On Cosets in Segre's Product of Partial Linear Spaces

Adam Naumowicz University of Białystok

Summary. This paper is a continuation of [15]. We prove that the family of cosets in the Segre's product of partial linear spaces remains invariant under automorphisms.

MML Identifier: PENCIL_2.

WWW: http://mizar.org/JFM/Vol13/pencil_2.html

The articles [19], [10], [23], [2], [24], [16], [7], [9], [8], [5], [13], [1], [4], [3], [17], [20], [21], [6], [11], [25], [14], [18], [12], [22], and [15] provide the notation and terminology for this paper.

1. Preliminaries on Finite Sequences

Let D be a set, let p be a finite sequence of elements of D, and let i, j be natural numbers. The functor Del(p, i, j) yielding a finite sequence of elements of D is defined by:

(Def. 1)
$$\operatorname{Del}(p,i,j) = (p \upharpoonright (i-'1)) \cap (p_{\downarrow j}).$$

Next we state several propositions:

- (1) For every set D and for every finite sequence p of elements of D and for all natural numbers i, j holds rng $Del(p, i, j) \subseteq rng p$.
- (2) Let *D* be a set, *p* be a finite sequence of elements of *D*, and *i*, *j* be natural numbers. If $i \in \text{dom } p$ and $j \in \text{dom } p$, then len Del(p, i, j) = ((len p j) + i) 1.
- (3) Let D be a set, p be a finite sequence of elements of D, and i, j be natural numbers. If $i \in \text{dom } p$ and $j \in \text{dom } p$, then if len Del(p, i, j) = 0, then i = 1 and j = len p.
- (4) Let D be a set, p be a finite sequence of elements of D, and i, j, k be natural numbers. If $i \in \text{dom } p$ and $1 \le k$ and $k \le i 1$, then (Del(p, i, j))(k) = p(k).
- (5) For all finite sequences p, q and for every natural number k such that len $p+1 \le k$ holds $(p \cap q)(k) = q(k \text{len } p)$.
- (6) Let D be a set, p be a finite sequence of elements of D, and i, j, k be natural numbers. Suppose $i \in \text{dom } p$ and $j \in \text{dom } p$ and $i \le j$ and $i \le k$ and $k \le ((\text{len } p j) + i) 1$. Then (Del(p,i,j))(k) = p((j-i)+k+1).

The scheme FinSeqOneToOne deals with sets \mathcal{A} , \mathcal{B} , \mathcal{C} , a finite sequence \mathcal{D} of elements of \mathcal{C} , and a binary predicate \mathcal{P} , and states that:

There exists an one-to-one finite sequence g of elements of $\mathcal C$ such that $\mathcal A=g(1)$ and $\mathcal B=g(\operatorname{len} g)$ and $\operatorname{rng} g\subseteq\operatorname{rng} \mathcal D$ and for every natural number j such that $1\leq j$ and $j<\operatorname{len} g$ holds $\mathcal P[g(j),g(j+1)]$

provided the parameters satisfy the following conditions:

- $\mathcal{A} = \mathcal{D}(1)$ and $\mathcal{B} = \mathcal{D}(\operatorname{len} \mathcal{D})$, and
- For every natural number i and for all sets d_1 , d_2 such that $1 \le i$ and $i < \text{len } \mathcal{D}$ and $d_1 = \mathcal{D}(i)$ and $d_2 = \mathcal{D}(i+1)$ holds $\mathcal{P}[d_1, d_2]$.

2. Segre Cosets

We now state the proposition

(7) Let I be a non empty set, A be a 1-sorted yielding many sorted set indexed by I, L be a many sorted subset indexed by the support of A, i be an element of I, and S be a subset of A(i). Then L + (i, S) is a many sorted subset indexed by the support of A.

Let *I* be a non empty set and let *A* be a non-Trivial-yielding TopStruct-yielding many sorted set indexed by *I*. A subset of Segre_Product *A* is called a Segre-Coset of *A* if it satisfies the condition (Def. 2).

(Def. 2) There exists a Segre-like non trivial-yielding many sorted subset L indexed by the support of A such that it $= \prod L$ and $L(\text{index}(L)) = \Omega_{A(\text{index}(L))}$.

One can prove the following proposition

(8) Let I be a non-empty set, A be a non-Trivial-yielding TopStruct-yielding many sorted set indexed by I, and B_1 , B_2 be Segre-Cosets of A. If $2 \subseteq \overline{B_1 \cap B_2}$, then $B_1 = B_2$.

Let *S* be a topological structure and let *X*, *Y* be subsets of *S*. We say that *X* and *Y* are joinable if and only if the condition (Def. 3) is satisfied.

- (Def. 3) There exists a finite sequence f of elements of $2^{\text{the carrier of } S}$ such that
 - (i) X = f(1),
 - (ii) $Y = f(\operatorname{len} f)$,
 - (iii) for every subset W of S such that $W \in \operatorname{rng} f$ holds W is closed under lines and strong, and
 - (iv) for every natural number i such that $1 \le i$ and $i < \text{len } f \text{ holds } 2 \subseteq \overline{f(i) \cap f(i+1)}$.

