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Summary. This paper is a continuation of [15]. We prove that the family of cosets in
the Segre’s product of partial linear spaces remains invariant under automorphisms.
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The articles [19], [10], [23], [2], [24], [16], [7], [9], [8], [5], [13], [1], [4], [3], [17], [20], [21], [6],
[11], [25], [14], [18], [12], [22], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES ON FINITE SEQUENCES

Let D be a set, letp be a finite sequence of elements ofD, and leti, j be natural numbers. The
functor Del(p, i, j) yielding a finite sequence of elements ofD is defined by:

(Def. 1) Del(p, i, j) = (p�(i−′ 1))a (p� j).

Next we state several propositions:

(1) For every setD and for every finite sequencep of elements ofD and for all natural numbers
i, j holds rngDel(p, i, j)⊆ rngp.

(2) Let D be a set,p be a finite sequence of elements ofD, and i, j be natural numbers. If
i ∈ domp and j ∈ domp, then lenDel(p, i, j) = ((lenp− j)+ i)−1.

(3) Let D be a set,p be a finite sequence of elements ofD, and i, j be natural numbers. If
i ∈ domp and j ∈ domp, then if lenDel(p, i, j) = 0, theni = 1 and j = lenp.

(4) Let D be a set,p be a finite sequence of elements ofD, andi, j, k be natural numbers. If
i ∈ domp and 1≤ k andk≤ i−1, then(Del(p, i, j))(k) = p(k).

(5) For all finite sequencesp, q and for every natural numberk such that lenp+ 1≤ k holds
(pa q)(k) = q(k− lenp).

(6) Let D be a set,p be a finite sequence of elements ofD, and i, j, k be natural numbers.
Supposei ∈ domp and j ∈ domp and i ≤ j and i ≤ k andk ≤ ((lenp− j) + i)− 1. Then
(Del(p, i, j))(k) = p(( j−′ i)+k+1).

The schemeFinSeqOneToOnedeals with setsA , B, C , a finite sequenceD of elements ofC ,
and a binary predicateP , and states that:

There exists an one-to-one finite sequenceg of elements ofC such thatA = g(1) and
B = g(leng) and rngg⊆ rngD and for every natural numberj such that 1≤ j and
j < leng holdsP [g( j),g( j +1)]

provided the parameters satisfy the following conditions:
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• A = D(1) andB = D(lenD), and
• For every natural numberi and for all setsd1, d2 such that 1≤ i and i < lenD and

d1 = D(i) andd2 = D(i +1) holdsP [d1,d2].

2. SEGRECOSETS

We now state the proposition

(7) Let I be a non empty set,A be a 1-sorted yielding many sorted set indexed byI , L be a
many sorted subset indexed by the support ofA, i be an element ofI , andS be a subset of
A(i). ThenL+· (i,S) is a many sorted subset indexed by the support ofA.

Let I be a non empty set and letA be a non-Trivial-yielding TopStruct-yielding many sorted set
indexed byI . A subset of SegreProductA is called a Segre-Coset ofA if it satisfies the condition
(Def. 2).

(Def. 2) There exists a Segre-like non trivial-yielding many sorted subsetL indexed by the support
of A such that it= ∏L andL(index(L)) = ΩA(index(L)).

One can prove the following proposition

(8) Let I be a non empty set,A be a non-Trivial-yielding TopStruct-yielding many sorted set
indexed byI , andB1, B2 be Segre-Cosets ofA. If 2 ⊆ B1∩B2 , thenB1 = B2.

Let Sbe a topological structure and letX, Y be subsets ofS. We say thatX andY are joinable if
and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequencef of elements of 2the carrier ofS such that

(i) X = f (1),

(ii) Y = f (len f ),

(iii) for every subsetW of Ssuch thatW ∈ rng f holdsW is closed under lines and strong, and

(iv) for every natural numberi such that 1≤ i andi < len f holds 2⊆ f (i)∩ f (i +1) .

The following propositions are true:

(9) Let S be a topological structure andX, Y be subsets ofS. SupposeX andY are joinable.
Then there exists an one-to-one finite sequencef of elements of 2the carrier ofS such that

(i) X = f (1),

(ii) Y = f (len f ),

(iii) for every subsetW of Ssuch thatW ∈ rng f holdsW is closed under lines and strong, and

(iv) for every natural numberi such that 1≤ i andi < len f holds 2⊆ f (i)∩ f (i +1) .

(10) LetSbe a topological structure andX be a subset ofS. If X is closed under lines and strong,
thenX andX are joinable.

