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Summary. Sequential and concurrent compositions of processes in Petri nets are in-
troduced. A process is formalized as a set of (possible), so called, firing sequences. In the
definition of the sequential composition the standard concatenation is used

R1beforeR2 = {p1
_ p2 : p1 ∈ R1 ∧ p2 ∈ R2}

The definition of the concurrent composition is more complicated

R1concurR2 = {q1∪q2 : q1 missesq2 ∧ Seqq1 ∈ R1 ∧ Seqq2 ∈ R2}

For example,
{〈t0〉}concur{〈t1, t2〉}= {〈t0, t1, t2〉,〈t1, t0, t2〉,〈t1, t2, t0〉}

The basic properties of the compositions are shown.

MML Identifier: PNPROC_1.

WWW: http://mizar.org/JFM/Vol14/pnproc_1.html

The articles [13], [12], [18], [5], [17], [9], [1], [3], [6], [11], [15], [2], [14], [7], [16], [8], [10], and
[4] provide the notation and terminology for this paper.

1. PRELIMINARIES

We use the following convention:i denotes a natural number andx, x1, x2, y1, y2 denote sets.
The following propositions are true:

(1) If i > 0, then{〈〈i, x〉〉} is a finite subsequence.

(2) For every finite subsequenceq holdsq = /0 iff Seqq = /0.

(3) For every finite subsequenceq such thatq = {〈〈i, x〉〉} holds Seqq = 〈x〉.

Let us observe that every finite subsequence is finite.
We now state several propositions:

(4) For every finite subsequenceq such that Seqq = 〈x〉 there existsi such thatq = {〈〈i, x〉〉}.

(5) If {〈〈x1, y1〉〉,〈〈x2, y2〉〉} is a finite sequence, thenx1 = 1 andx2 = 1 andy1 = y2 or x1 = 1 and
x2 = 2 orx1 = 2 andx2 = 1.
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(6) 〈x1,x2〉= {〈〈1, x1〉〉,〈〈2, x2〉〉}.

(7) For every finite subsequencep holds p = lenSeqp.

(8) For all binary relationsP, Rsuch that domP misses domRholdsP missesR.

(9) For all setsX, Y and for all binary relationsP, R such thatX missesY holdsP�X misses
R�Y.

(10) For all functionsf , g, h such thatf ⊆ h andg⊆ h and f missesg holds domf misses
domg.

(11) For every setY and for every binary relationRholdsY�R⊆ R�R−1(Y).

(12) For every setY and for every functionf holdsY� f = f � f−1(Y).

2. MARKINGS ON PETRI NETS

Let P be a set. A function is called a marking ofP if:

(Def. 1) domit= P and rngit⊆ N.

We adopt the following rules:P, p, x denote sets,m1, m2, m3, m4, m denote markings ofP, and
i, j, j1, k denote natural numbers.

Let P be a set, letm be a marking ofP, and letp be a set. Thenm(p) is a natural number. We
introduce them multitude ofp as a synonym ofm(p).

The schemeMarkingLambdadeals with a setA and a unary functorF yielding a natural num-
ber, and states that:

There exists a markingm of A such that for everyp such thatp ∈ A holds them
multitude ofp = F (p)

for all values of the parameters.
Let us considerP, m1, m2. Let us observe thatm1 = m2 if and only if:

(Def. 2) For everyp such thatp∈ P holds them1 multitude ofp = them2 multitude ofp.

Let us considerP. The functor{}P yields a marking ofP and is defined as follows:

(Def. 3) {}P = P 7−→ 0.

Let P be a set and letm1, m2 be markings ofP. The predicatem1 ⊆m2 is defined as follows:

(Def. 4) For every setp such thatp∈ P holds them1 multitude ofp≤ them2 multitude ofp.

Let us note that the predicatem1 ⊆m2 is reflexive.
The following propositions are true:

(13) {}P ⊆m.

(14) If m1 ⊆m2 andm2 ⊆m3, thenm1 ⊆m3.

