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Summary. This paper is a continuation of[115]. We prove that the family of cosets in
the Segre’s product of partial linear spaces remains invariant under automorphisms.
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The articles|[19],[[10],[[23],[[2],[[24],[[16],]7],[[9],[18].[[5], [1B],L[1],T4], 3], [[17],[120],[[21],[16],
[111, [25], [14], [18], [12], [22], and[[15] provide the notation and terminology for this paper.

1. PRELIMINARIES ON FINITE SEQUENCES

Let D be a set, lep be a finite sequence of elementsfand leti, j be natural numbers. The
functor Delp,i, j) yielding a finite sequence of elementsyfs defined by:

(Def. 1) Delp,i, j) = (pI(i—"1))" (pij)-
Next we state several propositions:

(1) Forevery seb and for every finite sequengeof elements oD and for all natural numbers
i, j holds rngDelp,i, j) C rngp.

(2) LetD be a setp be a finite sequence of elementsdfandi, j be natural numbers. If
i € dompandj € domp, then lenDe(p,i, j) = ((lenp—j)+i)— 1.

(3) LetD be a setp be a finite sequence of elementsdfandi, j be natural numbers. If
i € domp andj € domp, then if lenDe(p,i, j) = 0, theni =1 andj = lenp.

(4) LetD be a setp be a finite sequence of elementsiafandi, j, k be natural numbers. If
i € dompand 1< kandk <i-—1, then(Del(p,i, j))(k) = p(k).

(5) For all finite sequenceg, q and for every natural numbérsuch that lep+ 1 < k holds
(P~ a)(k) =q(k—lenp).

(6) LetD be a setp be a finite sequence of elementsf andi, j, k be natural numbers.
Supposé € domp and j € domp andi < j andi < k andk < ((lenp— j)+i) — 1. Then
(Del(p.i, ) (k) = p((j ="1) + k+1).

The schemé&inSeqOneToOndeals with sets?, B, C, a finite sequencé® of elements ofC,
and a binary predicat@, and states that:
There exists an one-to-one finite sequegioéelements o’ such thatda = g(1) and
B = g(leng) and rngy C rng» and for every natural numbersuch that 1< j and
j <lengholds®[g(j),q(j +1)]
provided the parameters satisfy the following conditions:
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e 4=PD(1)andB = D(lenD), and
e For every natural numberand for all setgl;, d> such that < i andi < lenD and

di = D(i) anddy = D(i + 1) holdsP[d1,dy].
2. SEGRECOSETS

We now state the proposition

(7) Letl be a non empty sef be a 1-sorted yielding many sorted set indexed by be a
many sorted subset indexed by the supporfof be an element of, andS be a subset of
A(i). ThenL+- (i,S) is a many sorted subset indexed by the suppo#t of

Let| be a non empty set and latbe a non-Trivial-yielding TopStruct-yielding many sorted set
indexed byl. A subset of Segr®roduct is called a Segre-Coset &fif it satisfies the condition

(Def. 2).

(Def. 2) There exists a Segre-like non trivial-yielding many sorted subsatexed by the support
of Asuch that it= []L andL(indexL)) = QaindexL))-

One can prove the following proposition

(8) Letl be a non empty sef\ be a non-Trivial-yielding TopStruct-yielding many sorted set
indexed byl, andBy, B, be Segre-Cosets &f If 2 C B1NB;, thenB; = By.

Let Sbe a topological structure and M€t Y be subsets db. We say thaX andY are joinable if
and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequentef elements of € camier ofS gy ch that
i X=f(1),
(i) Y= f(lenf),
(iii)  for every subseW of Ssuch thatV € rngf holdsW is closed under lines and strong, and

(iv) for every natural numbdrsuch that I< i andi < lenf holds 2C f(i)nf(i+1).
The following propositions are true:

(9) LetSbe a topological structure arX, Y be subsets db. SupposeX andY are joinable.
Then there exists an one-to-one finite sequehoelements of $e carier ofS gych that
M X=7f(1),
(i) Y =f(lenf),
(iif)  for every subseW of Ssuch thaWW € rngf holdsW is closed under lines and strong, and
(iv) for every natural numbersuch that i i andi < lenf holds 2C f(i)nf(i+1).