(11) Let I be a non empty set,A be a PLS-yielding many sorted set indexed byI , andX, Y be
subsets of SegreProductA. Suppose that

(i) X is non trivial, closed under lines, and strong,

(ii) Y is non trivial, closed under lines, and strong, and

(iii) X andY are joinable.

Let X1, Y1 be Segre-like non trivial-yielding many sorted subsets indexed by the support ofA.
SupposeX = ∏X1 andY = ∏Y1. Then index(X1) = index(Y1) and for every seti such that
i 6= index(X1) holdsX1(i) = Y1(i).
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3. COLLINEATIONS OF SEGREPRODUCT

Next we state the proposition

(12) LetSbe a 1-sorted structure,T be a non empty 1-sorted structure, andf be a map fromS
into T. If f is bijective, thenf−1 is bijective.

Let S, T be topological structures and letf be a map fromS into T. We say thatf is isomorphic
if and only if:

(Def. 4) f is bijective and open andf−1 is bijective and open.

Let Sbe a non empty topological structure. Observe that there exists a map fromS into Swhich
is isomorphic.

Let S be a non empty topological structure. A collineation ofS is an isomorphic map fromS
into S.

Let Sbe a non empty non void topological structure, letf be a collineation ofS, and letl be a
block ofS. Then f ◦l is a block ofS.

Let Sbe a non empty non void topological structure, letf be a collineation ofS, and letl be a
block ofS. Then f−1(l) is a block ofS.

Next we state a number of propositions:

(13) For every non empty topological structureSand for every collineationf of Sholds f−1 is
a collineation ofS.

(14) LetSbe a non empty topological structure,f be a collineation ofS, andX be a subset ofS.
If X is non trivial, thenf ◦X is non trivial.

(15) LetSbe a non empty topological structure,f be a collineation ofS, andX be a subset ofS.
If X is non trivial, thenf−1(X) is non trivial.

(16) LetSbe a non empty non void topological structure,f be a collineation ofS, andX be a
subset ofS. If X is strong, thenf ◦X is strong.

(17) LetSbe a non empty non void topological structure,f be a collineation ofS, andX be a
subset ofS. If X is strong, thenf−1(X) is strong.

(18) LetSbe a non empty non void topological structure,f be a collineation ofS, andX be a
subset ofS. If X is closed under lines, thenf ◦X is closed under lines.

(19) LetSbe a non empty non void topological structure,f be a collineation ofS, andX be a
subset ofS. If X is closed under lines, thenf−1(X) is closed under lines.

(20) LetSbe a non empty non void topological structure,f be a collineation ofS, andX, Y be
subsets ofS. SupposeX is non trivial andY is non trivial andX andY are joinable. Thenf ◦X
and f ◦Y are joinable.

(21) LetSbe a non empty non void topological structure,f be a collineation ofS, andX, Y be
subsets ofS. SupposeX is non trivial andY is non trivial andX andY are joinable. Then
f−1(X) and f−1(Y) are joinable.

(22) Let I be a non empty set andA be a PLS-yielding many sorted set indexed byI . Sup-
pose that for every elementi of I holdsA(i) is strongly connected. LetW be a subset of
SegreProductA. SupposeW is non trivial, strong, and closed under lines. Then

⋃
{Y;Y

ranges over subsets of SegreProductA : Y is non trivial, strong, and closed under lines∧W
andY are joinable} is a Segre-Coset ofA.

(23) Let I be a non empty set andA be a PLS-yielding many sorted set indexed byI . Suppose
that for every elementi of I holdsA(i) is strongly connected. LetB be a set. ThenB is a Segre-
Coset ofA if and only if there exists a subsetW of SegreProductA such thatW is non trivial,
strong, and closed under lines andB =

⋃
{Y;Y ranges over subsets of SegreProductA : Y is

non trivial, strong, and closed under lines∧W andY are joinable}.
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(24) Let I be a non empty set andA be a PLS-yielding many sorted set indexed byI . Suppose
that for every elementi of I holdsA(i) is strongly connected. LetB be a Segre-Coset ofA and
f be a collineation of SegreProductA. Then f ◦B is a Segre-Coset ofA.

(25) Let I be a non empty set andA be a PLS-yielding many sorted set indexed byI . Suppose
that for every elementi of I holdsA(i) is strongly connected. LetB be a Segre-Coset ofA and
f be a collineation of SegreProductA. Then f−1(B) is a Segre-Coset ofA.
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