Preliminaries to the Lambek Calculus

Wojciech Zielonka Adam Mickiewicz University Poznań

Summary. Some preliminary facts concerning completeness and decidability problems for the Lambek Calculus [14] are proved as well as some theses and derived rules of the calculus itself.

MML Identifier: PRELAMB.

WWW: http://mizar.org/JFM/Vol3/prelamb.html

The articles [16], [9], [19], [18], [13], [1], [6], [21], [5], [10], [12], [17], [20], [7], [8], [15], [11], [2], [3], and [4] provide the notation and terminology for this paper.

We consider structures of the type algebra as extensions of 1-sorted structure as systems \langle a carrier, a left quotient, a right quotient, an inner product \rangle ,

where the carrier is a set and the left quotient, the right quotient, and the inner product are binary operations on the carrier.

One can check that there exists a structure of the type algebra which is non empty and strict.

Let s be a non empty structure of the type algebra. A type of s is an element of s.

We follow the rules: s denotes a non empty structure of the type algebra, T, X, Y denote finite sequences of elements of the carrier of s, and x, y, z denote types of s.

Let us consider s, x, y. The functor $x \setminus y$ yields a type of s and is defined by:

(Def. 1) $x \setminus y =$ (the left quotient of s)(x, y).

The functor x/y yields a type of s and is defined as follows:

(Def. 2) x/y =(the right quotient of s)(x, y).

The functor $x \cdot y$ yielding a type of s is defined as follows:

(Def. 3) $x \cdot y =$ (the inner product of s)(x, y).

Let T_1 be a finite tree and let v be an element of T_1 . One can check that $\operatorname{succ} v$ is finite.

Let T_1 be a finite tree and let v be an element of T_1 . The branch degree of v is defined as follows:

(Def. 4) The branch degree of $v = \operatorname{card}\operatorname{succ} v$.

Let us note that there exists a decorated tree which is finite.

Let *D* be a non empty set. One can verify that there exists a tree decorated with elements of *D* which is finite.

Let us consider s. A preproof of s is a finite tree decorated with elements of $[:[:(the carrier of <math>s)^*, the carrier of s:], \mathbb{N}:]$.

In the sequel T_1 is a preproof of s.

Let R be a finite binary relation. One can verify that dom R is finite.

Let us consider s, T_1 and let v be an element of dom T_1 . We say that v is correct if and only if:

- (Def. 5)(i) The branch degree of v = 0 and there exists x such that $T_1(v)_1 = \langle \langle x \rangle, x \rangle$ if $T_1(v)_2 = 0$,
 - (ii) the branch degree of v=1 and there exist T, x, y such that $T_1(v)_1 = \langle T, x/y \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle T \cap \langle y \rangle, x \rangle$ if $T_1(v)_2 = 1$,
 - (iii) the branch degree of v = 1 and there exist T, x, y such that $T_1(v)_1 = \langle T, y \setminus x \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle \langle y \rangle \cap T, x \rangle$ if $T_1(v)_2 = 2$,
 - (iv) the branch degree of v = 2 and there exist T, X, Y, x, y, z such that $T_1(v)_1 = \langle X \cap \langle x/y \rangle \cap T \cap Y, z \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle T, y \rangle$ and $T_1(v \cap \langle 1 \rangle)_1 = \langle X \cap \langle x \rangle \cap Y, z \rangle$ if $T_1(v)_2 = 3$,
 - (v) the branch degree of v = 2 and there exist T, X, Y, x, y, z such that $T_1(v)_1 = \langle X \cap T \cap \langle y \setminus x \rangle \cap Y, z \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle T, y \rangle$ and $T_1(v \cap \langle 1 \rangle)_1 = \langle X \cap \langle x \rangle \cap Y, z \rangle$ if $T_1(v)_2 = 4$,
 - (vi) the branch degree of v = 1 and there exist X, x, y, Y such that $T_1(v)_1 = \langle X \cap \langle x \cdot y \rangle \cap Y, z \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle X \cap \langle x \rangle \cap \langle y \rangle \cap Y, z \rangle$ if $T_1(v)_2 = 5$,
 - (vii) the branch degree of v = 2 and there exist X, Y, x, y such that $T_1(v)_1 = \langle X \cap Y, x \cdot y \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle X, x \rangle$ and $T_1(v \cap \langle 1 \rangle)_1 = \langle Y, y \rangle$ if $T_1(v)_2 = 6$,
 - (viii) the branch degree of v = 2 and there exist T, X, Y, y, z such that $T_1(v)_1 = \langle X \cap T \cap Y, z \rangle$ and $T_1(v \cap \langle 0 \rangle)_1 = \langle T, y \rangle$ and $T_1(v \cap \langle 1 \rangle)_1 = \langle X \cap \langle y \rangle \cap Y, z \rangle$ if $T_1(v)_2 = 7$,
 - (ix) contradiction, otherwise.

