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1. PRELIMINARIES

One can prove the following propositions:

(1) For all natural numbersn, msuch thatn 6= 0 andm 6= 0 holds(n·m−n−m)+1≥ 0.

(2) For all real numbersx, y such thaty > 0 holds min(x,y)
max(x,y) ≤ 1.

(3) For all real numbersx, y such that for every real numberc such thatc > 0 andc < 1 holds
c·x≥ y holdsy≤ 0.

(4) Let p be a finite sequence of elements ofR. Suppose that for every natural numbern such
thatn∈ domp holdsp(n)≥ 0. Let i be a natural number. Ifi ∈ domp, then∑ p≥ p(i).

(5) For all real numbersx, y holds−(x+yiCF) =−x+(−y)iCF.

(6) For all real numbersx1, y1, x2, y2 holds (x1 + y1iCF)− (x2 + y2iCF) = (x1− x2) + (y1−
y2)iCF.

In this article we present several logical schemes. The schemeExDHGrStrSeqdeals with a non
empty groupoidA and a unary functorF yielding an element ofA , and states that:

There exists a sequenceS of A such that for every natural numbern holdsS(n) =
F (n)

for all values of the parameters.
The schemeExDdoubleLoopStrSeqdeals with a non empty double loop structureA and a unary

functorF yielding an element ofA , and states that:
There exists a sequenceS of A such that for every natural numbern holdsS(n) =
F (n)

for all values of the parameters.
The following proposition is true

(8)1 For every elementz of CF such thatz 6= 0CF and for every natural numbern holds
|powerCF

(z, n)|= |z|n.
1This work has been partially supported by TYPES grant IST-1999-29001.
1 The proposition (7) has been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol12/polynom5.html


FUNDAMENTAL THEOREM OF ALGEBRA 2

Let p be a finite sequence of elements of the carrier ofCF. The functor|p| yields a finite
sequence of elements ofR and is defined by:

(Def. 1) len|p|= lenp and for every natural numbern such thatn∈ domp holds|p|n = |pn|.

We now state several propositions:

(9) |ε(the carrier ofCF)|= εR.

(10) For every elementx of CF holds|〈x〉|= 〈|x|〉.

(11) For all elementsx, y of CF holds|〈x,y〉|= 〈|x|, |y|〉.

(12) For all elementsx, y, z of CF holds|〈x,y,z〉|= 〈|x|, |y|, |z|〉.

(13) For all finite sequencesp, q of elements of the carrier ofCF holds|pa q|= |p|a |q|.

(14) Let p be a finite sequence of elements of the carrier ofCF andx be an element ofCF. Then
|pa 〈x〉|= |p|a 〈|x|〉 and|〈x〉a p|= 〈|x|〉a |p|.

(15) For every finite sequencep of elements of the carrier ofCF holds|∑ p| ≤ ∑ |p|.

2. OPERATIONS ONPOLYNOMIALS

Let L be an Abelian add-associative right zeroed right complementable right unital commutative
distributive non empty double loop structure, letp be a polynomial ofL, and letn be a natural
number. The functorpn yields a sequence ofL and is defined as follows:

(Def. 2) pn = powerPolynom-RingL(p, n).

Let L be an Abelian add-associative right zeroed right complementable right unital commutative
distributive non empty double loop structure, letp be a polynomial ofL, and letn be a natural
number. Note thatpn is finite-Support.

Next we state several propositions:

(16) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
p0 = 1.L.

(17) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
p1 = p.

(18) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
p2 = p∗ p.

(19) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
p3 = p∗ p∗ p.

(20) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure,p be a polynomial ofL, andn be a
natural number. Thenpn+1 = pn∗ p.

(21) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andn be a natural number. Then
(0.L)n+1 = 0.L.

(22) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andn be a natural number. Then
(1.L)n = 1.L.
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(23) LetL be a field,p be a polynomial ofL, x be an element ofL, andn be a natural number.
Then eval(pn,x) = powerL(eval(p,x), n).

