
JOURNAL OF FORMALIZED MATHEMATICS

Volume3, Released 1991, Published 2003

Inst. of Computer Science, Univ. of Białystok

Preliminaries to the Lambek Calculus

Wojciech Zielonka
Adam Mickiewicz University

Poznán

Summary. Some preliminary facts concerning completeness and decidability prob-
lems for the Lambek Calculus [14] are proved as well as some theses and derived rules of the
calculus itself.
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The articles [16], [9], [19], [18], [13], [1], [6], [21], [5], [10], [12], [17], [20], [7], [8], [15], [11],
[2], [3], and [4] provide the notation and terminology for this paper.

We consider structures of the type algebra as extensions of 1-sorted structure as systems
〈 a carrier, a left quotient, a right quotient, an inner product〉,

where the carrier is a set and the left quotient, the right quotient, and the inner product are binary
operations on the carrier.

One can check that there exists a structure of the type algebra which is non empty and strict.
Let s be a non empty structure of the type algebra. A type ofs is an element ofs.
We follow the rules:s denotes a non empty structure of the type algebra,T, X, Y denote finite

sequences of elements of the carrier ofs, andx, y, z denote types ofs.
Let us considers, x, y. The functorx\y yields a type ofs and is defined by:

(Def. 1) x\y = (the left quotient ofs)(x, y).

The functorx/y yields a type ofs and is defined as follows:

(Def. 2) x/y = (the right quotient ofs)(x, y).

The functorx ·y yielding a type ofs is defined as follows:

(Def. 3) x ·y = (the inner product ofs)(x, y).

Let T1 be a finite tree and letv be an element ofT1. One can check that succv is finite.
Let T1 be a finite tree and letv be an element ofT1. The branch degree ofv is defined as follows:

(Def. 4) The branch degree ofv = cardsuccv.

Let us note that there exists a decorated tree which is finite.
Let D be a non empty set. One can verify that there exists a tree decorated with elements ofD

which is finite.
Let us considers. A preproof ofs is a finite tree decorated with elements of[: [: (the carrier ofs)∗,

the carrier ofs:], N :].
In the sequelT1 is a preproof ofs.
Let Rbe a finite binary relation. One can verify that domR is finite.
Let us considers, T1 and letv be an element of domT1. We say thatv is correct if and only if:
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(Def. 5)(i) The branch degree ofv = 0 and there existsx such thatT1(v)1 = 〈〈〈x〉, x〉〉 if T1(v)2 = 0,

(ii) the branch degree ofv = 1 and there existT, x, y such thatT1(v)1 = 〈〈T, x/y〉〉 and
T1(va 〈0〉)1 = 〈〈T a 〈y〉, x〉〉 if T1(v)2 = 1,

(iii) the branch degree ofv = 1 and there existT, x, y such thatT1(v)1 = 〈〈T, y\ x〉〉 and
T1(va 〈0〉)1 = 〈〈〈y〉a T, x〉〉 if T1(v)2 = 2,

(iv) the branch degree ofv = 2 and there existT, X, Y, x, y, z such thatT1(v)1 = 〈〈X a 〈x/y〉a
T a Y, z〉〉 andT1(va 〈0〉)1 = 〈〈T, y〉〉 andT1(va 〈1〉)1 = 〈〈X a 〈x〉a Y, z〉〉 if T1(v)2 = 3,

(v) the branch degree ofv = 2 and there existT, X, Y, x, y, z such thatT1(v)1 = 〈〈X a T a 〈y\
x〉a Y, z〉〉 andT1(va 〈0〉)1 = 〈〈T, y〉〉 andT1(va 〈1〉)1 = 〈〈X a 〈x〉a Y, z〉〉 if T1(v)2 = 4,

(vi) the branch degree ofv = 1 and there existX, x, y, Y such thatT1(v)1 = 〈〈X a 〈x ·y〉a Y, z〉〉
andT1(va 〈0〉)1 = 〈〈X a 〈x〉a 〈y〉a Y, z〉〉 if T1(v)2 = 5,