Let P be a set and letm1, m2 be markings ofP. The functorm1 +m2 yields a marking ofP and
is defined as follows:

(Def. 5) For every setp such thatp∈ P holds them1 + m2 multitude of p = (them1 multitude of
p)+ (them2 multitude ofp).

Let us note that the functorm1 +m2 is commutative.
Next we state the proposition

(15) m+{}P = m.

Let P be a set and letm1, m2 be markings ofP. Let us assume thatm2⊆m1. The functorm1−m2

yields a marking ofP and is defined as follows:
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(Def. 6) For every setp such thatp∈ P holds them1−m2 multitude of p = (them1 multitude of
p)− (them2 multitude ofp).

We now state a number of propositions:

(16) m1 ⊆m1 +m2.

(17) m−{}P = m.

(18) If m1 ⊆m2 andm2 ⊆m3, thenm3−m2 ⊆m3−m1.

(19) (m1 +m2)−m2 = m1.

(20) If m⊆m1 andm1 ⊆m2, thenm1−m⊆m2−m.

(21) If m1 ⊆m2, then(m2 +m3)−m1 = (m2−m1)+m3.

(22) If m1 ⊆m2 andm2 ⊆m1, thenm1 = m2.

(23) (m1 +m2)+m3 = m1 +(m2 +m3).

(24) If m1 ⊆m2 andm3 ⊆m4, thenm1 +m3 ⊆m2 +m4.

(25) If m1 ⊆m2, thenm2−m1 ⊆m2.

(26) If m1 ⊆m2 andm3 ⊆m4 andm4 ⊆m1, thenm1−m4 ⊆m2−m3.

(27) If m1 ⊆m2, thenm2 = (m2−m1)+m1.

(28) (m1 +m2)−m1 = m2.

(29) If m2 +m3 ⊆m1, thenm1−m2−m3 = m1− (m2 +m3).

(30) If m3 ⊆m2 andm2 ⊆m1, thenm1− (m2−m3) = (m1−m2)+m3.

(31) m∈ NP.

(32) If x∈ NP, thenx is a marking ofP.

3. TRANSITIONS AND FIRING

Let us considerP. Transition ofP is defined by:

(Def. 7) There existm1, m2 such that it= 〈〈m1, m2〉〉.

In the sequelt, t1, t2 denote transitions ofP.
Let us considerP, t. Thent1 is a marking ofP. We introduce Pret as a synonym oft1. Thent2

is a marking ofP. We introduce Postt as a synonym oft2.
Let us considerP, m, t. The functor fire(t,m) yields a marking ofP and is defined by:

(Def. 8) fire(t,m) =
{

(m−Pret)+Postt, if Pre t ⊆m,
m, otherwise.

The following proposition is true

(33) If Pret1 +Pret2 ⊆m, then fire(t2,fire(t1,m)) = (m−Pret1−Pret2)+Postt1 +Postt2.

Let us considerP, t. The functor firet yielding a function is defined by:

(Def. 9) domfiret = NP and for every markingm of P holds(fire t)(m) = fire(t,m).

We now state two propositions:

(34) rngfiret ⊆ NP.
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(35) fire(t2,fire(t1,m)) = (fire t2 ·fire t1)(m).

Let us considerP. A non empty set is called a Petri net overP if:

(Def. 10) For every setx such thatx∈ it holdsx is a transition ofP.

In the sequelN is a Petri net overP.
Let us considerP, N. We see that the element ofN is a transition ofP.
In the sequele, e1, e2 are elements ofN.

4. FIRING SEQUENCES OFTRANSITIONS

Let us considerP, N. A firing-sequence ofN is an element ofN∗.
In the sequelC, C1, C2 denote firing-sequences ofN.
Let us considerP, N, C. The functor fireC yields a function and is defined by the condition

(Def. 11).

(Def. 11) There exists a function yielding finite sequenceF such that fireC = composeNP F and
lenF = lenC and for every natural numberi such thati ∈ domC holdsF(i) = fire(Ci qua
element ofN).

