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Summary. This article presents the basic place/transition net structure definition for
building various types of Petri nets. The basic net structure fields include places, transitions,
and arcs (place-transition, transition-place) which may be supplemented with other fields (e.g.,
capacity, weight, marking, etc.) as needed. The theorems included in this article are divided
into the following categories: deadlocks, traps, and dual net theorems. Here, a dual net is taken
as the result of inverting all arcs (place-transition arcs to transition-place arcs and vice-versa)
in the original net.

MML Identifier: PETRI.

WWW: http://mizar.org/JFM/Vol4/petri.html

The articles [3], [1], [5], [6], [7], [4], and [2] provide the notation and terminology for this paper.

1. BASIC PLACE/TRANSITION NET STRUCTUREDEFINITION

Let A, B be non empty sets and letr be a non empty relation betweenA andB. We see that the
element ofr is an element of[:A, B:].

We consider place/transition net structures as systems
〈 places, transitions, S-T arcs, T-S arcs〉,

where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty
relation between the places and the transitions, and the T-S arcs constitute a non empty relation
between the transitions and the places.

In the sequelP1 is a place/transition net structure.
Let us considerP1. A place ofP1 is an element of the places ofP1. A transition ofP1 is an

element of the transitions ofP1. An S-T arc ofP1 is an element of the S-T arcs ofP1. A T-S arc of
P1 is an element of the T-S arcs ofP1.

Let us considerP1 and letx be an S-T arc ofP1. Thenx1 is a place ofP1. Thenx2 is a transition
of P1.

Let us considerP1 and letx be a T-S arc ofP1. Thenx1 is a transition ofP1. Thenx2 is a place
of P1.

In the sequelS0 denotes a subset of the places ofP1.
Let us considerP1, S0. The functor∗S0 yielding a subset of the transitions ofP1 is defined by:

(Def. 1) ∗S0 = {t; t ranges over transitions ofP1:
∨

f :T-S arc ofP1

∨
s:place ofP1

(s∈ S0 ∧ f = 〈〈t, s〉〉)}.

The functorS0 yields a subset of the transitions ofP1 and is defined by:

(Def. 2) S0 = {t; t ranges over transitions ofP1:
∨

f :S-T arc ofP1

∨
s:place ofP1

(s∈ S0 ∧ f = 〈〈s, t〉〉)}.

One can prove the following propositions:
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(1) ∗S0 = { f1; f ranges over T-S arcs ofP1: f2 ∈ S0}.

(2) For every setx holdsx∈ ∗S0 iff there exists a T-S arcf of P1 and there exists a places of
P1 such thats∈ S0 and f = 〈〈x, s〉〉.

(3) S0 = { f2; f ranges over S-T arcs ofP1: f1 ∈ S0}.

(4) For every setx holdsx∈ S0 iff there exists an S-T arcf of P1 and there exists a places of
P1 such thats∈ S0 and f = 〈〈s, x〉〉.

In the sequelT0 is a subset of the transitions ofP1.
Let us considerP1, T0. The functor∗T0 yielding a subset of the places ofP1 is defined by:

(Def. 3) ∗T0 = {s;s ranges over places ofP1:
∨

f :S-T arc ofP1

∨
t : transition ofP1

(t ∈ T0 ∧ f = 〈〈s, t〉〉)}.

The functorT0 yields a subset of the places ofP1 and is defined as follows:

(Def. 4) T0 = {s;s ranges over places ofP1:
∨

f :T-S arc ofP1

∨
t : transition ofP1

(t ∈ T0 ∧ f = 〈〈t, s〉〉)}.

Next we state several propositions:

(5) ∗T0 = { f1; f ranges over S-T arcs ofP1: f2 ∈ T0}.

(6) Let x be a set. Thenx∈ ∗T0 if and only if there exists an S-T arcf of P1 and there exists a
transitiont of P1 such thatt ∈ T0 and f = 〈〈x, t〉〉.

(7) T0 = { f2; f ranges over T-S arcs ofP1: f1 ∈ T0}.