(24) LetL be an integral domain andp be a polynomial ofL. If len p 6= 0, then for every natural
numbern holds len(pn) = (n· lenp−n)+1.

Let L be a non empty groupoid, letp be a sequence ofL, and letv be an element ofL. The
functorv· p yielding a sequence ofL is defined as follows:

(Def. 3) For every natural numbern holds(v· p)(n) = v· p(n).

Let L be an add-associative right zeroed right complementable right distributive non empty
double loop structure, letp be a polynomial ofL, and letv be an element ofL. Observe thatv · p is
finite-Support.

We now state several propositions:

(25) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure andp be a polynomial ofL. Then len(0L · p) = 0.

(26) Let L be an add-associative right zeroed right complementable left unital commutative
associative distributive field-like non empty double loop structure,p be a polynomial ofL,
andv be an element ofL. If v 6= 0L, then len(v· p) = lenp.

(27) LetL be an add-associative right zeroed right complementable left distributive non empty
double loop structure andp be a sequence ofL. Then 0L · p = 0.L.

(28) For every left unital non empty multiplicative loop structureL and for every sequencep of
L holds1L · p = p.

(29) LetL be an add-associative right zeroed right complementable right distributive non empty
double loop structure andv be an element ofL. Thenv·0.L = 0.L.

(30) LetL be an add-associative right zeroed right complementable right unital right distributive
non empty double loop structure andv be an element ofL. Thenv·1.L = 〈0v〉.

(31) LetL be an add-associative right zeroed right complementable left unital distributive com-
mutative associative field-like non empty double loop structure,p be a polynomial ofL, and
v, x be elements ofL. Then eval(v· p,x) = v·eval(p,x).

(32) LetL be an add-associative right zeroed right complementable right distributive unital non
empty double loop structure andp be a polynomial ofL. Then eval(p,0L) = p(0).

Let L be a non empty zero structure and letz0, z1 be elements ofL. The functor〈0z0,z1〉 yields
a sequence ofL and is defined as follows:

(Def. 4) 〈0z0,z1〉= 0.L+· (0,z0)+· (1,z1).

Next we state several propositions:

(33) LetL be a non empty zero structure andz0 be an element ofL. Then〈0z0〉(0) = z0 and for
every natural numbern such thatn≥ 1 holds〈0z0〉(n) = 0L.

(34) For every non empty zero structureL and for every elementz0 of L such thatz0 6= 0L holds
len〈0z0〉= 1.

(35) For every non empty zero structureL holds〈00L〉= 0.L.

(36) LetL be an add-associative right zeroed right complementable distributive commutative as-
sociative left unital integral domain-like non empty double loop structure andx, y be elements
of L. Then〈0x〉 ∗ 〈0y〉= 〈0x ·y〉.
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(37) Let L be an Abelian add-associative right zeroed right complementable right unital asso-
ciative commutative distributive field-like non empty double loop structure,x be an element
of L, andn be a natural number. Then〈0x〉n = 〈0powerL(x, n)〉.

(38) Let L be an add-associative right zeroed right complementable unital non empty double
loop structure andz0, x be elements ofL. Then eval(〈0z0〉,x) = z0.

(39) LetL be a non empty zero structure andz0, z1 be elements ofL. Then〈0z0,z1〉(0) = z0 and
〈0z0,z1〉(1) = z1 and for every natural numbern such thatn≥ 2 holds〈0z0,z1〉(n) = 0L.

Let L be a non empty zero structure and letz0, z1 be elements ofL. One can check that〈0z0,z1〉
is finite-Support.

Next we state a number of propositions:

(40) For every non empty zero structureL and for all elementsz0, z1 of L holds len〈0z0,z1〉 ≤ 2.

(41) For every non empty zero structureL and for all elementsz0, z1 of L such thatz1 6= 0L holds
len〈0z0,z1〉= 2.