The following propositions are true:

(36) fire(εN) = idNP.

(37) fire〈e〉= fire e.

(38) firee· idNP = fire e.

(39) fire〈e1,e2〉= fire e2 ·fire e1.

(40) domfireC = NP and rngfireC⊆ NP.

(41) fire(C1
a C2) = fire C2 ·fire C1.

(42) fire(Ca 〈e〉) = fire e·fire C.

Let us considerP, N, C, m. The functor fire(C,m) yielding a marking ofP is defined by:

(Def. 12) fire(C,m) = (fire C)(m).

5. SEQUENTIAL COMPOSITION

Let us considerP, N. A process inN is a subset ofN∗.
In the sequelR, R1, R2, R3, P1, P2 denote processes inN.
One can check that every function which is finite sequence-like is also finite subsequence-like.
Let us considerP, N, R1, R2. The functorR1beforeR2 yielding a process inN is defined by:

(Def. 13) R1beforeR2 = {C1
a C2 : C1 ∈ R1 ∧ C2 ∈ R2}.

Let us considerP, N and letR1, R2 be non empty processes inN. Note thatR1beforeR2 is non
empty.

We now state several propositions:

(43) (R1∪R2)beforeR= (R1beforeR)∪ (R2beforeR).

(44) Rbefore(R1∪R2) = (RbeforeR1)∪ (RbeforeR2).

(45) {C1}before{C2}= {C1
a C2}.

(46) {C1,C2}before{C}= {C1
a C,C2

a C}.

(47) {C}before{C1,C2}= {Ca C1,Ca C2}.
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6. CONCURRENTCOMPOSITION

Let us considerP, N, R1, R2. The functorR1concurR2 yielding a process inN is defined as follows:

(Def. 14) R1concurR2 = {C :
∨

q1,q2 :finite subsequence(C = q1∪q2 ∧ q1 missesq2 ∧ Seqq1 ∈ R1 ∧
Seqq2 ∈ R2)}.

Let us note that the functorR1concurR2 is commutative.
One can prove the following four propositions:

(48) (R1∪R2)concurR= (R1concurR)∪ (R2concurR).

(49) {〈e1〉}concur{〈e2〉}= {〈e1,e2〉,〈e2,e1〉}.

(50) {〈e1〉,〈e2〉}concur{〈e〉}= {〈e1,e〉,〈e2,e〉,〈e,e1〉,〈e,e2〉}.

(51) (R1beforeR2)beforeR3 = R1before(R2beforeR3).

Let p be a finite subsequence and leti be a natural number. The functor Shifti p yielding a finite
subsequence is defined as follows:

(Def. 15) domShifti p = {i + k;k ranges over natural numbers:k ∈ domp} and for every natural
numberj such thatj ∈ domp holds(Shifti p)(i + j) = p( j).

In the sequelq, q1, q2 are finite subsequences.
Next we state a number of propositions:

(52) Shift0q = q.

(53) Shifti+ j q = Shifti Shift j q.

(54) For every finite sequencep such thatp 6= /0 holds domShifti p = { j1 : i + 1≤ j1 ∧ j1 ≤
i + lenp}.

(55) For every finite subsequenceq holdsq = /0 iff Shift i q = /0.

(56) Letq be a finite subsequence. Then there exists a finite subsequences1 such that doms1 =
domq and rngs1 = domShifti q and for everyk such thatk∈ domq holdss1(k) = i +k ands1

is one-to-one.

(57) For every finite subsequenceq holdsq = Shifti q.

(58) For every finite sequencep holds domp = domSeqShifti p.

(59) For every finite sequencep such thatk∈ domp holds(SgmdomShifti p)(k) = i +k.

(60) For every finite sequencep such thatk∈ domp holds(SeqShifti p)(k) = p(k).

(61) For every finite sequencep holds SeqShifti p = p.