Let us consider s and let I_1 be a type of s. We say that I_1 is left if and only if:

(Def. 6) There exist x, y such that $I_1 = x \setminus y$.

We say that I_1 is right if and only if:

(Def. 7) There exist x, y such that $I_1 = x/y$.

We say that I_1 is middle if and only if:

(Def. 8) There exist x, y such that $I_1 = x \cdot y$.

Let us consider s and let I_1 be a type of s. We say that I_1 is primitive if and only if:

(Def. 9) I_1 is left, right, and middle.

Let us consider s, let T_1 be a finite tree decorated with elements of the carrier of s, and let v be an element of dom T_1 . Then $T_1(v)$ is a type of s.

Let us consider s, let T_1 be a finite tree decorated with elements of the carrier of s, and let us consider x. We say that T_1 represents x if and only if the conditions (Def. 10) are satisfied.

- (Def. 10)(i) $dom T_1$ is finite, and
 - (ii) for every element v of dom T_1 holds the branch degree of v=0 or the branch degree of v=2 but if the branch degree of v=0, then $T_1(v)$ is primitive but if the branch degree of v=2, then there exist y, z such that $T_1(v) = y/z$ or $T_1(v) = y \setminus z$ or $T_1(v) = y \cdot z$ but $T_1(v \cap \langle 0 \rangle) = y$ but $T_1(v \cap \langle 1 \rangle) = z$.

We introduce T_1 does not represent x as an antonym of T_1 represents x.

Let I_1 be a non empty structure of the type algebra. We say that I_1 is free if and only if the conditions (Def. 11) are satisfied.

- (Def. 11)(i) There exists no type of I_1 which is left, right, left, middle, right, and middle, and
 - (ii) for every type x of I_1 there exists a finite tree T_1 decorated with elements of the carrier of I_1 such that for every finite tree T_2 decorated with elements of the carrier of I_1 holds T_2 represents x iff $T_1 = T_2$.

Let us consider s, x. Let us assume that s is free. The representation of x yielding a finite tree decorated with elements of the carrier of s is defined by the condition (Def. 12).

¹ This definition is absolutely permissive, i.e. we assume a *contradiction*, but we are interested only in the type of the functor 'choose'.

(Def. 12) Let T_1 be a finite tree decorated with elements of the carrier of s. Then T_1 represents x if and only if the representation of $x = T_1$.

Let us consider s, let f be a finite sequence of elements of the carrier of s, and let t be a type of s. Then $\langle f, t \rangle$ is an element of [: (the carrier of s)*, the carrier of s:]. Let us consider s. A preproof of s is called a proof of s if:

(Def. 13) domit is finite and every element of domit is correct.