(42) For every non empty zero structureL and for every elementz0 of L such thatz0 6= 0L holds
len〈0z0,0L〉= 1.

(43) For every non empty zero structureL holds〈00L,0L〉= 0.L.

(44) For every non empty zero structureL and for every elementz0 of L holds〈0z0,0L〉= 〈0z0〉.

(45) LetL be an add-associative right zeroed right complementable left distributive unital non
empty double loop structure andz0, z1, x be elements ofL. Then eval(〈0z0,z1〉,x) = z0+z1 ·x.

(46) LetL be an add-associative right zeroed right complementable left distributive unital non
empty double loop structure andz0, z1, x be elements ofL. Then eval(〈0z0,0L〉,x) = z0.

(47) LetL be an add-associative right zeroed right complementable left distributive unital non
empty double loop structure andz0, z1, x be elements ofL. Then eval(〈00L,z1〉,x) = z1 ·x.

(48) LetL be an add-associative right zeroed right complementable left distributive well unital
non empty double loop structure andz0, z1, x be elements ofL. Then eval(〈0z0,1L〉,x) =
z0 +x.

(49) LetL be an add-associative right zeroed right complementable left distributive well unital
non empty double loop structure andz0, z1, x be elements ofL. Then eval(〈00L,1L〉,x) = x.

3. SUBSTITUTION IN POLYNOMIALS

Let L be an Abelian add-associative right zeroed right complementable right unital commutative
distributive non empty double loop structure and letp, q be polynomials ofL. The functorp[q]
yields a polynomial ofL and is defined by the condition (Def. 5).

(Def. 5) There exists a finite sequenceF of elements of the carrier of Polynom-RingL such that
p[q] = ∑F and lenF = lenp and for every natural numbern such thatn∈ domF holdsF(n) =
p(n−′ 1) ·qn−′1.

One can prove the following propositions:

(50) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
(0.L)[p] = 0.L.

(51) Let L be an Abelian add-associative right zeroed right complementable right unital com-
mutative distributive non empty double loop structure andp be a polynomial ofL. Then
p[0.L] = 〈0p(0)〉.
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(52) LetL be an Abelian add-associative right zeroed right complementable right unital associa-
tive commutative distributive field-like non empty double loop structure,p be a polynomial
of L, andx be an element ofL. Then len(p[〈0x〉])≤ 1.

(53) For every fieldL and for all polynomialsp, q of L such that lenp 6= 0 and lenq > 1 holds
len(p[q]) = (lenp· lenq− lenp− lenq)+2.

(54) For every fieldL and for all polynomialsp, q of L and for every elementx of L holds
eval(p[q],x) = eval(p,eval(q,x)).

4. FUNDAMENTAL THEOREM OFALGEBRA

Let L be a unital non empty double loop structure, letp be a polynomial ofL, and letx be an element
of L. We say thatx is a root ofp if and only if:

(Def. 6) eval(p,x) = 0L.

Let L be a unital non empty double loop structure and letp be a polynomial ofL. We say thatp
has roots if and only if:

(Def. 7) There exists an elementx of L such thatx is a root ofp.

The following proposition is true

(55) For every unital non empty double loop structureL holds0.L has roots.

Let L be a unital non empty double loop structure. Note that0.L has roots.
One can prove the following proposition

(56) For every unital non empty double loop structureL and for every elementx of L holdsx is
a root of0.L.

Let L be a unital non empty double loop structure. One can check that there exists a polynomial
of L which has roots.

Let L be a unital non empty double loop structure. We say thatL is algebraic-closed if and only
if:

(Def. 8) For every polynomialp of L such that lenp > 1 holdsp has roots.

Let L be a unital non empty double loop structure and letp be a polynomial ofL. The functor
Rootsp yielding a subset ofL is defined by:

(Def. 9) For every elementx of L holdsx∈ Rootsp iff x is a root ofp.

