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Summary. The paper contains a definition of topological space. The following no-

tions are defined: point of topological space, subset of topological space, subspace of topo-
logical space, and continuous function.
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The articlesl[4],[[2],5],16], 1], and[3] provide the notation and terminology for this paper.
We consider topological structures as extensions of 1-sorted structure as systems
( a carrier, a topology,

where the carrier is a set and the topology is a family of subsets of the carrier.
In the sequeT is a topological structure.

Let 11 be a topological structure. We say tHatis topological space-like if and only if the
conditions (Def. 1) are satisfied.

(Def. 1)(I) The carrier of1 € the topology ofl4,

(i) for every familya of subsets of; such that C the topology of;1 holds|Ja € the topology
of I1, and

(i) for all subsetsa, b of I; such thata € the topology ofl; andb € the topology ofl; holds
anb € the topology ofl;.

Let us note that there exists a topological structure which is non empty, strict, and topological
space-like.

A topological space is a topological space-like topological structure.
Let Sbe a 1-sorted structure. A point 8fis an element o8.

In the seque; is a topological space.

Next we state the proposition

(5f] 0 ¢ the topology ofG;.

LetT be a 1-sorted structure. The funcégryields a subset of and is defined as follows:
(Def. 2) Or =0.
The functorQr yielding a subset of is defined by:
(Def. 3) Qr =the carrier ofT.

1Supported by RPBP.II1-24.C1.
1 The propositions (1)-(4) have been removed.
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Let T be a 1-sorted structure. Observe thats empty.
One can prove the following proposition

(12E] For every 1-sorted structuiieholdsQt = the carrier ofT .

LetT be a non empty 1-sorted structure. Note fatis non empty.
The following propositions are true:

(13) For every non empty 1-sorted structtirand for every poinp of T holdsp € Q.
(14) For every 1-sorted structufeand for every subsé& of T holdsP C Qr.
(15) For every 1-sorted structufeand for every subsét of T holdsPNQt =P.

(16) For every 1-sorted structufeand for every sef such thatA C Qt holdsA is a subset of
T.

(17) For every 1-sorted structufeand for every subsé of T holdsP® = Q1 \ P.

(18) For every 1-sorted structufeand for every subsé® of T holdsPUP® = Qr.

(19) For every 1-sorted structufeand for all subsetP, Q of T holdsP C Q iff Q° C P¢.
(20) For every 1-sorted structufeand for every subsé® of T holdsP = (P€)°.

(21) For every 1-sorted structuteand for all subsetP, Q of T holdsP C Q° iff P misseQ.
(22) For every 1-sorted structufeand for every subsé of T holdsQr \ (Q1 \P) =P.
(23) For every 1-sorted structufeand for every subsé? of T holdsP # Qr iff Q1 \ P # 0.

(24) For every 1-sorted structuiieand for all subset®, Q of T such thatQy \ P = Q holds
Qr =PUQ.

(25) For every 1-sorted structufieand for all subset®, Q of T such thatQr = PUQ andP
misseQ holdsQ = Q1 \ P.

(26) For every 1-sorted structufeand for every subsé® of T holdsP missesP°.

(27) For every 1-sorted structufeholdsQr = (07)°.

Let T be a topological structure and Btbe a subset of . We say thaP is open if and only if:
(Def. 5| P e the topology ofT .
Let T be a topological structure and lethe a subset of . We say thaP is closed if and only
if:
(Def. 6) Q7 \Pis open.

Let T be a 1-sorted structure and fetbe a family of subsets of. ThenJF is a subset oT .

LetT be a 1-sorted structure and Fetbe a family of subsets df. ThenNF is a subset of .

Let T be a 1-sorted structure and etbe a family of subsets of. We say thaf is a cover of
T if and only if:

(Def. 8f] Qr =UF.

Let T be a topological structure. A topological structure is said to be a subspatef of
satisfies the conditions (Def. 9).

2 The propositions (6)—(11) have been removed.
3 The definition (Def. 4) has been removed.
4 The definition (Def. 7) has been removed.
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(Def. 9)()) Qi CQr,and

(i) for every subseP of it holds P € the topology of it iff there exists a subsgtof T such
thatQ € the topology ofT andP = QN Q;;.

