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Summary. Sequential and concurrent compositions of processes in Petri nets are in-
troduced. A process is formalized as a set of (possible), so called, firing sequences. In the
definition of the sequential composition the standard concatenation is used

RibeforeRy = {p1 ™ p2:p1€ R A p2 € R}
The definition of the concurrent composition is more complicated
Ry concuRy = {g1UQp : g1 missesp A Seqs € Ry A Seqp € Ry}

For example,
{{to) } concuf(t1,t2) } = {(to,t1,t2), (t1,to, t2), (t1,t2,t0) }
The basic properties of the compositions are shown.
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[4] provide the notation and terminology for this paper.

1. PRELIMINARIES

We use the following conventiom:denotes a natural number axd, X2, y1, Y2 denote sets.
The following propositions are true:

(1) Ifi>0,then{{i, x}} is a finite subsequence.
(2) For every finite subsequengédioldsqg = 0 iff Seqq = 0.
(3) For every finite subsequengesuch thag = {{i, x} } holds Seq = (x).

Let us observe that every finite subsequence is finite.
We now state several propositions:

(4) For every finite subsequengesuch that Seq= (x) there exists such thag = {{i, x} }.

(5) If {{x1, y1), (X2, ¥2)} is afinite sequence, them =1 andx, = 1 andy; =y, orx; = 1 and
Xo=20rx; =2 andxy = 1.
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(6) (X1, x2) = {{1,x1),(2,%2) }.
(7) For every finite subsequenpéoldsp = len Sedp.
(8) For all binary relation®, R such that dor® misses dorR holdsP missesR.

(9) For all setsX, Y and for all binary relation®, R such thatX missesy holdsP[X misses
RJY.

(10) For all functionsf, g, h such thatf C h andg C h and f missesg holds domf misses
domg.

(11) For every seY and for every binary relatioR holdsY [RC RIR7(Y).

(12) For every seY and for every functiorf holdsY[f = f[f=1(Y).

2. MARKINGS ON PETRI NETS

Let P be a set. A function is called a marking Bff:
(Def. 1) domit=P and rngitC N.

We adopt the following rules?, p, x denote setayy, mp, mg, my, mdenote markings d®, and
i, j, j1, k denote natural numbers.
Let P be a set, let be a marking oP, and letp be a set. Them(p) is a natural number. We
introduce then multitude ofp as a synonym afn(p).
The schemdlarkingLambdadeals with a sez and a unary functof yielding a natural num-
ber, and states that:
There exists a markingh of 4 such that for everyp such thatp € 4 holds them
multitude ofp= 7 (p)
for all values of the parameters.
Let us consideP, my, mp. Let us observe thaty = my if and only if:

(Def. 2) For everyp such thatp € P holds themy multitude of p = the n, multitude ofp.

Let us consideP. The functor{ }p yields a marking oP and is defined as follows:
(Def.3) {}p=P+~—0.

Let P be a set and laty, n, be markings oP. The predicatem C ny, is defined as follows:
(Def. 4) For every sep such thatp € P holds themy multitude of p < themp, multitude ofp.

Let us note that the predicate C my is reflexive.
The following propositions are true:

(13) {}pcm
(14) Ifmy € mp andmy € mg, thenm, € mg.

Let P be a set and laty, mp be markings oP. The functomy + mp yields a marking oP and
is defined as follows:

(Def. 5) For every sep such thatp € P holds themy + mp multitude of p = (the my multitude of
p) + (the mp multitude ofp).

Let us note that the functan, + m, is commutative.
Next we state the proposition

(15) m+{}p=m

LetP be a set and lety, mp be markings oP. Let us assume that, C my. The functomy —mp
yields a marking oP and is defined as follows:
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(Def. 6) For every sep such thatp € P holds themy — mp multitude of p = (the my multitude of
p) — (them, multitude ofp).

We now state a number of propositions:
(16) mg Cmg+mp.
a7) m—{}p=m.
(18) If my € mp andnm, € mg, thenmg — N, C Mg — My
(19) (M +nmp) —mp =my.
(20) IfmCnm andmg C mp, thenmg —mC m—m.
(21) If m C my, then(my+mg) —my = (Mp — Mg) + Mg,
(22) Ifmy C mp andmy € my, thenmy = my.
(23) (M +np) +mg =y + (M + ).
(24) 1f my C mp andmg C my, thenmy + mg C My + M.
(25) Ifmy Cmp, thenmy —my C My,
(26) If my € mp andmg € my andmy € my, thenmy —my € mp — mg.
(27) If mp C my, thenmp = (My— M) +my.
(28) (mMy+mp) —mg =mp.
(29) If mp+mg C my, thenmy —mp — Mg = My — (M + Mg)..
(30) If mg Cmpandm, C my, thenmy — (Mp — mg) = (Mg — M) + Mg.
(31) meNP.