(vii) the branch degree ofv = 2 and there existX, Y, x, y such thatT1(v)1 = 〈〈X a Y, x ·y〉〉 and
T1(va 〈0〉)1 = 〈〈X, x〉〉 andT1(va 〈1〉)1 = 〈〈Y, y〉〉 if T1(v)2 = 6,

(viii) the branch degree ofv = 2 and there existT, X, Y, y, z such thatT1(v)1 = 〈〈X a T a Y, z〉〉
andT1(va 〈0〉)1 = 〈〈T, y〉〉 andT1(va 〈1〉)1 = 〈〈X a 〈y〉a Y, z〉〉 if T1(v)2 = 7,

(ix) contradiction,1 otherwise.

Let us considers and letI1 be a type ofs. We say thatI1 is left if and only if:

(Def. 6) There existx, y such thatI1 = x\y.

We say thatI1 is right if and only if:

(Def. 7) There existx, y such thatI1 = x/y.

We say thatI1 is middle if and only if:

(Def. 8) There existx, y such thatI1 = x ·y.

Let us considers and letI1 be a type ofs. We say thatI1 is primitive if and only if:

(Def. 9) I1 is left, right, and middle.

Let us considers, let T1 be a finite tree decorated with elements of the carrier ofs, and letv be
an element of domT1. ThenT1(v) is a type ofs.

Let us considers, let T1 be a finite tree decorated with elements of the carrier ofs, and let us
considerx. We say thatT1 representsx if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) domT1 is finite, and

(ii) for every elementv of domT1 holds the branch degree ofv = 0 or the branch degree of
v= 2 but if the branch degree ofv= 0, thenT1(v) is primitive but if the branch degree ofv= 2,
then there existy, z such thatT1(v) = y/z or T1(v) = y\z or T1(v) = y ·z but T1(va 〈0〉) = y
butT1(va 〈1〉) = z.

We introduceT1 does not representx as an antonym ofT1 representsx.
Let I1 be a non empty structure of the type algebra. We say thatI1 is free if and only if the

conditions (Def. 11) are satisfied.

(Def. 11)(i) There exists no type ofI1 which is left, right, left, middle, right, and middle, and

(ii) for every typex of I1 there exists a finite treeT1 decorated with elements of the carrier
of I1 such that for every finite treeT2 decorated with elements of the carrier ofI1 holdsT2

representsx iff T1 = T2.

Let us considers, x. Let us assume thats is free. The representation ofx yielding a finite tree
decorated with elements of the carrier ofs is defined by the condition (Def. 12).

1 This definition is absolutely permissive, i.e. we assume acontradiction, but we are interested only in
the type of the functor ‘choose’.
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(Def. 12) LetT1 be a finite tree decorated with elements of the carrier ofs. ThenT1 representsx if
and only if the representation ofx = T1.

Let us considers, let f be a finite sequence of elements of the carrier ofs, and lett be a type of
s. Then〈〈 f , t〉〉 is an element of[: (the carrier ofs)∗, the carrier ofs:].

Let us considers. A preproof ofs is called a proof ofs if:

(Def. 13) domit is finite and every element of domit is correct.

In the sequelp denotes a proof ofs andv denotes an element of domp.
One can prove the following propositions:

(1) If the branch degree ofv = 1, thenva 〈0〉 ∈ domp.

(2) If the branch degree ofv = 2, thenva 〈0〉 ∈ domp andva 〈1〉 ∈ domp.

(3) If p(v)2 = 0, then there existsx such thatp(v)1 = 〈〈〈x〉, x〉〉.

(4) If p(v)2 = 1, then there exists an elementw of domp and there existT, x, y such that
w = va 〈0〉 andp(v)1 = 〈〈T, x/y〉〉 andp(w)1 = 〈〈T a 〈y〉, x〉〉.

(5) If p(v)2 = 2, then there exists an elementw of domp and there existT, x, y such that
w = va 〈0〉 andp(v)1 = 〈〈T, y\x〉〉 andp(w)1 = 〈〈〈y〉a T, x〉〉.