In the sequelp1, p2 are finite sequences.
One can prove the following propositions:

(62) dom(p1∪Shiftlenp1 p2) = Seg(lenp1 + lenp2).

(63) For every finite sequencep1 and for every finite subsequencep2 such that lenp1 ≤ i holds
domp1 misses domShifti p2.

(64) For all finite sequencesp1, p2 holdsp1
a p2 = p1∪Shiftlenp1 p2.

(65) For every finite sequencep1 and for every finite subsequencep2 such thati ≥ lenp1 holds
p1 misses Shifti p2.

(66) (R1concurR2)concurR3 = R1concur(R2concurR3).
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(67) R1beforeR2 ⊆ R1concurR2.

(68) If R1 ⊆ P1 andR2 ⊆ P2, thenR1beforeR2 ⊆ P1beforeP2.

(69) If R1 ⊆ P1 andR2 ⊆ P2, thenR1concurR2 ⊆ P1concurP2.

(70) For all finite subsequencesp, q such thatq⊆ p holds Shifti q⊆ Shifti p.

(71) For all finite sequencesp1, p2 holds Shiftlenp1 p2 ⊆ p1
a p2.

(72) If domq1 misses domq2, then domShifti q1 misses domShifti q2.

(73) For all finite subsequencesq, q1, q2 such thatq= q1∪q2 andq1 missesq2 holds Shifti q1∪
Shifti q2 = Shifti q.

(74) For every finite subsequenceq holds domSeqq = domSeqShifti q.

(75) For every finite subsequenceq such thatk ∈ domSeqq there existsj such that j =
(Sgmdomq)(k) and(SgmdomShifti q)(k) = i + j.

(76) For every finite subsequenceq such thatk∈ domSeqq holds(SeqShifti q)(k) = (Seqq)(k).

(77) For every finite subsequenceq holds Seqq = SeqShifti q.

(78) For every finite subsequenceq such that domq⊆ Segk holds domShifti q⊆ Seg(i +k).

(79) Let p be a finite sequence andq1, q2 be finite subsequences. Ifq1 ⊆ p, then there exists a
finite subsequences1 such thats1 = q1∪Shiftlenpq2.

(80) Letp1, p2 be finite sequences andq1, q2 be finite subsequences. Supposeq1⊆ p1 andq2⊆
p2. Then there exists a finite subsequences1 such thats1 = q1∪Shiftlenp1 q2 and domSeqs1 =
Seg(lenSeqq1 + lenSeqq2).

(81) Letp1, p2 be finite sequences andq1, q2 be finite subsequences. Supposeq1⊆ p1 andq2⊆
p2. Then there exists a finite subsequences1 such thats1 = q1∪Shiftlenp1 q2 and domSeqs1 =
Seg(lenSeqq1 + lenSeqq2) and Seqs1 = Seqq1∪ShiftlenSeqq1 Seqq2.

(82) Letp1, p2 be finite sequences andq1, q2 be finite subsequences. Supposeq1⊆ p1 andq2⊆
p2. Then there exists a finite subsequences1 such thats1 = q1∪Shiftlenp1 q2 and(Seqq1) a

Seqq2 = Seqs1.

(83) (R1concurR2)before(P1concurP2)⊆ (R1beforeP1)concur(R2beforeP2).

Let us considerP, N and letR1, R2 be non empty processes inN. Note thatR1concurR2 is non
empty.

7. NEUTRAL PROCESS

Let us considerP and letN be a Petri net overP. The neutral process inN yields a non empty
process inN and is defined as follows:

(Def. 16) The neutral process inN = {εN}.

Let us considerP, let N be a Petri net overP, and lett be an element ofN. The elementary
process witht yielding a non empty process inN is defined by:

(Def. 17) The elementary process witht = {〈t〉}.

The following propositions are true:

(84) (The neutral process inN)beforeR= R.

(85) Rbeforethe neutral process inN = R.

(86) (The neutral process inN)concurR= R.
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[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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