(32) Ifxe NP, thenxis a marking ofP.

3. TRANSITIONS AND FIRING

Let us consideP. Transition ofP is defined by:
(Def. 7) There exisin, mp such that it= (mg, my).

In the sequel, t1, t, denote transitions d®.

Let us consideP, t. Thent; is a marking ofP. We introduce Pré as a synonym df;. Thent,
is a marking ofP. We introduce Pogtas a synonym db.

Let us consideP, m, t. The functor fir¢t,m) yields a marking oP and is defined by:

(m—Pret) 4 Postt, if Pret Cm,
m, otherwise.

(Def. 8) firg(t,m) = {
The following proposition is true
(33) If Pret; + Prety C m, then firety, fire(t;,m)) = (m— Pret; — Prety) 4 Postt; + Postts.
Let us consideP, t. The functor fire yielding a function is defined by:
(Def. 9) domfiret = NP and for every markingn of P holds(fire t)(m) = fire(t, m).

We now state two propositions:

(34) rngfiret C NP,
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(35) fire(ty, fire(ty, m)) = (firety - fire ty)(m).
Let us consideP. A non empty set is called a Petri net owif:
(Def. 10) For every set such thak € it holdsx is a transition of.

In the sequeN is a Petri net oveP.
Let us consideP, N. We see that the element Hfis a transition of.
In the sequeg, e, e, are elements dfl.

4. FIRING SEQUENCES OFTRANSITIONS

Let us consideP, N. A firing-sequence ol is an element oN*.

In the sequeC, Cy, C, denote firing-sequences Mt

Let us consideP, N, C. The functor fireC yields a function and is defined by the condition
(Def. 11).

(Def. 11) There exists a function yielding finite sequeicsuch that fireaC = composge F and
lenF = lenC and for every natural numbérsuch that € domC holdsF (i) = fire (C; qua
element ofiN).

The following propositions are true:
(36) fire(en) = idyp.
(37) fire(e) =firee
(38) firee-idye =firee
(39) fire(er, &) =firee,-firee;.
(40) domfireC = NP and rngfireC C NP.
(41) fire(Cyi~Cy) =fireCy-fire Cy.
(42) fire(C~ (e)) =firee-fireC.
Let us consideP, N, C, m. The functor fir¢C,m) yielding a marking oP is defined by:
(Def. 12) firgC,m) = (fire C)(m).

5. SEQUENTIAL COMPOSITION

Let us consideP, N. A process i\ is a subset oN*.
In the sequeR, Ry, Ry, Rs, P, P, denote processes
One can check that every function which is finite sequence-like is also finite subsequence-like.
Let us consideP, N, R, R,. The functorR; beforeR; yielding a process il is defined by:

(Def. 13) RibeforeR, ={C17"C:C1 € Ry A Cr € Rp}.

Let us consideP, N and letR;, R, be non empty processeshh Note thatR; beforeR, is non
empty.
We now state several propositions:

(43) (R1UR)beforeR = (R beforeR) U (Ry beforeR).
(44) RbefordR;URy) = (RbeforeR;) U (RbeforeRy).
(45) {Cy}beforgCy} = {C1™Cy}.

(46) {C;,C,}befordC} = {C;~C,C,~C}.

(47) {C}before(Cy,Cy} = {C~C;,C" Gy}
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6. CONCURRENTCOMPOSITION

Let us consideP, N, Ry, R>. The functorR; concumR; yielding a process il is defined as follows:

(Def. 14) RyconcuRz = {C: Vg, g, finite subsequencdC = QU2 A Q1 missestz A Seqts € Ry A
Seqp € R)}.

Let us note that the functd®; concurR, is commutative.
One can prove the following four propositions:

(48) (R1URp)concuR= (RsconcuR) U (R;concurR).

(49) {(e1)}concuf(ex)} = {(e1,&2), (€2,€1)}.

(50) {(e1),(ez)}concu(e)} = {{e1,€),(e2€), (e er) (eer)}.
(51) (RybeforeRy)beforeR; = Ry beford R, beforeRs).

Let p be a finite subsequence andilée a natural number. The functor Shiftyielding a finite
subsequence is defined as follows:

(Def. 15) domShiftp = {i + k;k ranges over natural numberk:c domp} and for every natural
numberj such thatj € domp holds(Shift p)(i+ j) = p(j).