(6) Supposep(v)2 = 3. Then there exist elementsw, u of domp and there existT, X, Y, x, y, z
such thatw = va 〈0〉 andu = va 〈1〉 andp(v)1 = 〈〈X a 〈x/y〉a T a Y, z〉〉 andp(w)1 = 〈〈T, y〉〉
andp(u)1 = 〈〈X a 〈x〉a Y, z〉〉.

(7) Supposep(v)2 = 4. Then there exist elementsw, u of domp and there existT, X, Y, x, y, z
such thatw = va 〈0〉 andu = va 〈1〉 andp(v)1 = 〈〈X a T a 〈y\x〉a Y, z〉〉 andp(w)1 = 〈〈T, y〉〉
andp(u)1 = 〈〈X a 〈x〉a Y, z〉〉.

(8) Supposep(v)2 = 5. Then there exists an elementw of domp and there existX, x, y, Y such
thatw = va 〈0〉 andp(v)1 = 〈〈X a 〈x ·y〉a Y, z〉〉 andp(w)1 = 〈〈X a 〈x〉a 〈y〉a Y, z〉〉.

(9) Supposep(v)2 = 6. Then there exist elementsw, u of domp and there existX, Y, x, y such
thatw= va 〈0〉 andu= va 〈1〉 andp(v)1 = 〈〈X aY, x·y〉〉 andp(w)1 = 〈〈X, x〉〉 andp(u)1 = 〈〈Y,
y〉〉.

(10) Supposep(v)2 = 7. Then there exist elementsw, u of domp and there existT, X, Y, y,
z such thatw = va 〈0〉 andu = va 〈1〉 and p(v)1 = 〈〈X a T a Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and
p(u)1 = 〈〈X a 〈y〉a Y, z〉〉.

(11) p(v)2 = 0 or p(v)2 = 1 or p(v)2 = 2 or p(v)2 = 3 or p(v)2 = 4 or p(v)2 = 5 or p(v)2 = 6
or p(v)2 = 7.

Let us considers and letI1 be a preproof ofs. We say thatI1 is cut-free if and only if:

(Def. 14) For every elementv of domI1 holdsI1(v)2 6= 7.

Let us considers. The size w.r.t.s yielding a function from the carrier ofs into N is defined by:

(Def. 15) For everyx holds (the size w.r.t.s)(x) = carddom(the representation ofx).

Let D be a non empty set, letT be a finite sequence of elements ofD, and let f be a function
from D into N. Then f ·T is a finite sequence of elements ofR.

Let us considers and letp be a proof ofs. The cut degree ofp yielding a natural number is
defined by:

(Def. 16)(i) There existT, X, Y, y, z such thatp( /0)1 = 〈〈X a T a Y, z〉〉 and p(〈0〉)1 = 〈〈T, y〉〉 and
p(〈1〉)1 = 〈〈X a 〈y〉a Y, z〉〉 and the cut degree ofp = (the size w.r.t.s)(y) + (the size w.r.t.
s)(z)+∑((the size w.r.t.s) · (X a T a Y)) if p( /0)2 = 7,

(ii) the cut degree ofp = 0, otherwise.
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We use the following convention:A is a non empty set anda, a1, a2, b are elements ofA∗.
Let us considers, A. A function from the carrier ofs into 2A∗ is said to be a model ofs if it

satisfies the condition (Def. 17).

(Def. 17) Let givenx, y. Then

(i) it(x ·y) = {aa b : a∈ it(x) ∧ b∈ it(y)},
(ii) it (x/y) = {a1 :

∧
b (b∈ it(y) ⇒ a1

a b∈ it(x))}, and

(iii) it (y\x) = {a2 :
∧

b (b∈ it(y) ⇒ ba a2 ∈ it(x))}.

Let a, b be non empty sets. Observe that there exists a relation betweena andb which is non
empty.

We consider type structures as extensions of structure of the type algebra as systems
〈 a carrier, a left quotient, a right quotient, an inner product, a derivability〉,

where the carrier is a set, the left quotient, the right quotient, and the inner product are binary
operations on the carrier, and the derivability is a relation between the carrier∗ and the carrier.

