Topological Spaces and Continuous Functions¹

Beata Padlewska Warsaw University Białystok Agata Darmochwał Warsaw University Białystok

Summary. The paper contains a definition of topological space. The following notions are defined: point of topological space, subset of topological space, subspace of topological space, and continuous function.

MML Identifier: PRE_TOPC.

WWW: http://mizar.org/JFM/Vol1/pre_topc.html

The articles [4], [2], [5], [6], [1], and [3] provide the notation and terminology for this paper.

We consider topological structures as extensions of 1-sorted structure as systems \langle a carrier, a topology \rangle ,

where the carrier is a set and the topology is a family of subsets of the carrier.

In the sequel *T* is a topological structure.

Let I_1 be a topological structure. We say that I_1 is topological space-like if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) The carrier of $I_1 \in$ the topology of I_1 ,

- (ii) for every family a of subsets of I_1 such that $a \subseteq$ the topology of I_1 holds $\bigcup a \in$ the topology of I_1 , and
- (iii) for all subsets a, b of I_1 such that $a \in$ the topology of I_1 and $b \in$ the topology of I_1 holds $a \cap b \in$ the topology of I_1 .

Let us note that there exists a topological structure which is non empty, strict, and topological space-like.

A topological space is a topological space-like topological structure.

Let S be a 1-sorted structure. A point of S is an element of S.

In the sequel G_1 is a topological space.

Next we state the proposition

 $(5)^1$ $\emptyset \in$ the topology of G_1 .

Let T be a 1-sorted structure. The functor \emptyset_T yields a subset of T and is defined as follows:

(Def. 2) $\emptyset_T = \emptyset$.

The functor Ω_T yielding a subset of T is defined by:

(Def. 3) Ω_T = the carrier of T.

¹Supported by RPBP.III-24.C1.

¹ The propositions (1)–(4) have been removed.

Let T be a 1-sorted structure. Observe that \emptyset_T is empty. One can prove the following proposition

(12)² For every 1-sorted structure T holds Ω_T = the carrier of T.

Let T be a non empty 1-sorted structure. Note that Ω_T is non empty. The following propositions are true:

- (13) For every non empty 1-sorted structure T and for every point p of T holds $p \in \Omega_T$.
- (14) For every 1-sorted structure T and for every subset P of T holds $P \subseteq \Omega_T$.
- (15) For every 1-sorted structure T and for every subset P of T holds $P \cap \Omega_T = P$.
- (16) For every 1-sorted structure T and for every set A such that $A \subseteq \Omega_T$ holds A is a subset of T.
- (17) For every 1-sorted structure T and for every subset P of T holds $P^c = \Omega_T \setminus P$.
- (18) For every 1-sorted structure T and for every subset P of T holds $P \cup P^c = \Omega_T$.
- (19) For every 1-sorted structure T and for all subsets P, Q of T holds $P \subseteq Q$ iff $Q^c \subseteq P^c$.
- (20) For every 1-sorted structure T and for every subset P of T holds $P = (P^c)^c$.
- (21) For every 1-sorted structure T and for all subsets P, Q of T holds $P \subseteq Q^c$ iff P misses Q.
- (22) For every 1-sorted structure T and for every subset P of T holds $\Omega_T \setminus (\Omega_T \setminus P) = P$.
- (23) For every 1-sorted structure T and for every subset P of T holds $P \neq \Omega_T$ iff $\Omega_T \setminus P \neq \emptyset$.
- (24) For every 1-sorted structure T and for all subsets P, Q of T such that $\Omega_T \setminus P = Q$ holds $\Omega_T = P \cup Q$.
- (25) For every 1-sorted structure T and for all subsets P, Q of T such that $\Omega_T = P \cup Q$ and P misses Q holds $Q = \Omega_T \setminus P$.
- (26) For every 1-sorted structure T and for every subset P of T holds P misses P^{c} .
- (27) For every 1-sorted structure T holds $\Omega_T = (\emptyset_T)^c$.

Let *T* be a topological structure and let *P* be a subset of *T*. We say that *P* is open if and only if: (Def. 5)³ $P \in \text{the topology of } T$.

Let T be a topological structure and let P be a subset of T. We say that P is closed if and only if:

(Def. 6) $\Omega_T \setminus P$ is open.

Let T be a 1-sorted structure and let F be a family of subsets of T. Then $\bigcup F$ is a subset of T. Let T be a 1-sorted structure and let F be a family of subsets of T. Then $\bigcap F$ is a subset of T. Let T be a 1-sorted structure and let F be a family of subsets of T. We say that F is a cover of T if and only if:

(Def. 8)⁴ $\Omega_T = \bigcup F$.

Let T be a topological structure. A topological structure is said to be a subspace of T if it satisfies the conditions (Def. 9).

² The propositions (6)–(11) have been removed.

³ The definition (Def. 4) has been removed.

⁴ The definition (Def. 7) has been removed.

(Def. 9)(i) $\Omega_{it} \subseteq \Omega_T$, and

(ii) for every subset P of it holds $P \in$ the topology of it iff there exists a subset Q of T such that $Q \in$ the topology of T and $P = Q \cap \Omega_{it}$.

Let T be a topological structure. Observe that there exists a subspace of T which is strict.