In the sequel p denotes a proof of s and v denotes an element of dom p. One can prove the following propositions:

- (1) If the branch degree of v = 1, then $v \cap \langle 0 \rangle \in \text{dom } p$.
- (2) If the branch degree of v = 2, then $v \cap \langle 0 \rangle \in \text{dom } p$ and $v \cap \langle 1 \rangle \in \text{dom } p$.
- (3) If $p(v)_2 = 0$, then there exists x such that $p(v)_1 = \langle \langle x \rangle, x \rangle$.
- (4) If $p(v)_2 = 1$, then there exists an element w of dom p and there exist T, x, y such that $w = v \land \langle 0 \rangle$ and $p(v)_1 = \langle T, x/y \rangle$ and $p(w)_1 = \langle T \land \langle y \rangle, x \rangle$.
- (5) If $p(v)_2 = 2$, then there exists an element w of dom p and there exist T, x, y such that $w = v \land \langle 0 \rangle$ and $p(v)_1 = \langle T, y \setminus x \rangle$ and $p(w)_1 = \langle \langle y \rangle \land T, x \rangle$.
- (6) Suppose $p(v)_2 = 3$. Then there exist elements w, u of dom p and there exist T, X, Y, x, y, z such that $w = v \land \langle 0 \rangle$ and $u = v \land \langle 1 \rangle$ and $p(v)_1 = \langle X \land \langle x/y \rangle \land T \land Y, z \rangle$ and $p(w)_1 = \langle T, y \rangle$ and $p(u)_1 = \langle X \land \langle x \rangle \land Y, z \rangle$.
- (7) Suppose $p(v)_2 = 4$. Then there exist elements w, u of dom p and there exist T, X, Y, x, y, z such that $w = v \land \langle 0 \rangle$ and $u = v \land \langle 1 \rangle$ and $p(v)_1 = \langle X \land T \land \langle y \setminus x \rangle \land Y$, $z \rangle$ and $p(w)_1 = \langle T, y \rangle$ and $p(u)_1 = \langle X \land \langle x \rangle \land Y$, $z \rangle$.
- (8) Suppose $p(v)_2 = 5$. Then there exists an element w of dom p and there exist X, x, y, Y such that $w = v \cap \langle 0 \rangle$ and $p(v)_1 = \langle X \cap \langle x \rangle \cap Y, z \rangle$ and $p(w)_1 = \langle X \cap \langle x \rangle \cap \langle y \rangle \cap Y, z \rangle$.
- (9) Suppose $p(v)_2 = 6$. Then there exist elements w, u of dom p and there exist X, Y, x, y such that $w = v \land \langle 0 \rangle$ and $u = v \land \langle 1 \rangle$ and $p(v)_1 = \langle X \land Y, x \cdot y \rangle$ and $p(w)_1 = \langle X, x \rangle$ and $p(u)_1 = \langle Y, y \rangle$.
- (10) Suppose $p(v)_2 = 7$. Then there exist elements w, u of dom p and there exist T, X, Y, y, z such that $w = v \cap \langle 0 \rangle$ and $u = v \cap \langle 1 \rangle$ and $p(v)_1 = \langle X \cap T \cap Y, z \rangle$ and $p(w)_1 = \langle X \cap \langle y \rangle \cap Y, z \rangle$.
- (11) $p(v)_2 = 0$ or $p(v)_2 = 1$ or $p(v)_2 = 2$ or $p(v)_2 = 3$ or $p(v)_2 = 4$ or $p(v)_2 = 5$ or $p(v)_2 = 6$ or $p(v)_2 = 7$.

Let us consider s and let I_1 be a preproof of s. We say that I_1 is cut-free if and only if:

(Def. 14) For every element v of dom I_1 holds $I_1(v)_2 \neq 7$.

Let us consider s. The size w.r.t. s yielding a function from the carrier of s into \mathbb{N} is defined by:

(Def. 15) For every x holds (the size w.r.t. s)(x) = card dom (the representation of x).

Let D be a non empty set, let T be a finite sequence of elements of D, and let f be a function from D into \mathbb{N} . Then $f \cdot T$ is a finite sequence of elements of \mathbb{R} .

Let us consider s and let p be a proof of s. The cut degree of p yielding a natural number is defined by:

- (Def. 16)(i) There exist T, X, Y, y, z such that $p(\emptyset)_1 = \langle X \cap T \cap Y, z \rangle$ and $p(\langle 0 \rangle)_1 = \langle T, y \rangle$ and $p(\langle 1 \rangle)_1 = \langle X \cap \langle y \rangle \cap Y, z \rangle$ and the cut degree of p = (the size w.r.t. s)(y) + (the size w.r.t. $s)(z) + \sum ((\text{the size w.r.t. } s) \cdot (X \cap T \cap Y))$ if $p(\emptyset)_2 = 7$,
 - (ii) the cut degree of p = 0, otherwise.

