Basic Petri Net Concepts

Pauline N. Kawamoto Shinshu University Nagano Yasushi Fuwa Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. This article presents the basic place/transition net structure definition for building various types of Petri nets. The basic net structure fields include places, transitions, and arcs (place-transition, transition-place) which may be supplemented with other fields (e.g., capacity, weight, marking, etc.) as needed. The theorems included in this article are divided into the following categories: deadlocks, traps, and dual net theorems. Here, a dual net is taken as the result of inverting all arcs (place-transition arcs to transition-place arcs and vice-versa) in the original net.

MML Identifier: PETRI.

WWW: http://mizar.org/JFM/Vol4/petri.html

The articles [3], [1], [5], [6], [7], [4], and [2] provide the notation and terminology for this paper.

1. BASIC PLACE/TRANSITION NET STRUCTURE DEFINITION

Let A, B be non empty sets and let r be a non empty relation between A and B. We see that the element of r is an element of [A, B].

We consider place/transition net structures as systems

⟨ places, transitions, S-T arcs, T-S arcs ⟩,

where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty relation between the places and the transitions, and the T-S arcs constitute a non empty relation between the transitions and the places.

In the sequel P_1 is a place/transition net structure.

Let us consider P_1 . A place of P_1 is an element of the places of P_1 . A transition of P_1 is an element of the transitions of P_1 . An S-T arc of P_1 is an element of the S-T arcs of P_1 . A T-S arc of P_1 is an element of the T-S arcs of P_1 .

Let us consider P_1 and let x be an S-T arc of P_1 . Then x_1 is a place of P_1 . Then x_2 is a transition of P_1 .

Let us consider P_1 and let x be a T-S arc of P_1 . Then x_1 is a transition of P_1 . Then x_2 is a place of P_1 .

In the sequel S_0 denotes a subset of the places of P_1 .

Let us consider P_1 , S_0 . The functor S_0 yielding a subset of the transitions of S_1 is defined by:

(Def. 1) ${}^*S_0 = \{t; t \text{ ranges over transitions of } P_1: \bigvee_{f: T-S \text{ arc of } P_1} \bigvee_{s: \text{place of } P_1} (s \in S_0 \land f = \langle t, s \rangle) \}.$

The functor $\overline{S_0}$ yields a subset of the transitions of P_1 and is defined by:

(Def. 2) $\overline{S_0} = \{t; t \text{ ranges over transitions of } P_1: \bigvee_{f: S-T \text{ arc of } P_1} \bigvee_{s: \text{place of } P_1} (s \in S_0 \land f = \langle s, t \rangle) \}.$

One can prove the following propositions:

- (1) $S_0 = \{f_1; f \text{ ranges over T-S arcs of } P_1: f_2 \in S_0\}.$
- (2) For every set x holds $x \in {}^*S_0$ iff there exists a T-S arc f of P_1 and there exists a place s of P_1 such that $s \in S_0$ and $f = \langle x, s \rangle$.
- (3) $\overline{S_0} = \{f_2; f \text{ ranges over S-T arcs of } P_1: f_1 \in S_0\}.$
- (4) For every set x holds $x \in \overline{S_0}$ iff there exists an S-T arc f of P_1 and there exists a place s of P_1 such that $s \in S_0$ and $f = \langle s, x \rangle$.

In the sequel T_0 is a subset of the transitions of P_1 .

Let us consider P_1 , T_0 . The functor T_0 yielding a subset of the places of T_0 is defined by:

(Def. 3) ${}^*T_0 = \{s; s \text{ ranges over places of } P_1: \bigvee_{f:S-T \text{ arc of } P_1} \bigvee_{t:\text{transition of } P_1} (t \in T_0 \land f = \langle s, t \rangle) \}.$

The functor $\overline{T_0}$ yields a subset of the places of P_1 and is defined as follows:

(Def. 4) $\overline{T_0} = \{s; s \text{ ranges over places of } P_1: \bigvee_{f:\text{T-S arc of } P_1} \bigvee_{t:\text{transition of } P_1} (t \in T_0 \land f = \langle t, s \rangle) \}.$

Next we state several propositions:

- (5) $^*T_0 = \{f_1; f \text{ ranges over S-T arcs of } P_1: f_2 \in T_0\}.$
- (6) Let x be a set. Then $x \in {}^*T_0$ if and only if there exists an S-T arc f of P_1 and there exists a transition t of P_1 such that $t \in T_0$ and $f = \langle x, t \rangle$.
- (7) $\overline{T_0} = \{ f_2; f \text{ ranges over T-S arcs of } P_1: f_1 \in T_0 \}.$
- (8) Let x be a set. Then $x \in \overline{T_0}$ if and only if there exists a T-S arc f of P_1 and there exists a transition t of P_1 such that $t \in T_0$ and $f = \langle t, x \rangle$.
- (9) * $(\emptyset_{\text{the places of } P_1}) = \emptyset.$
- (10) $\overline{\emptyset_{\text{the places of } P_1}} = \emptyset.$
- (11) *($\emptyset_{\text{the transitions of } P_1}$) = \emptyset .
- (12) $\overline{\emptyset_{\text{the transitions of } P_1}} = \emptyset.$

2. Deadlocks

Let us consider P_1 and let I_1 be a subset of the places of P_1 . We say that I_1 is deadlock-like if and only if:

(Def. 5) I_1 is a subset of $\overline{I_1}$.