Let T be a non empty topological structure. Observe that there exists a subspace of T which is strict and non empty.

The scheme SubFamExS deals with a topological structure $\mathcal A$ and a unary predicate $\mathcal P$, and states that:

There exists a family F of subsets of \mathcal{A} such that for every subset B of \mathcal{A} holds $B \in F$ iff $\mathcal{P}[B]$

for all values of the parameters.

Let T be a topological space. One can check that every subspace of T is topological space-like. Let T be a topological structure and let P be a subset of T. The functor $T
cents_T P$ yielding a strict subspace of T is defined as follows:

(Def. 10) $\Omega_{T \upharpoonright P} = P$.

Let *T* be a non empty topological structure and let *P* be a non empty subset of *T*. Note that $T \upharpoonright P$ is non empty.

Let T be a topological space. Note that there exists a subspace of T which is topological spacelike and strict.

Let T be a topological space and let P be a subset of T. Note that $T \mid P$ is topological space-like.

Let S, T be 1-sorted structures. A map from S into T is a function from the carrier of S into the carrier of T.

Let S, T be 1-sorted structures, let f be a function from the carrier of S into the carrier of T, and let P be a set. Then $f^{\circ}P$ is a subset of T.

Let S, T be 1-sorted structures, let f be a function from the carrier of S into the carrier of T, and let P be a set. Then $f^{-1}(P)$ is a subset of S.

Let S, T be topological structures and let f be a map from S into T. We say that f is continuous if and only if:

(Def. 12)⁵ For every subset P_1 of T such that P_1 is closed holds $f^{-1}(P_1)$ is closed.

The scheme TopAbstr deals with a topological structure $\mathcal A$ and a unary predicate $\mathcal P$, and states that:

There exists a subset P of \mathcal{A} such that for every set x such that $x \in$ the carrier of \mathcal{A} holds $x \in P$ iff $\mathcal{P}[x]$

for all values of the parameters.

Next we state three propositions:

- $(39)^6$ For every subspace X' of T holds every subset of X' is a subset of T.
- (41)⁷ For every subset A of T such that $A \neq \emptyset_T$ there exists a point x of T such that $x \in A$.
- (42) $\Omega_{(G_1)}$ is closed.

Let T be a topological space. One can verify that Ω_T is closed.

Let T be a topological space. Note that there exists a subset of T which is closed.

Let *T* be a non empty topological space. One can verify that there exists a subset of *T* which is non empty and closed.

We now state two propositions:

(43) Let X' be a subspace of T and B be a subset of X'. Then B is closed if and only if there exists a subset C of T such that C is closed and $C \cap \Omega_{X'} = B$.

⁵ The definition (Def. 11) has been removed.

⁶ The propositions (28)–(38) have been removed.

⁷ The proposition (40) has been removed.

(44) Let F be a family of subsets of G_1 . Suppose that for every subset A of G_1 such that $A \in F$ holds A is closed. Then $\bigcap F$ is closed.

Let G_1 be a topological structure and let A be a subset of G_1 . The functor \overline{A} yields a subset of G_1 and is defined by the condition (Def. 13).

(Def. 13) Let p be a set. Suppose $p \in$ the carrier of G_1 . Then $p \in \overline{A}$ if and only if for every subset G of G_1 such that G is open holds if $p \in G$, then A meets G.

We now state a number of propositions:

- (45) Let *A* be a subset of *T* and *p* be a set. Suppose $p \in$ the carrier of *T*. Then $p \in \overline{A}$ if and only if for every subset *C* of *T* such that *C* is closed holds if $A \subseteq C$, then $p \in C$.
- (46) Let A be a subset of G_1 . Then there exists a family F of subsets of G_1 such that for every subset C of G_1 holds $C \in F$ iff C is closed and $A \subseteq C$ and $\overline{A} = \bigcap F$.
- (47) For every subspace X' of T and for every subset A of T and for every subset A_1 of X' such that $A = A_1$ holds $\overline{A_1} = \overline{A} \cap \Omega_{X'}$.
- (48) For every subset *A* of *T* holds $A \subseteq \overline{A}$.
- (49) For all subsets A, B of T such that $A \subseteq B$ holds $\overline{A} \subseteq \overline{B}$.
- (50) For all subsets A, B of G_1 holds $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (51) For all subsets A, B of T holds $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
- (52) Let A be a subset of T. Then
 - (i) if A is closed, then $\overline{A} = A$, and
- (ii) if T is topological space-like and $\overline{A} = A$, then A is closed.
- (53) Let A be a subset of T. Then
 - (i) if *A* is open, then $\overline{\Omega_T \setminus A} = \Omega_T \setminus A$, and
- (ii) if *T* is topological space-like and $\Omega_T \setminus A = \Omega_T \setminus A$, then *A* is open.
- (54) Let A be a subset of T and p be a point of T. Then $p \in \overline{A}$ if and only if the following conditions are satisfied:
 - (i) T is non empty, and
- (ii) for every subset G of T such that G is open holds if $p \in G$, then A meets G.

REFERENCES

- [1] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [2] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- $\textbf{[3] Beata Padlewska. Families of sets. } \textit{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \ \texttt{http://mizar.org/JFM/Vol1/setfam_1.html}.$
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received April 14, 1989

Published January 2, 2004