We use the following convention: A is a non empty set and a, a_1 , a_2 , b are elements of A^* .

Let us consider s, A. A function from the carrier of s into 2^{A^*} is said to be a model of s if it satisfies the condition (Def. 17).

(Def. 17) Let given x, y. Then

- (i) $\operatorname{it}(x \cdot y) = \{a \cap b : a \in \operatorname{it}(x) \land b \in \operatorname{it}(y)\},\$
- (ii) $\operatorname{it}(x/y) = \{a_1 : \bigwedge_b (b \in \operatorname{it}(y) \Rightarrow a_1 \cap b \in \operatorname{it}(x))\}, \text{ and } (b \in \operatorname{it}(x))\}$
- (iii) $\operatorname{it}(y \setminus x) = \{a_2 : \bigwedge_b (b \in \operatorname{it}(y) \Rightarrow b \cap a_2 \in \operatorname{it}(x))\}.$

Let a, b be non empty sets. Observe that there exists a relation between a and b which is non empty.

We consider type structures as extensions of structure of the type algebra as systems

⟨ a carrier, a left quotient, a right quotient, an inner product, a derivability ⟩,

where the carrier is a set, the left quotient, the right quotient, and the inner product are binary operations on the carrier, and the derivability is a relation between the carrier* and the carrier.

Let us observe that there exists a type structure which is non empty and strict.

In the sequel *s* is a non empty type structure and *x* is a type of *s*.

Let us consider s, let f be a finite sequence of elements of the carrier of s, and let us consider x. The predicate $f \longrightarrow x$ is defined by:

(Def. 18) $\langle f, x \rangle \in$ the derivability of s.

Let I_1 be a non empty type structure. We say that I_1 is calculus of syntactic types-like if and only if the conditions (Def. 19) are satisfied.

(Def. 19) For every type x of I_1 holds $\langle x \rangle \longrightarrow x$ and for every finite sequence T of elements of the carrier of I_1 and for all types x, y of I_1 such that $T \cap \langle y \rangle \longrightarrow x$ holds $T \longrightarrow x/y$ and for every finite sequence T of elements of the carrier of I_1 and for all types x, y of I_1 such that $\langle y \rangle \cap T \longrightarrow x$ holds $T \longrightarrow y \setminus x$ and for all finite sequences T, X, Y of elements of the carrier of I_1 and for all types x, y, z of I_1 such that $T \longrightarrow y$ and $X \cap \langle x \rangle \cap Y \longrightarrow z$ holds $X \cap \langle x/y \rangle \cap T \cap Y \longrightarrow z$ and for all finite sequences T, X, Y of elements of the carrier of I_1 and for all types x, y, z of I_1 such that $T \longrightarrow y$ and $X \cap \langle x \rangle \cap Y \longrightarrow z$ holds $X \cap T \cap \langle y \setminus x \rangle \cap Y \longrightarrow z$ and for all finite sequences X, Y of elements of the carrier of I_1 and for all types x, y, z of I_1 such that $X \cap \langle x \rangle \cap \langle y \rangle \cap Y \longrightarrow z$ holds $X \cap \langle x \cdot y \rangle \cap Y \longrightarrow z$ and for all finite sequences X, Y of elements of the carrier of I_1 and for all types x, y of elements of the carrier of I_1 and for all types x, y of elements of the carrier of I_1 and for all types x, y of elements of the carrier of I_1 and for all types x, y of $y \cap y \cap y \cap z$ and $y \cap y \cap z \cap z$ holds $y \cap y \cap z \cap z \cap z \cap z$ and $y \cap z \cap z \cap z \cap z$ holds $y \cap z \cap z \cap z \cap z \cap z \cap z \cap z$ and for all types x, y of elements of the carrier of I_1 and for all types x, y of I_2 such that $X \cap \langle x \rangle \cap$

Let us observe that there exists a non empty type structure which is calculus of syntactic typeslike.