Let I_1 be a place/transition net structure. We say that I_1 has deadlocks if and only if:

(Def. 6) There exists a subset of the places of I_1 which is deadlock-like.

Let us observe that there exists a place/transition net structure which has deadlocks.

3. Traps

Let us consider P_1 and let I_1 be a subset of the places of P_1 . We say that I_1 is trap-like if and only if:

(Def. 7) $\overline{I_1}$ is a subset of * I_1 .

Let I_1 be a place/transition net structure. We say that I_1 has traps if and only if:

(Def. 8) There exists a subset of the places of I_1 which is trap-like.

Let us mention that there exists a place/transition net structure which has traps.

Let A, B be non empty sets and let r be a non empty relation between A and B. Then r^{\smile} is a non empty relation between B and A.

4. DUALITY THEOREMS FOR PLACE/TRANSITION NETS

Let us consider P_1 . The functor P_1° yielding a strict place/transition net structure is defined by:

- (Def. 9) $P_1^{\circ} = \langle \text{the places of } P_1, \text{ the transitions of } P_1, \text{ (the T-S arcs of } P_1)^{\smile}, \text{ (the S-T arcs of } P_1)^{\smile} \rangle$. Next we state two propositions:
 - (13) $(P_1^{\circ})^{\circ}$ = the place/transition net structure of P_1 .
 - (14)(i) The places of P_1 = the places of P_1° ,
 - (ii) the transitions of P_1 = the transitions of P_1° ,
 - (iii) (the S-T arcs of P_1) = the T-S arcs of P_1 °, and
 - (iv) (the T-S arcs of P_1) = the S-T arcs of P_1 °.

Let us consider P_1 and let S_0 be a subset of the places of P_1 . The functor S_0° yielding a subset of the places of P_1° is defined by:

(Def. 10)
$$S_0^{\circ} = S_0$$
.

Let us consider P_1 and let s be a place of P_1 . The functor s° yielding a place of P_1° is defined by:

(Def. 11)
$$s^{\circ} = s$$
.

Let us consider P_1 and let S_0 be a subset of the places of P_1° . The functor S_0° yields a subset of the places of P_1 and is defined as follows:

(Def. 12)
$${}^{\circ}S_0 = S_0$$
.

Let us consider P_1 and let s be a place of P_1° . The functor s yielding a place of P_1 is defined by:

(Def. 13)
$${}^{\circ}s = s$$
.

Let us consider P_1 and let T_0 be a subset of the transitions of P_1 . The functor T_0° yields a subset of the transitions of P_1° and is defined by:

(Def. 14)
$$T_0^{\circ} = T_0$$
.

Let us consider P_1 and let t be a transition of P_1 . The functor t° yielding a transition of P_1° is defined as follows:

(Def. 15)
$$t^{\circ} = t$$
.

Let us consider P_1 and let T_0 be a subset of the transitions of P_1° . The functor T_0° yields a subset of the transitions of P_1 and is defined by:

(Def. 16)
$${}^{\circ}T_0 = T_0$$
.

Let us consider P_1 and let t be a transition of P_1° . The functor t yielding a transition of P_1 is defined as follows:

(Def. 17)
$$^{\circ}t = t$$
.

In the sequel S is a subset of the places of P_1 . We now state several propositions:

- $(15) \quad \overline{S^{\circ}} = {}^*S.$
- (16) $*(S^{\circ}) = \overline{S}$.
- (17) S is deadlock-like iff S° is trap-like.
- (18) S is trap-like iff S° is deadlock-like.
- (19) Let P_1 be a place/transition net structure, t be a transition of P_1 , and S_0 be a subset of the places of P_1 . Then $t \in \overline{S_0}$ if and only if f meets f0.
- (20) Let P_1 be a place/transition net structure, t be a transition of P_1 , and S_0 be a subset of the places of P_1 . Then $t \in {}^*S_0$ if and only if $\overline{\{t\}}$ meets S_0 .

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [2] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/domain_1.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [4] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/mcart 1.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat 1 html
- [7] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.

Received November 27, 1992

Published January 2, 2004