Preliminaries to Circuits, I^{11}

Yatsuka Nakamura
Shinshu University, Nagano
Andrzej Trybulec
Warsaw University, Białystok

Piotr Rudnicki
University of Alberta, Edmonton
Pauline N. Kawamoto
Shinshu University, Nagano

Summary. This article is the first in a series of four articles (continued in [23], [22], [24]) about modelling circuits by many-sorted algebras.

Here, we introduce some auxiliary notations and prove auxiliary facts about many sorted sets, many sorted functions and trees.

MML Identifier: PRE_CIRC.
WWW: http://mizar.org/JFM/Vol6/pre_circ.html

The articles [26], [15], [31], [4], [30], [2], [1], [5], [29], [19], [32], [13], [18], [14], [25], [17], [7], [3], [9], [10], [11], [6], [8], [27], [20], [28], [21], [12], and [16] provide the notation and terminology for this paper.

1. VARIA

The scheme FraenkelFinIm deals with a finite non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(x) ; x$ ranges over elements of $\mathcal{A}: \mathcal{P}[x]\}$ is finite
for all values of the parameters.
Next we state three propositions:
(2) For every function f and for all sets x, y such that $\operatorname{dom} f=\{x\}$ and $\operatorname{rng} f=\{y\}$ holds $f=\{\langle x, y\rangle\}$.
(3) For all functions f, g, h such that $f \subseteq g$ holds $f+\cdot h \subseteq g+\cdot h$.
(4) For all functions f, g, h such that $f \subseteq g$ and $\operatorname{dom} f$ misses dom h holds $f \subseteq g+\cdot h$.

Let us note that there exists a set which is finite, non empty, and natural-membered.
Let A be a finite non empty real-membered set. Then $\sup A$ is a real number and it can be characterized by the condition:
(Def. 1) $\sup A \in A$ and for every real number k such that $k \in A$ holds $k \leq \sup A$.
We introduce $\max A$ as a synonym of $\sup A$.
Let X be a finite non empty natural-membered set. One can verify that $\max X$ is natural.

[^0]
2. Many Sorted Sets and Functions

The following proposition is true
(5) For every set I and for every many sorted set M_{1} indexed by I holds $M_{1}{ }^{\#}\left(\varepsilon_{I}\right)=\{0\}$.

The scheme MSSLambda2Part deals with a set \mathcal{A}, two unary functors \mathcal{F} and \mathcal{G} yielding sets, and a unary predicate \mathcal{P}, and states that:

There exists a many sorted set f indexed by \mathcal{A} such that for every element i of \mathcal{A} holds
(i) if $\mathcal{P}[i]$, then $f(i)=\mathcal{F}(i)$, and
(ii) if not $\mathcal{P}[i]$, then $f(i)=\mathcal{G}(i)$
for all values of the parameters.
Let I be a set and let I_{1} be a many sorted set indexed by I. We say that I_{1} is locally-finite if and only if:
(Def. 3 2^{2} For every set i such that $i \in I$ holds $I_{1}(i)$ is finite.
Let I be a set. One can verify that there exists a many sorted set indexed by I which is non-empty and locally-finite.

Let I, A be sets. Then $I \longmapsto A$ is a many sorted set indexed by I.
Let I be a set, let M be a many sorted set indexed by I, and let A be a subset of I. Then $M \upharpoonright A$ is a many sorted set indexed by A.

Let M be a non-empty function and let A be a set. Observe that $M\lceil A$ is non-empty.
Next we state three propositions:
(6) For every non empty set I and for every non-empty many sorted set B indexed by I holds $U \mathrm{rng} B$ is non empty.
(7) For every set I holds uncurry $(I \longmapsto \emptyset)=\emptyset$.
(8) Let I be a non empty set, A be a set, B be a non-empty many sorted set indexed by I, and F be a many sorted function from $I \longmapsto A$ into B. Then domcommute $(F)=A$.

Now we present two schemes. The scheme LambdaRecCorrD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a binary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:
(i) There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every natural number i holds $f(i+1)=\mathcal{F}(i, f(i))$, and
(ii) for all functions f_{1}, f_{2} from \mathbb{N} into \mathcal{A} such that $f_{1}(0)=\mathcal{B}$ and for every natural number i holds $f_{1}(i+1)=\mathcal{F}\left(i, f_{1}(i)\right)$ and $f_{2}(0)=\mathcal{B}$ and for every natural number i holds $f_{2}(i+1)=\mathcal{F}\left(i, f_{2}(i)\right)$ holds $f_{1}=f_{2}$ for all values of the parameters.

The scheme LambdaMSFD deals with a non empty set \mathcal{A}, a subset \mathcal{B} of \mathcal{A}, many sorted sets \mathcal{C}, \mathcal{D} indexed by \mathcal{B}, and a unary functor \mathcal{F} yielding a set, and states that:

There exists a many sorted function f from \mathcal{C} into \mathcal{D} such that for every element i of \mathcal{A} such that $i \in \mathcal{B}$ holds $f(i)=\mathcal{F}(i)$
provided the parameters have the following property:

- For every element i of \mathcal{A} such that $i \in \mathcal{B}$ holds $\mathcal{F}(i)$ is a function from $\mathcal{C}(i)$ into $\mathcal{D}(i)$.

Let F be a non-empty function and let f be a function. Observe that $F \cdot f$ is non-empty.
Let I be a set and let M_{1} be a non-empty many sorted set indexed by I. One can verify that every element of ΠM_{1} is function-like and relation-like.

Next we state four propositions:
(9) Let I be a set, f be a non-empty many sorted set indexed by I, g be a function, and s be an element of Πf. Suppose $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom} g$ holds $g(x) \in f(x)$. Then $s+g$ is an element of Πf.