Let T be a topological structure. Observe that there exists a subspacetuth is strict.
Let T be a non empty topological structure. Observe that there exists a subspaeenith is
strict and non empty.
The schem&ubFamEx8eals with a topological structurg and a unary predicatg, and states
that:
There exists a familfF of subsets 0f2 such that for every subsBtof 2 holdsB € F
iff P[B]
for all values of the parameters.
LetT be a topological space. One can check that every subspdcis ebpological space-like.
Let T be a topological structure and IBtbe a subset of . The functorT [P yielding a strict
subspace of is defined as follows:

(Def. 10) Qr P = P.

Let T be a non empty topological structure andRdie a non empty subset ®f Note thafT [P
is non empty.

LetT be a topological space. Note that there exists a subspdcevbfch is topological space-
like and strict.

Let T be a topological space and Rbe a subset of . Note thatT [P is topological space-like.

LetS T be 1-sorted structures. A map frd&into T is a function from the carrier dinto the
carrier of T.

LetS T be 1-sorted structures, létbe a function from the carrier &into the carrier off, and
let P be a set. Theri°P is a subset oT .

LetS T be 1-sorted structures, létbe a function from the carrier &into the carrier off, and
let P be a set. Theri—(P) is a subset 08.

LetS T be topological structures and lebe a map fronsinto T. We say thaff is continuous
if and only if:

(Def. 12@ For every subse®, of T such thaf; is closed holdd‘*l(Pl) is closed.

The schemd@opAbstrdeals with a topological structurg and a unary predicat@, and states
that:
There exists a subsBtof A4 such that for every setsuch thaix € the carrier of4
holdsx € Piff P[x]
for all values of the parameters.
Next we state three propositions:

(39@ For every subspacé¢’ of T holds every subset of’ is a subset of .
(41 For every subseéh of T such thatA # 0y there exists a point of T such thai € A.
(42) Qg is closed.

Let T be a topological space. One can verify tiat is closed.

Let T be a topological space. Note that there exists a subSetwdfich is closed.

Let T be a non empty topological space. One can verify that there exists a subfisetach is
non empty and closed.

We now state two propositions:

(43) LetX’ be a subspace df andB be a subset oX’. ThenB is closed if and only if there
exists a subset of T such thaC is closed an€C N Qy = B.

5 The definition (Def. 11) has been removed.
6 The propositions (28)—(38) have been removed.
" The proposition (40) has been removed.
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(44) LetF be a family of subsets db;. Suppose that for every subgebdf G, such thatA € F
holdsAis closed. ThefF is closed.

Let G; be a topological structure and latbe a subset oB;. The functorA yields a subset of

G; and is defined by the condition (Def. 13).

(Def. 13) Letp be a set. Supposec the carrier 0iG;. Thenp € Aif and only if for every subse®

[

[2

[3

[4

5

of G1 such thaG is open holds ifp € G, thenA meetsG.

We now state a number of propositions:

(45) LetAbe a subset 6f andp be a set. Suppogec the carrier ofT. Thenp € Aif and only
if for every subse€ of T such thatC is closed holds iA C C, thenp € C.

(46) LetAbe a subset oB1. Then there exists a family of subsets 065, such that for every
subseC of G; holdsC € F iff Cis closed and\ C C andA=F.

(47) For every subspac€ of T and for every subsét of T and for every subse; of X’ such
thatA = A; holdsA; = ANQy:.

(48) For every subsét of T holdsA C A.

(49) For all subsets, B of T such thatA C B holdsA C B.
(50) For all subseté, B of G; holdsAUB = AUB.

(51) For all subseta, B of T holdsANB C ANB.

(52) LetAbe asubsetof. Then
(i) if Aisclosed, thel® = A, and
(i) if T is topological space-like anl= A, thenA is closed.

(53) LetAbe asubsetof. Then
(i) if Ais open, thet \A= Q7 \A, and
(i) if T istopological space-like an@r \ A= Q1 \ A, thenA is open.
(54) LetA be a subset of andp be a point ofT. Thenp € A if and only if the following
conditions are satisfied:
(i) T isnonempty, and
(i) for every subseG of T such thatG is open holds ifp € G, thenA meetsG.
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