andp(v)1 = (X~ T Y, z) andp(w); = (T, y) and
p(W1=(X"(y)"Y,2).

(11) p(v)2=0o0rp(v)2 =1 orp(v)2 =2 orp(v)z =3 0orp(v)z =4 orp(v), =5 or p(v), = 6
orp(v), =7.

Let us consides and letl; be a preproof of. We say that; is cut-free if and only if:

II-h

(Def. 14) For every elementof domls holdsly(v), # 7.
Let us consides. The size w.r.tsyielding a function from the carrier &finto N is defined by:
(Def. 15) For everx holds (the size w.r.ts)(x) = card dom (the representationxf

Let D be a non empty set, 18t be a finite sequence of elementsfand letf be a function
fromD intoN. Thenf - T is a finite sequence of elementsf

Let us consides and letp be a proof ofs. The cut degree op yielding a natural number is
defined by:

(Def. 16)()) There exisf, X, Y, y, zsuch thatp(0); = (X~ T "V, z) and p({0)); = (T,y) and
p((1))1 = (X" (y) ", z) and the cut degree g = (the size w.r.t.s)(y) + (the size w.r.t.
S)(2) + 3 ((the size w.r.ts)- (X~ T Y)) if p(0)2 =7,

(i) the cut degree op = 0, otherwise.
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We use the following conventior is a non empty set aral a;, ap, b are elements of*.
Let us consides, A. A function from the carrier of into 2* is said to be a model of if it
satisfies the condition (Def. 17).

(Def. 17) Letgiverx,y. Then
(i) it(x-yy={a~bh:acit(x) A beit(y)},
(i) it(x/y)={a1:/Ap(beitly) = ay~beit(x))}, and
@iy it(y\x)={ax: A\p (beitly) = b~ axcit(x))}.

Let a, b be non empty sets. Observe that there exists a relation betaedb which is non
empty.

We consider type structures as extensions of structure of the type algebra as systems

( a carrier, a left quotient, a right quotient, an inner product, a derivabijlity
where the carrier is a set, the left quotient, the right quotient, and the inner product are binary
operations on the carrier, and the derivability is a relation between the ¢amiéthe carrier.

Let us observe that there exists a type structure which is non empty and strict.

In the sequesis a non empty type structure ards a type ofs.

Let us consides, let f be a finite sequence of elements of the carries; aihd let us considex.
The predicatd — x is defined by:

(Def. 18) (f, x) € the derivability ofs.

Let I; be a non empty type structure. We say thais calculus of syntactic types-like if and
only if the conditions (Def. 19) are satisfied.

(Def. 19) For every type of 11 holds (x) — x and for every finite sequenck of elements of
the carrier ofl; and for all typesx, y of I3 such thatT ~ (y) — x holdsT — x/y and
for every finite sequencE of elements of the carrier df and for all typesx, y of 13 such
that(y) ~ T — x holdsT — y\ x and for all finite sequenceg, X, Y of elements of the
carrier ofl; and for all typesx, y, z of 11 such thatT — y andX "~ (x) °Y — z holds
X~ (x/y) T ~Y — zand for all finite sequencds X, Y of elements of the carrier ¢f and
for all typesx, y, zof I1 such thall — yandX ™ (x) Y — zholdsX T~ (y\x)"Y —z
and for all finite sequences, Y of elements of the carrier ¢f and for all types, y, zof |1
such thatX =~ (x) ~ {y) ~Y — zholdsX ~ (x-y) Y — z and for all finite sequences, Y
of elements of the carrier ¢f and for all types, y of I; such thaiX — xandY — y holds
XY — X-y.

Let us observe that there exists a non empty type structure which is calculus of syntactic types-
like.

A calculus of syntactic types is a calculus of syntactic types-like non empty type structure.

In the seques denotes a calculus of syntactic types ang z denote types doé.

Next we state a number of propositions:

(12) {(x/y)~(y) — xand(y) " (y\X) — x.
(13) (x) —y/(x\y) and{x) — y/x\y.
14) X/y) —x/z/(y/2).

(15) (y\x) —z\y\(z\X).

(16) If (x) — vy, then(x/z) — y/zand(z\x) — z\V.

a7 If (x) — vy, then(z/y) — z/xand(y\z2) — x\ z

(18) {y/(y/x\y)) — y/x.

(19) If (x) — Y, then€pe carrier ofs) — ¥/X ANAEthe carrier ofs) — X\ -

(20) E(the carrier ofs) ’ X/X and‘g(the carrier ofs) ? X\ X.
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(21) E(the carrier ofs) — y/(X\'y)/x ands(the carrier ofs) — X\ (y/x\y).
(22) E(the carrier ofs) — X/Z/ (y/z)/(x/y) ands(the carrier ofs) — y\ X\ (Z\ y\ (Z\ X))
(23) If S(the carrier ofs) — X them':(the carrier ofs) I Y/ (y/x) a-nda(the carrier ofs) — X\y\ y.

(24) X/ (y/y)) — x.

Let us consides, x, y. The predicata < y is defined as follows:

(Def. 20) (x) — yand(y) — x.

The following propositions are true:

(25) x+—x.

(26) x/y — X/ (X/y\X).

(27) x/(z-y) < x/y/z

28) (x-(y/2)) — (x-y)/z

(29) (x) — (x-y)/yand(x) —y\y-x.
(80) (x-y)-ze—x-(y-2).

(1
(2]

(3]

4
(3]
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