Let L be a commutative associative left unital distributive field-like non empty double loop
structure and letp be a polynomial ofL. The functor NormPolynomialp yields a sequence ofL and
is defined by:

(Def. 10) For every natural numbern holds(NormPolynomialp)(n) = p(n)
p(lenp−′1) .

Let L be an add-associative right zeroed right complementable commutative associative left
unital distributive field-like non empty double loop structure and letp be a polynomial ofL. One
can check that NormPolynomialp is finite-Support.

The following propositions are true:

(57) LetL be a commutative associative left unital distributive field-like non empty double loop
structure andp be a polynomial ofL. If len p 6= 0, then(NormPolynomialp)(lenp−′1) = 1L.

(58) For every field L and for every polynomialp of L such that lenp 6= 0 holds
lenNormPolynomialp = lenp.
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(59) Let L be a field andp be a polynomial ofL. If len p 6= 0, then for every elementx of L
holds eval(NormPolynomialp,x) = eval(p,x)

p(lenp−′1) .

(60) LetL be a field andp be a polynomial ofL. Suppose lenp 6= 0. Let x be an element ofL.
Thenx is a root ofp if and only if x is a root of NormPolynomialp.

(61) For every fieldL and for every polynomialp of L such that lenp 6= 0 holdsp has roots iff
NormPolynomialp has roots.

(62) For every fieldL and for every polynomialp of L such that lenp 6= 0 holds Rootsp =
RootsNormPolynomialp.

(63) idC is continuous onC.

(64) For every elementx of C holdsC 7−→ x is continuous onC.

Let L be a unital non empty groupoid, letx be an element ofL, and letn be a natural number.
The functor FPower(x,n) yielding a map fromL into L is defined as follows:

(Def. 11) For every elementy of L holds(FPower(x,n))(y) = x ·powerL(y, n).

Next we state several propositions:

(65) For every unital non empty groupoidL holds FPower(1L,1) = idthe carrier ofL.

(66) FPower(1CF,2) = idC idC.

(67) For every unital non empty groupoidL and for every elementx of L holds FPower(x,0) =
(the carrier ofL) 7−→ x.

(68) For every elementx of CF there exists an elementx1 of C such thatx = x1 and
FPower(x,1) = x1 idC.

(69) For every elementx of CF there exists an elementx1 of C such thatx = x1 and
FPower(x,2) = x1 (idC idC).

(70) Letx be an element ofCF andn be a natural number. Then there exists a functionf from
C into C such thatf = FPower(x,n) and FPower(x,n+1) = f idC.

(71) Letx be an element ofCF andn be a natural number. Then there exists a functionf from
C into C such thatf = FPower(x,n) and f is continuous onC.

Let L be a unital non empty double loop structure and letp be a polynomial ofL. The functor
Polynomial-Function(L, p) yields a map fromL into L and is defined as follows:

(Def. 12) For every elementx of L holds(Polynomial-Function(L, p))(x) = eval(p,x).

We now state four propositions:

(72) For every polynomialp of CF there exists a functionf from C into C such that f =
Polynomial-Function(CF, p) and f is continuous onC.

(73) Let p be a polynomial ofCF. Suppose lenp > 2 and|p(lenp−′ 1)| = 1. Let F be a finite
sequence of elements ofR. Suppose lenF = lenp and for every natural numbern such that
n∈ domF holdsF(n) = |p(n−′1)|. Let zbe an element ofCF. If |z|> ∑F, then|eval(p,z)|>
|p(0)|+1.

(74) Let p be a polynomial ofCF. Suppose lenp > 2. Then there exists an elementz0 of CF

such that for every elementz of CF holds|eval(p,z)| ≥ |eval(p,z0)|.

(75) For every polynomialp of CF such that lenp > 1 holdsp has roots.

Let us note thatCF is algebraic-closed.
Let us note that there exists a left unital right unital non empty double loop structure which

is algebraic-closed, add-associative, right zeroed, right complementable, Abelian, commutative,
associative, distributive, field-like, and non degenerated.
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