(10) LetSbe atopological structure andbe a subset d. If X is closed under lines and strong,
thenX andX are joinable.
(11) Letl be a non empty sef be a PLS-yielding many sorted set indexed bgndX, Y be
subsets of SegrBroduct\. Suppose that
(i) Xis non trivial, closed under lines, and strong,
(i) Y is non trivial, closed under lines, and strong, and
(i) X andY are joinable.
Let X1, Y1 be Segre-like non trivial-yielding many sorted subsets indexed by the supplrt of
SupposeX = [1X1 andY = [1Y:1. Then indexX;) = index(Y1) and for every seit such that
i # index(X1) holdsXy(i) = Ya(i).
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3. COLLINEATIONS OF SEGREPRODUCT

Next we state the proposition

(12) LetSbe a 1-sorted structur&, be a non empty 1-sorted structure, antde a map frons
into T. If f is bijective, thenf 1 is bijective.

LetS T be topological structures and lebe a map fronBinto T. We say thaff is isomorphic
if and only if:

(Def. 4) f is bijective and open anti~! is bijective and open.

Let Sbe a non empty topological structure. Observe that there exists a ma@fraonSwhich
is isomorphic.

Let Sbe a non empty topological structure. A collineationSié an isomorphic map frors
into S,

Let Sbe a non empty non void topological structure, fidte a collineation of§, and letl be a
block of S. Thenf®l is a block ofS.

Let She a non empty non void topological structure, fidte a collineation of§, and letl be a
block of S. Thenf (1) is a block ofS.

Next we state a number of propositions:

(13) For every non empty topological struct@and for every collineatiori of Sholdsf 1 is
a collineation ofS.

(14) LetSbe a non empty topological structurfiebe a collineation 0§, andX be a subset db.
If X is non trivial, thenf°X is non trivial.

(15) LetSbe a non empty topological structurebe a collineation of, andX be a subset d&.
If X is non trivial, thenf ~1(X) is non trivial.

(16) LetShe a non empty non void topological structufehe a collineation of5, andX be a
subset ofS. If X is strong, therf°X is strong.

(17) LetSbe a non empty non void topological structufehe a collineation of5, andX be a
subset ofS. If X is strong, therf ~1(X) is strong.

(18) LetSbe a non empty non void topological structufehe a collineation o5, andX be a
subset ofS. If X is closed under lines, theit X is closed under lines.

(19) LetShe a non empty non void topological structufehe a collineation of5, andX be a
subset ofS. If X is closed under lines, theiT?(X) is closed under lines.

(20) LetSbe a non empty non void topological structufeye a collineation of§ andX, Y be
subsets 06. Suppose is non trivial andy is non trivial andX andY are joinable. Therf°X
andf°Y are joinable.

(21) LetSbe a non empty non void topological structuféye a collineation o, andX, Y be
subsets o5, SupposeX is non trivial andY is non trivial andX andY are joinable. Then
f~1(X) and f~(Y) are joinable.

(22) Letl be a non empty set andl be a PLS-yielding many sorted set indexedIbySup-
pose that for every elementof | holdsA(i) is strongly connected. L&V be a subset of
SegreProduct. SupposeV is non trivial, strong, and closed under lines. ThégflY;Y
ranges over subsets of Sedteoduc® : Y is non trivial, strong, and closed under linesV
andY are joinablé is a Segre-Coset &.

(23) Letl be a non empty set arilbe a PLS-yielding many sorted set indexed bysuppose
that for every elemeritof | holdsA(i) is strongly connected. L&be a set. TheBis a Segre-
Coset ofA if and only if there exists a subsét of SegreProduct such thawV is non trivial,
strong, and closed under lines aBa-= (J{Y;Y ranges over subsets of Sed?eoduci\:Y is
non trivial, strong, and closed under line$V andY are joinablé.
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(24) Letl be a non empty set anilbe a PLS-yielding many sorted set indexed bysuppose

that for every elementof | holdsA(i) is strongly connected. L& be a Segre-Coset éfand
f be a collineation of SegrBroducA. Thenf°B is a Segre-Coset &.

(25) Letl be a non empty set arilbe a PLS-yielding many sorted set indexed bysuppose
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that for every elemeritof | holdsA(i) is strongly connected. L&be a Segre-Coset éfand
f be a collineation of SegrBroduct. Thenf~1(B) is a Segre-Coset &.
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