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Summary. This article presents the basic place/transition net structure definition for
building various types of Petri nets. The basic net structure fields include places, transitions,
and arcs (place-transition, transition-place) which may be supplemented with other fields (e.qg.,
capacity, weight, marking, etc.) as needed. The theorems included in this article are divided
into the following categories: deadlocks, traps, and dual net theorems. Here, a dual net is taken
as the result of inverting all arcs (place-transition arcs to transition-place arcs and vice-versa)
in the original net.

MML Identifier: PETRI.

WWW: http://mizar.org/JFM/Vol4d/petri.html

The articles([3],[[1],[15],16], 171, [4], and[[2] provide the notation and terminology for this paper.

1. BASIC PLACE/TRANSITION NET STRUCTURE DEFINITION

Let A, B be non empty sets and letbe a non empty relation betweénandB. We see that the
element of is an element of A, B].

We consider place/transition net structures as systems

( places, transitions, S-T arcs, T-S afcs
where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty
relation between the places and the transitions, and the T-S arcs constitute a non empty relation
between the transitions and the places.

In the sequeP; is a place/transition net structure.

Let us consideP;. A place ofP; is an element of the places Bf. A transition ofP; is an
element of the transitions ;. An S-T arc ofP; is an element of the S-T arcs Bf. A T-S arc of
P, is an element of the T-S arcs B{.

Let us consideP; and letx be an S-T arc oP;. Thenx; is a place ofP;. Thenx; is a transition
of P;.

Let us consideP; and letx be a T-S arc oP;. Thenx; is a transition ofP;. Thenx; is a place
of P;.

In the sequef, denotes a subset of the place$of

Let us consideP;, §. The functor'S, yielding a subset of the transitionsBf is defined by:

(Def- 1) S = {t;t ranges over transitions &} \/f :T-S arc of Py \/s: place ofPy (SG SAf= (ta S))}
The functorS, yields a subset of the transitions®f and is defined by:
(Def. 2) S = {t;t ranges over transitions &4: V.51 arc ofp, Vs:place off, (S€ S0 A f=(s,t))}.

One can prove the following propositions:
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(1) *S={fy; f ranges over T-S arcs &%: f, € S}.

(2) For every sex holdsx € *S iff there exists a T-S aré¢ of P, and there exists a plasof
P1 such thas € § and f = (x, s).

(8) S ={fy; frangesover S-T arcs &f: f; € S}.

(4) For every sex holdsx € & iff there exists an S-T ar€ of P; and there exists a plasof
P such thase S andf = (s, x).

In the sequely is a subset of the transitions Bf.
Let us considePy, Tp. The functor Ty yielding a subset of the placesef is defined by:

(Def. 3) *To = {s;sranges over places &1: \/t:s1 arc otp, Vt:wransition o, (1 € To A f=(s 1))}
The functorTy yields a subset of the places®fand is defined as follows:
(Def. 4) To = {s;sranges over places &i: \/¢.1.s arc of Py V't: transition of Py (teTo A f=(ts))}.
Next we state several propositions:
(5) *To={fy; f ranges over S-T arcs &f: f, € To}.

(6) Letxbe aset. Them € *Tp if and only if there exists an S-T aifcof P, and there exists a
transitiont of P, such that € Top andf = (x, t).

(7) To = {fy; f ranges over T-S arcs &%: f; € To}.

(8) Letxbe aset. Them € T if and only if there exists a T-S art of P; and there exists a
transitiont of P; such that € To and f = (t, x).

(9)  *(Ote places o) = 0.
(10)  Orhe places op, = 0.
(11) *(Otne wransitions opy ) = 0.
(12)  Bre wransitions op, = 0.

2. DEADLOCKS

Let us consideP; and letl; be a subset of the placesBf. We say that; is deadlock-like if and
only if:

(Def. 5) *I; is a subset of;.
Let 1, be a place/transition net structure. We say théias deadlocks if and only if:
(Def. 6) There exists a subset of the placeg; afhich is deadlock-like.