(8) Let x be a set. Thenx∈ T0 if and only if there exists a T-S arcf of P1 and there exists a
transitiont of P1 such thatt ∈ T0 and f = 〈〈t, x〉〉.

(9) ∗( /0the places ofP1) = /0.

(10) /0the places ofP1 = /0.

(11) ∗( /0the transitions ofP1) = /0.

(12) /0the transitions ofP1 = /0.

2. DEADLOCKS

Let us considerP1 and letI1 be a subset of the places ofP1. We say thatI1 is deadlock-like if and
only if:

(Def. 5) ∗I1 is a subset ofI1 .

Let I1 be a place/transition net structure. We say thatI1 has deadlocks if and only if:

(Def. 6) There exists a subset of the places ofI1 which is deadlock-like.

Let us observe that there exists a place/transition net structure which has deadlocks.

3. TRAPS

Let us considerP1 and letI1 be a subset of the places ofP1. We say thatI1 is trap-like if and only if:

(Def. 7) I1 is a subset of∗I1.

Let I1 be a place/transition net structure. We say thatI1 has traps if and only if:

(Def. 8) There exists a subset of the places ofI1 which is trap-like.

Let us mention that there exists a place/transition net structure which has traps.
Let A, B be non empty sets and letr be a non empty relation betweenA andB. Thenr` is a non

empty relation betweenB andA.
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4. DUALITY THEOREMS FORPLACE/TRANSITION NETS

Let us considerP1. The functorP1
◦ yielding a strict place/transition net structure is defined by:

(Def. 9) P1
◦ = 〈the places ofP1, the transitions ofP1, (the T-S arcs ofP1)`, (the S-T arcs ofP1)`〉.

Next we state two propositions:

(13) (P1
◦)◦ = the place/transition net structure ofP1.

(14)(i) The places ofP1 = the places ofP1
◦,

(ii) the transitions ofP1 = the transitions ofP1
◦,

(iii) (the S-T arcs ofP1)` = the T-S arcs ofP1
◦, and

(iv) (the T-S arcs ofP1)` = the S-T arcs ofP1
◦.

Let us considerP1 and letS0 be a subset of the places ofP1. The functorS0
◦ yielding a subset

of the places ofP1
◦ is defined by:

(Def. 10) S0
◦ = S0.

Let us considerP1 and letsbe a place ofP1. The functors◦ yielding a place ofP1
◦ is defined by:

(Def. 11) s◦ = s.

Let us considerP1 and letS0 be a subset of the places ofP1
◦. The functor◦S0 yields a subset of

the places ofP1 and is defined as follows:

(Def. 12) ◦S0 = S0.

Let us considerP1 and letsbe a place ofP1
◦. The functor◦syielding a place ofP1 is defined by:

(Def. 13) ◦s= s.

Let us considerP1 and letT0 be a subset of the transitions ofP1. The functorT0
◦ yields a subset

of the transitions ofP1
◦ and is defined by:

(Def. 14) T0
◦ = T0.

Let us considerP1 and lett be a transition ofP1. The functort◦ yielding a transition ofP1
◦ is

defined as follows:

(Def. 15) t◦ = t.

Let us considerP1 and letT0 be a subset of the transitions ofP1
◦. The functor◦T0 yields a subset

of the transitions ofP1 and is defined by:

(Def. 16) ◦T0 = T0.

Let us considerP1 and lett be a transition ofP1
◦. The functor◦t yielding a transition ofP1 is

defined as follows:

(Def. 17) ◦t = t.

In the sequelS is a subset of the places ofP1.
We now state several propositions:

(15) S◦ = ∗S.

(16) ∗(S◦) = S.

(17) S is deadlock-like iffS◦ is trap-like.

(18) S is trap-like iff S◦ is deadlock-like.

(19) LetP1 be a place/transition net structure,t be a transition ofP1, andS0 be a subset of the
places ofP1. Thent ∈ S0 if and only if ∗{t} meetsS0.

(20) LetP1 be a place/transition net structure,t be a transition ofP1, andS0 be a subset of the
places ofP1. Thent ∈ ∗S0 if and only if {t} meetsS0.
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