[^1](10) Let A, B be non empty sets, C be a non-empty many sorted set indexed by A, I_{2} be a many sorted function from $A \longmapsto B$ into C, and b be an element of B. Then there exists a many sorted set c indexed by A such that $c=\left(\operatorname{commute}\left(I_{2}\right)\right)(b)$ and $c \in C$.
(11) Let I be a set, M be a many sorted set indexed by I, and x, g be functions. If $x \in \Pi M$, then $x \cdot g \in \Pi(M \cdot g)$.
(12) For every natural number n and for every set a holds $\prod(n \mapsto\{a\})=\{n \mapsto a\}$.

3. Trees

We adopt the following rules: T, T_{1} denote finite trees, t, p denote elements of T, and t_{1} denotes an element of T_{1}.

Let D be a non empty set. Observe that every element of $\operatorname{FinTrees}(D)$ is finite.
Let T be a finite decorated tree and let t be an element of dom T. One can check that $T \upharpoonright t$ is finite.
One can prove the following proposition
(13) $T \upharpoonright p \approx\{t: p \preceq t\}$.

Let T be a finite decorated tree, let t be an element of $\operatorname{dom} T$, and let T_{1} be a finite decorated tree. Observe that T with-replacement $\left(t, T_{1}\right)$ is finite.

Next we state a number of propositions:
(14) T with-replacement $\left(p, T_{1}\right)=\{t: p \npreceq t\} \cup\left\{p^{\wedge} t_{1}\right\}$.
(15) For every finite sequence f of elements of \mathbb{N} such that $f \in T$ with-replacement $\left(p, T_{1}\right)$ and $p \preceq f$ there exists t_{1} such that $f=p^{\complement} t_{1}$.
(16) For every tree yielding finite sequence p and for every natural number k such that $k+1 \in$ $\operatorname{dom} p$ holds $\overbrace{p} \upharpoonright\langle k\rangle=p(k+1)$.
(17) Let q be a decorated tree yielding finite sequence and k be a natural number. If $k+1 \in$ $\operatorname{dom} q$, then $\langle k\rangle \in \overbrace{\operatorname{dom}_{\kappa} q(\kappa)}$.
(18) Let p, q be tree yielding finite sequences and k be a natural number. Suppose len $p=\operatorname{len} q$ and $k+1 \in \operatorname{dom} p$ and for every natural number i such that $i \in \operatorname{dom} p$ and $i \neq k+1$ holds $p(i)=q(i)$. Let t be a tree. If $q(k+1)=t$, then $\overbrace{q}=\overbrace{p}$ with-replacement $(\langle k\rangle, t)$.
(19) Let e_{1}, e_{2} be finite decorated trees, x be a set, k be a natural number, and p be a decorated tree yielding finite sequence. Suppose $\langle k\rangle \in \operatorname{dom} e_{1}$ and $e_{1}=x$-tree (p). Then there exists a decorated tree yielding finite sequence q such that e_{1} with-replacement $\left(\langle k\rangle, e_{2}\right)=x$-tree (q) and len $q=\operatorname{len} p$ and $q(k+1)=e_{2}$ and for every natural number i such that $i \in \operatorname{dom} p$ and $i \neq k+1$ holds $q(i)=p(i)$.
(20) For every finite tree T and for every element p of T such that $p \neq \emptyset$ holds $\operatorname{card}(T \upharpoonright p)<$ $\operatorname{card} T$.
(21) For every function f holds $\overline{\overline{(f \text { qua set })}}=\overline{\overline{\operatorname{dom} f}}$.
(22) For all finite trees T, T_{1} and for every element p of T holds $\operatorname{card}\left(T\right.$ with-replacement $\left.\left(p, T_{1}\right)\right)+$ $\operatorname{card}(T \upharpoonright p)=\operatorname{card} T+\operatorname{card} T_{1}$.
(23) For all finite decorated trees T, T_{1} and for every element p of $\operatorname{dom} T$ holds $\operatorname{card}\left(T\right.$ with-replacement $\left.\left(p, T_{1}\right)\right)+\operatorname{card}(T \upharpoonright p)=\operatorname{card} T+\operatorname{card} T_{1}$.

Let x be a set. One can check that the root tree of x is finite.
One can prove the following proposition
For every set x holds card (the root tree of x) $=1$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[3] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1. html
[4] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[5] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ ordinal2.html
[6] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html
[7] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html
[8] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ funct_6.html
[9] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/trees_2.html
[10] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/trees_3.html
[11] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_ 4.html
[12] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[13] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funct_1.html
[14] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[15] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[16] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[17] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html
[18] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[19] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html
[20] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_1.html
[21] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html
[22] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/circuit1.html
[23] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msafree2.html
[24] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/circuit2.html
[25] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
[26] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[27] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html
[28] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html
[29] Andrzej Trybulec. On the sets inhabited by numbers. Journal of Formalized Mathematics, 15, 2003. http://mizar.org/JFM/Vol16/ membered.html
[30] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[31] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[32] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received November 17, 1994
Published January 2, 2004

[^0]: ${ }^{1}$ This work was initiated while the second author visited Nagano (March-May 1994) and then continued when the third author visited Edmonton (May-June 1994). The work was finalized when the fourth author visited Białystok (October-November 1994). Partial funding for this work has been provided by: Shinshu Endowment Fund for Information Science, NSERC Grant OGP9207, JSTF award 651-93-S009.
 ${ }^{1}$ The proposition (1) has been removed.

[^1]: ${ }^{2}$ The definition (Def. 2) has been removed.