Let us observe that there exists a place/transition net structure which has deadlocks.

3. TRAPS

Let us consideP; and letl; be a subset of the places®f. We say that; is trap-like if and only if:
(Def. 7) 1y is a subset ofl;.
Let 1y be a place/transition net structure. We say th&ias traps if and only if:
(Def. 8) There exists a subset of the places,afhich is trap-like.

Let us mention that there exists a place/transition net structure which has traps.
Let A, B be non empty sets and lebe a non empty relation betweérandB. Thenr™ is a non
empty relation betweeB andA.
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4. DUALITY THEOREMS FORPLACE/TRANSITION NETS

Let us consideP;. The functorP;° yielding a strict place/transition net structure is defined by:
(Def. 9) Py° = (the places oPy, the transitions oP;, (the T-S arcs oPy) ™, (the S-T arcs oP;) ™).
Next we state two propositions:
(13) (P1°)° = the place/transition net structure @yf.
(14)(i)) The places oP; = the places oP;°,
(ii) the transitions of; = the transitions oP;°,
(i)  (the S-T arcs ofP;)~ =the T-S arcs oP;°, and
(iv) (the T-S arcs of;)~ =the S-T arcs oP;°.

Let us consideP; and letS) be a subset of the placesBf. The functorS° yielding a subset
of the places oP;° is defined by:

(Def. 10) °=%.
Let us consideP; and letsbe a place oP;. The functors® yielding a place oP;° is defined by:
(Def. 11) & =s.

Let us consideP; and letS be a subset of the places®f’. The functor', yields a subset of
the places oP; and is defined as follows:

(Def. 12) °SH=%.
Let us consideP; and letsbe a place oP;°. The functorsyielding a place oP; is defined by:
(Def. 13) °s=s.

Let us consideP; and letTy be a subset of the transitionsif. The functorTy® yields a subset
of the transitions oP;° and is defined by:

(Def. 14) To° = To.

Let us consideP; and lett be a transition oP;. The functort® yielding a transition of;° is
defined as follows:

(Def. 15) t° =t.

Let us consideP; and letTyp be a subset of the transitions®f. The functorTy yields a subset
of the transitions oP; and is defined by:

(Def. 16) °To = To.

Let us consideP; and lett be a transition of;°. The functort yielding a transition oP is
defined as follows:

(Def. 17) °t=t.

In the sequeSis a subset of the places Bf.
We now state several propositions:

(15) & =*S

(16) *(S)=S.

(17) Sis deadlock-like iffS is trap-like.
(18) Sis trap-like iff S’ is deadlock-like.

(19) LetP; be a place/transition net structutehe a transition oP;, andS be a subset of the
places ofP,. Thent € § if and only if *{t} meetsS.

(20) LetP; be a place/transition net structuteje a transition oPy, andS, be a subset of the
places ofP;. Thent € *S if and only if {t} meetsS,.



BASIC PETRI NET CONCEPTS 4

REFERENCES

[1] Czestaw Bylhski. Some basic properties of seleurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/zfmisc_|

1.htmll

[2] Andrzej Trybulec. Domains and their Cartesian produdtairnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/

domain_1.htmll

[3

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989/http://mizar.org/JFM/
Axiomatics/tarski.htmll

[4] Andrzej Trybulec. Tuples, projections and Cartesian produltiarnal of Formalized Mathematic$, 1989.http://mizar.org/JFM/
Voll/mcart_1.html,

[5] Zinaida Trybulec. Properties of subsedsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/subset_1.html.

[6] Edmund Woronowicz. Relations and their basic propertidsurnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/

Voll/relat_1.html}

[7] Edmund Woronowicz. Relations defined on sésurnal of Formalized Mathematic$, 1989http://mizar.org/JFM/Voll/relset |

1.html.

Received November 27, 1992

Published January 2, 2004


http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/domain_1.html
http://mizar.org/JFM/Vol1/domain_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html

	basic petri net concepts By pauline n. kawamoto et al.