The following propositions are true:

- (9) Let S be a topological structure and X, Y be subsets of S. Suppose X and Y are joinable. Then there exists an one-to-one finite sequence f of elements of $2^{\text{the carrier of } S}$ such that
- (i) X = f(1),
- (ii) $Y = f(\operatorname{len} f)$,
- (iii) for every subset W of S such that $W \in \operatorname{rng} f$ holds W is closed under lines and strong, and
- (iv) for every natural number i such that $1 \le i$ and $i < \text{len } f \text{ holds } 2 \subseteq \overline{f(i) \cap f(i+1)}$.
- (10) Let *S* be a topological structure and *X* be a subset of *S*. If *X* is closed under lines and strong, then *X* and *X* are joinable.
- (11) Let *I* be a non empty set, *A* be a PLS-yielding many sorted set indexed by *I*, and *X*, *Y* be subsets of Segre_Product *A*. Suppose that
 - (i) X is non trivial, closed under lines, and strong,
 - (ii) Y is non trivial, closed under lines, and strong, and
- (iii) *X* and *Y* are joinable.

Let X_1 , Y_1 be Segre-like non trivial-yielding many sorted subsets indexed by the support of A. Suppose $X = \prod X_1$ and $Y = \prod Y_1$. Then $\operatorname{index}(X_1) = \operatorname{index}(Y_1)$ and for every set i such that $i \neq \operatorname{index}(X_1)$ holds $X_1(i) = Y_1(i)$.

3. COLLINEATIONS OF SEGRE PRODUCT

Next we state the proposition

(12) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, and f be a map from S into T. If f is bijective, then f^{-1} is bijective.

Let S, T be topological structures and let f be a map from S into T. We say that f is isomorphic if and only if:

(Def. 4) f is bijective and open and f^{-1} is bijective and open.

Let *S* be a non empty topological structure. Observe that there exists a map from *S* into *S* which is isomorphic.

Let S be a non empty topological structure. A collineation of S is an isomorphic map from S into S.

Let S be a non empty non void topological structure, let f be a collineation of S, and let l be a block of S. Then $f^{\circ}l$ is a block of S.

Let S be a non empty non void topological structure, let f be a collineation of S, and let l be a block of S. Then $f^{-1}(l)$ is a block of S.

Next we state a number of propositions:

- (13) For every non empty topological structure S and for every collineation f of S holds f^{-1} is a collineation of S.
- (14) Let S be a non empty topological structure, f be a collineation of S, and X be a subset of S. If X is non trivial, then $f^{\circ}X$ is non trivial.
- (15) Let S be a non empty topological structure, f be a collineation of S, and X be a subset of S. If X is non trivial, then $f^{-1}(X)$ is non trivial.
- (16) Let S be a non empty non void topological structure, f be a collineation of S, and X be a subset of S. If X is strong, then $f^{\circ}X$ is strong.
- (17) Let S be a non empty non void topological structure, f be a collineation of S, and X be a subset of S. If X is strong, then $f^{-1}(X)$ is strong.
- (18) Let S be a non empty non void topological structure, f be a collineation of S, and X be a subset of S. If X is closed under lines, then $f^{\circ}X$ is closed under lines.
- (19) Let S be a non empty non void topological structure, f be a collineation of S, and X be a subset of S. If X is closed under lines, then $f^{-1}(X)$ is closed under lines.
- (20) Let S be a non empty non void topological structure, f be a collineation of S, and X, Y be subsets of S. Suppose X is non trivial and Y is non trivial and X and Y are joinable. Then $f^{\circ}X$ and $f^{\circ}Y$ are joinable.
- (21) Let *S* be a non empty non void topological structure, f be a collineation of *S*, and *X*, *Y* be subsets of *S*. Suppose *X* is non trivial and *Y* is non trivial and *X* and *Y* are joinable. Then $f^{-1}(X)$ and $f^{-1}(Y)$ are joinable.
- (22) Let I be a non empty set and A be a PLS-yielding many sorted set indexed by I. Suppose that for every element i of I holds A(i) is strongly connected. Let W be a subset of Segre_Product A. Suppose W is non trivial, strong, and closed under lines. Then $\bigcup \{Y; Y \text{ ranges over subsets of Segre_Product } A: Y \text{ is non trivial, strong, and closed under lines } \wedge W$ and Y are joinable Y is a Segre-Coset of Y.
- (23) Let I be a non empty set and A be a PLS-yielding many sorted set indexed by I. Suppose that for every element i of I holds A(i) is strongly connected. Let B be a set. Then B is a Segre-Coset of A if and only if there exists a subset W of Segre_Product A such that W is non trivial, strong, and closed under lines and $B = \bigcup \{Y; Y \text{ ranges over subsets of Segre_Product } A: Y \text{ is non trivial, strong, and closed under lines } \land W \text{ and } Y \text{ are joinable} \}.$

- (24) Let I be a non empty set and A be a PLS-yielding many sorted set indexed by I. Suppose that for every element i of I holds A(i) is strongly connected. Let B be a Segre-Coset of A and f be a collineation of Segre-Product A. Then $f \circ B$ is a Segre-Coset of A.
- (25) Let I be a non empty set and A be a PLS-yielding many sorted set indexed by I. Suppose that for every element i of I holds A(i) is strongly connected. Let B be a Segre-Coset of A and f be a collineation of Segre-Product A. Then $f^{-1}(B)$ is a Segre-Coset of A.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [5] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [6] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{T}^{2}\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [13] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [14] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [15] Adam Naumowicz. On Segre's product of partial line spaces. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Vol12/pencil_1.html.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [18] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/polynom1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pboole.html.
- [21] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html.
- [22] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[25] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received August 14, 2001

Published January 2, 2004