Let us observe that there exists a type structure which is non empty and strict.
In the sequels is a non empty type structure andx is a type ofs.
Let us considers, let f be a finite sequence of elements of the carrier ofs, and let us considerx.

The predicatef −→ x is defined by:

(Def. 18) 〈〈 f , x〉〉 ∈ the derivability ofs.

Let I1 be a non empty type structure. We say thatI1 is calculus of syntactic types-like if and
only if the conditions (Def. 19) are satisfied.

(Def. 19) For every typex of I1 holds 〈x〉 −→ x and for every finite sequenceT of elements of
the carrier ofI1 and for all typesx, y of I1 such thatT a 〈y〉 −→ x holds T −→ x/y and
for every finite sequenceT of elements of the carrier ofI1 and for all typesx, y of I1 such
that 〈y〉a T −→ x holdsT −→ y\ x and for all finite sequencesT, X, Y of elements of the
carrier of I1 and for all typesx, y, z of I1 such thatT −→ y and X a 〈x〉a Y −→ z holds
X a 〈x/y〉a T aY−→ zand for all finite sequencesT, X, Y of elements of the carrier ofI1 and
for all typesx, y, zof I1 such thatT −→ y andX a 〈x〉aY−→ zholdsX a T a 〈y\x〉aY−→ z
and for all finite sequencesX, Y of elements of the carrier ofI1 and for all typesx, y, z of I1
such thatX a 〈x〉a 〈y〉a Y −→ z holdsX a 〈x ·y〉a Y −→ z and for all finite sequencesX, Y
of elements of the carrier ofI1 and for all typesx, y of I1 such thatX −→ x andY−→ y holds
X a Y −→ x ·y.

Let us observe that there exists a non empty type structure which is calculus of syntactic types-
like.

A calculus of syntactic types is a calculus of syntactic types-like non empty type structure.
In the sequels denotes a calculus of syntactic types andx, y, z denote types ofs.
Next we state a number of propositions:

(12) 〈x/y〉a 〈y〉 −→ x and〈y〉a 〈y\x〉 −→ x.

(13) 〈x〉 −→ y/(x\y) and〈x〉 −→ y/x\y.

(14) 〈x/y〉 −→ x/z/(y/z).

(15) 〈y\x〉 −→ z\y\ (z\x).

(16) If 〈x〉 −→ y, then〈x/z〉 −→ y/z and〈z\x〉 −→ z\y.

(17) If 〈x〉 −→ y, then〈z/y〉 −→ z/x and〈y\z〉 −→ x\z.

(18) 〈y/(y/x\y)〉 −→ y/x.

(19) If 〈x〉 −→ y, thenε(the carrier ofs) −→ y/x andε(the carrier ofs) −→ x\y.

(20) ε(the carrier ofs) −→ x/x andε(the carrier ofs) −→ x\x.



PRELIMINARIES TO THE LAMBEK CALCULUS 5

(21) ε(the carrier ofs) −→ y/(x\y)/x andε(the carrier ofs) −→ x\ (y/x\y).

(22) ε(the carrier ofs) −→ x/z/(y/z)/(x/y) andε(the carrier ofs) −→ y\x\ (z\y\ (z\x)).

(23) If ε(the carrier ofs) −→ x, thenε(the carrier ofs) −→ y/(y/x) andε(the carrier ofs) −→ x\y\y.

(24) 〈x/(y/y)〉 −→ x.

Let us considers, x, y. The predicatex←→ y is defined as follows:

(Def. 20) 〈x〉 −→ y and〈y〉 −→ x.

The following propositions are true:

(25) x←→ x.

(26) x/y←→ x/(x/y\x).

(27) x/(z·y)←→ x/y/z.

(28) 〈x · (y/z)〉 −→ (x ·y)/z.

(29) 〈x〉 −→ (x ·y)/y and〈x〉 −→ y\y·x.

(30) (x ·y) ·z←→ x · (y·z).
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[7] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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