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Summary. The paper contains a definition of topological space. The following no-
tions are defined: point of topological space, subset of topological space, subspace of topo-
logical space, and continuous function.
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The articles [4], [2], [5], [6], [1], and [3] provide the notation and terminology for this paper.
We consider topological structures as extensions of 1-sorted structure as systems
〈 a carrier, a topology〉,

where the carrier is a set and the topology is a family of subsets of the carrier.
In the sequelT is a topological structure.
Let I1 be a topological structure. We say thatI1 is topological space-like if and only if the

conditions (Def. 1) are satisfied.

(Def. 1)(i) The carrier ofI1 ∈ the topology ofI1,

(ii) for every familya of subsets ofI1 such thata⊆ the topology ofI1 holds
⋃

a∈ the topology
of I1, and

(iii) for all subsetsa, b of I1 such thata∈ the topology ofI1 andb∈ the topology ofI1 holds
a∩b∈ the topology ofI1.

Let us note that there exists a topological structure which is non empty, strict, and topological
space-like.

A topological space is a topological space-like topological structure.
Let Sbe a 1-sorted structure. A point ofS is an element ofS.
In the sequelG1 is a topological space.
Next we state the proposition

(5)1 /0 ∈ the topology ofG1.

Let T be a 1-sorted structure. The functor/0T yields a subset ofT and is defined as follows:

(Def. 2) /0T = /0.

The functorΩT yielding a subset ofT is defined by:

(Def. 3) ΩT = the carrier ofT.

1Supported by RPBP.III-24.C1.
1 The propositions (1)–(4) have been removed.
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Let T be a 1-sorted structure. Observe that/0T is empty.
One can prove the following proposition

(12)2 For every 1-sorted structureT holdsΩT = the carrier ofT.

Let T be a non empty 1-sorted structure. Note thatΩT is non empty.
The following propositions are true:

(13) For every non empty 1-sorted structureT and for every pointp of T holdsp∈ ΩT .

(14) For every 1-sorted structureT and for every subsetP of T holdsP⊆ ΩT .

(15) For every 1-sorted structureT and for every subsetP of T holdsP∩ΩT = P.

(16) For every 1-sorted structureT and for every setA such thatA⊆ ΩT holdsA is a subset of
T.

(17) For every 1-sorted structureT and for every subsetP of T holdsPc = ΩT \P.

(18) For every 1-sorted structureT and for every subsetP of T holdsP∪Pc = ΩT .

(19) For every 1-sorted structureT and for all subsetsP, Q of T holdsP⊆ Q iff Qc ⊆ Pc.

(20) For every 1-sorted structureT and for every subsetP of T holdsP = (Pc)c.

(21) For every 1-sorted structureT and for all subsetsP, Q of T holdsP⊆ Qc iff P missesQ.

(22) For every 1-sorted structureT and for every subsetP of T holdsΩT \ (ΩT \P) = P.

(23) For every 1-sorted structureT and for every subsetP of T holdsP 6= ΩT iff ΩT \P 6= /0.

(24) For every 1-sorted structureT and for all subsetsP, Q of T such thatΩT \P = Q holds
ΩT = P∪Q.

(25) For every 1-sorted structureT and for all subsetsP, Q of T such thatΩT = P∪Q andP
missesQ holdsQ = ΩT \P.

(26) For every 1-sorted structureT and for every subsetP of T holdsP missesPc.

(27) For every 1-sorted structureT holdsΩT = ( /0T)c.

Let T be a topological structure and letP be a subset ofT. We say thatP is open if and only if:

(Def. 5)3 P∈ the topology ofT.

Let T be a topological structure and letP be a subset ofT. We say thatP is closed if and only
if:

(Def. 6) ΩT \P is open.

Let T be a 1-sorted structure and letF be a family of subsets ofT. Then
⋃

F is a subset ofT.
Let T be a 1-sorted structure and letF be a family of subsets ofT. Then

⋂
F is a subset ofT.

Let T be a 1-sorted structure and letF be a family of subsets ofT. We say thatF is a cover of
T if and only if:

(Def. 8)4 ΩT =
⋃

F.

Let T be a topological structure. A topological structure is said to be a subspace ofT if it
satisfies the conditions (Def. 9).

2 The propositions (6)–(11) have been removed.
3 The definition (Def. 4) has been removed.
4 The definition (Def. 7) has been removed.
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(Def. 9)(i) Ωit ⊆ ΩT , and

(ii) for every subsetP of it holdsP∈ the topology of it iff there exists a subsetQ of T such
thatQ∈ the topology ofT andP = Q∩Ωit .