A calculus of syntactic types is a calculus of syntactic types-like non empty type structure.

In the sequel s denotes a calculus of syntactic types and x, y, z denote types of s.

Next we state a number of propositions:

(12)
$$\langle x/y \rangle \cap \langle y \rangle \longrightarrow x$$
 and $\langle y \rangle \cap \langle y \setminus x \rangle \longrightarrow x$.

(13)
$$\langle x \rangle \longrightarrow y/(x \setminus y)$$
 and $\langle x \rangle \longrightarrow y/x \setminus y$.

- (14) $\langle x/y \rangle \longrightarrow x/z/(y/z)$.
- $(15) \quad \langle y \setminus x \rangle \longrightarrow z \setminus y \setminus (z \setminus x).$
- (16) If $\langle x \rangle \longrightarrow y$, then $\langle x/z \rangle \longrightarrow y/z$ and $\langle z \setminus x \rangle \longrightarrow z \setminus y$.
- (17) If $\langle x \rangle \longrightarrow y$, then $\langle z/y \rangle \longrightarrow z/x$ and $\langle y \setminus z \rangle \longrightarrow x \setminus z$.
- (18) $\langle y/(y/x \setminus y) \rangle \longrightarrow y/x$.
- (19) If $\langle x \rangle \longrightarrow y$, then $\varepsilon_{\text{(the carrier of } s)} \longrightarrow y/x$ and $\varepsilon_{\text{(the carrier of } s)} \longrightarrow x \setminus y$.
- (20) $\epsilon_{\text{(the carrier of }s)} \longrightarrow x/x \text{ and } \epsilon_{\text{(the carrier of }s)} \longrightarrow x \setminus x.$

- (21) $\epsilon_{\text{(the carrier of }s)} \longrightarrow y/(x \setminus y)/x \text{ and } \epsilon_{\text{(the carrier of }s)} \longrightarrow x \setminus (y/x \setminus y).$
- (22) $\epsilon_{\text{(the carrier of }s)} \longrightarrow x/z/(y/z)/(x/y) \text{ and } \epsilon_{\text{(the carrier of }s)} \longrightarrow y \setminus x \setminus (z \setminus y \setminus (z \setminus x)).$
- (23) If $\varepsilon_{\text{(the carrier of }s)} \longrightarrow x$, then $\varepsilon_{\text{(the carrier of }s)} \longrightarrow y/(y/x)$ and $\varepsilon_{\text{(the carrier of }s)} \longrightarrow x \setminus y \setminus y$.
- (24) $\langle x/(y/y)\rangle \longrightarrow x$.

Let us consider s, x, y. The predicate $x \longleftrightarrow y$ is defined as follows:

(Def. 20)
$$\langle x \rangle \longrightarrow y$$
 and $\langle y \rangle \longrightarrow x$.

The following propositions are true:

- (25) $x \longleftrightarrow x$.
- (26) $x/y \longleftrightarrow x/(x/y \setminus x)$.
- (27) $x/(z \cdot y) \longleftrightarrow x/y/z$.
- (28) $\langle x \cdot (y/z) \rangle \longrightarrow (x \cdot y)/z$.
- (29) $\langle x \rangle \longrightarrow (x \cdot y)/y$ and $\langle x \rangle \longrightarrow y \setminus y \cdot x$.
- (30) $(x \cdot y) \cdot z \longleftrightarrow x \cdot (y \cdot z)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1.html.
- $[4] \begin{tabular}{ll} Grzegorz Bancerek. K\"{o}nig's Lemma. {\it Journal of Formalized Mathematics}, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html. \\ \end{tabular}$
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [6] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- $\textbf{[12]} \ \ \textbf{Agata Darmochwał. Finite sets.} \ \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \ \texttt{http://mizar.org/JFM/Vol1/finset_1.html}.$
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real 1.html.
- [14] Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly, (65):154–170, 1958.
- [15] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop 1.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [18] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.

- $[19] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_l.html}.$
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received February 13, 1991

Published January 2, 2004