In the sequet, g1, g2 are finite subsequences.
Next we state a number of propositions:

(52) shiffq=aq.

(53) Shift*l q= Shift Shifti q.

(54) For every finite sequengesuch thatp # 0 holds domShiftp= {j1:i+1<j1 A j1 <
i +lenp}.

(55) For every finite subsequengéoldsq = 0 iff Shift' q = 0.

(56) Letq be a finite subsequence. Then there exists a finite subsegsiesweh that dors; =
domg and rngs; = dom Shift g and for everyk such thak € domqg holdss; (k) =i + k ands;
is one-to-one.

(57) For every finite subsequengoldsT = Shift q.

(58) For every finite sequengeholds donp = dom Seq Shiftp.

(59) For every finite sequengesuch thak € domp holds(Sgmdom Shiftp)(k) =i+k
(60) For every finite sequengesuch thak € domp holds(Seq Shift p)(k) = p(k).

(61) For every finite sequengeholds Seq Shifp = p.

In the sequeps, p; are finite sequences.
One can prove the following propositions:

(62) don(p; U Shift®P1 py) = Seqlenp; +lenpy).

(63) For every finite sequengr and for every finite subsequenpgsuch that lep; <i holds
domp; misses dom Shiffy.

(64) For all finite sequences, p2 holdsp; ™ p2 = py U ShifteP1 p,.

(65) For every finite sequenga and for every finite subsequenpg such that > lenp; holds
p1 misses Shiftps.

(66) (RyconcumRy)concuRs = Ry concufR;concurRs).
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(67) RybeforeR, C RyconcuR,.

(68) If Ry C P, andR, C Py, thenRy beforeR, C Py beforeP,.

(69) If Ry C P andR, C Py, thenR; concuR, C Py concutPs.

(70) For all finite subsequencesq such thagy C p holds Shiftq C Shift' p.
(71) For all finite sequences:, p2 holds Shiff"L p, C p1 ™ po.

(72) If domg; misses domp, then dom Shiftg; misses dom Shiftp,.

(73) For allfinite subsequencgsqs, gz such thafy = q; Ugz andg; missesy, holds Shiftgy U
Shift' g, = Shift' g.

(74) For every finite subsequengéolds dom Seq = dom Seq Shift.

(75) For every finite subsequencesuch thatk € domSeq) there existsj such thatj =
(Sgmdony) (k) and(Sgmdom Shiftq) (k) =i + j.

(76) For every finite subsequengsuch thak € dom Seq holds(Seq Shiﬂq) (k) = (Seq) (k).
(77) For every finite subsequengéolds Seq = Seq Shiftq.
(78) For every finite subsequengsuch that dom C Segk holds dom Shiftg C Sed|i + k).

(79) Letp be a finite sequence arg, g, be finite subsequences.df C p, then there exists a
finite subsequencg such thas; = g, U Shift"Pgp.

(80) Letpy, p2 be finite sequences angl, g, be finite subsequences. Suppgs€ p1 andg, C
p2. Then there exists a finite subsequesgcsuch thas; = g, U Shift®"PL g, and dom Segy =
SedlenSeqy + lenSeqy).

(81) Letpy, p2 be finite sequences angl, g, be finite subsequences. Suppgs€ p1 andg, C
p2. Then there exists a finite subsequesgcsuch thas; = g, U Shift®"PL g, and dom Segy =
SedlenSeqy; +lenSeqy,) and Seg; = Seqy U Shifte"Se% Sep,.

(82) Letpy, p2 be finite sequences ang, g, be finite subsequences. Suppgs€ p1 andg, C
p2. Then there exists a finite subsequesgsuch thats; = g U Shift®"P1 g, and (Seogs) °
Seqyp = Seds;.

(83) (RiconcuiRy)beforePyconcuiP,) C (Ry beforeP;) concufR, beforeP,).
Let us consideP, N and letR;, R, be non empty processeshh Note thatR; concuiR; is non

empty.

7. NEUTRAL PROCESS

Let us consideP and letN be a Petri net oveP. The neutral process iN yields a non empty
process irN and is defined as follows:

(Def. 16) The neutral process fh= {en}.

Let us consideP, let N be a Petri net oveP, and lett be an element oN. The elementary
process with yielding a non empty process Mis defined by:

(Def. 17) The elementary process with- {(t)}.
The following propositions are true:
(84) (The neutral process M)beforeR=R.
(85) Rbeforethe neutral processih= R.
(86) (The neutral process M)concuR=R.
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