Let T be a topological structure. Observe that there exists a subspace ofT which is strict.
Let T be a non empty topological structure. Observe that there exists a subspace ofT which is

strict and non empty.
The schemeSubFamExSdeals with a topological structureA and a unary predicateP , and states

that:
There exists a familyF of subsets ofA such that for every subsetB of A holdsB∈ F
iff P [B]

for all values of the parameters.
Let T be a topological space. One can check that every subspace ofT is topological space-like.
Let T be a topological structure and letP be a subset ofT. The functorT�P yielding a strict

subspace ofT is defined as follows:

(Def. 10) ΩT�P = P.

Let T be a non empty topological structure and letP be a non empty subset ofT. Note thatT�P
is non empty.

Let T be a topological space. Note that there exists a subspace ofT which is topological space-
like and strict.

Let T be a topological space and letP be a subset ofT. Note thatT�P is topological space-like.
Let S, T be 1-sorted structures. A map fromS into T is a function from the carrier ofS into the

carrier ofT.
Let S, T be 1-sorted structures, letf be a function from the carrier ofS into the carrier ofT, and

let P be a set. Thenf ◦P is a subset ofT.
Let S, T be 1-sorted structures, letf be a function from the carrier ofS into the carrier ofT, and

let P be a set. Thenf−1(P) is a subset ofS.
Let S, T be topological structures and letf be a map fromS into T. We say thatf is continuous

if and only if:

(Def. 12)5 For every subsetP1 of T such thatP1 is closed holdsf−1(P1) is closed.

The schemeTopAbstrdeals with a topological structureA and a unary predicateP , and states
that:

There exists a subsetP of A such that for every setx such thatx∈ the carrier ofA
holdsx∈ P iff P [x]

for all values of the parameters.
Next we state three propositions:

(39)6 For every subspaceX′ of T holds every subset ofX′ is a subset ofT.

(41)7 For every subsetA of T such thatA 6= /0T there exists a pointx of T such thatx∈ A.

(42) Ω(G1) is closed.

Let T be a topological space. One can verify thatΩT is closed.
Let T be a topological space. Note that there exists a subset ofT which is closed.
Let T be a non empty topological space. One can verify that there exists a subset ofT which is

non empty and closed.
We now state two propositions:

(43) Let X′ be a subspace ofT andB be a subset ofX′. ThenB is closed if and only if there
exists a subsetC of T such thatC is closed andC∩ΩX′ = B.

5 The definition (Def. 11) has been removed.
6 The propositions (28)–(38) have been removed.
7 The proposition (40) has been removed.
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(44) LetF be a family of subsets ofG1. Suppose that for every subsetA of G1 such thatA∈ F
holdsA is closed. Then

⋂
F is closed.

Let G1 be a topological structure and letA be a subset ofG1. The functorA yields a subset of
G1 and is defined by the condition (Def. 13).

(Def. 13) Letp be a set. Supposep∈ the carrier ofG1. Thenp∈ A if and only if for every subsetG
of G1 such thatG is open holds ifp∈ G, thenA meetsG.

We now state a number of propositions:

(45) LetA be a subset ofT andp be a set. Supposep∈ the carrier ofT. Thenp∈ A if and only
if for every subsetC of T such thatC is closed holds ifA⊆C, thenp∈C.

(46) LetA be a subset ofG1. Then there exists a familyF of subsets ofG1 such that for every
subsetC of G1 holdsC∈ F iff C is closed andA⊆C andA =

⋂
F.

(47) For every subspaceX′ of T and for every subsetA of T and for every subsetA1 of X′ such
thatA = A1 holdsA1 = A∩ΩX′ .

(48) For every subsetA of T holdsA⊆ A.

(49) For all subsetsA, B of T such thatA⊆ B holdsA⊆ B.

(50) For all subsetsA, B of G1 holdsA∪B = A∪B.

(51) For all subsetsA, B of T holdsA∩B⊆ A∩B.

(52) LetA be a subset ofT. Then

(i) if A is closed, thenA = A, and

(ii) if T is topological space-like andA = A, thenA is closed.

(53) LetA be a subset ofT. Then

(i) if A is open, thenΩT \A = ΩT \A, and

(ii) if T is topological space-like andΩT \A = ΩT \A, thenA is open.

(54) Let A be a subset ofT and p be a point ofT. Then p ∈ A if and only if the following
conditions are satisfied:

(i) T is non empty, and

(ii) for every subsetG of T such thatG is open holds ifp∈ G, thenA meetsG.
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