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Summary. In this paper the concept of partial line spaces is presented. We also con-
struct the Segre’s product for a family of partial line spaces indexed by an arbitrary nonempty
set.

MML Identifier: PENCIL_1.

WWW: http://mizar.org/JFM/Vol12/pencil_1.html

The articles [16], [9], [19], [13], [2], [10], [20], [8], [6], [4], [1], [5], [3], [14], [17], [18], [7], [11],
[12], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For all functionsf , g such that∏ f = ∏g holds if f is non-empty, theng is non-empty.

(2) For every setX holds 2⊆ X iff there exist setsx, y such thatx∈ X andy∈ X andx 6= y.

(3) For every setX such that 2⊆ X and for every setx there exists a sety such thaty∈ X and
x 6= y.

(4) For every setX holds 2⊆ X iff X is non trivial.

(5) For every setX holds 3⊆ X iff there exist setsx, y, z such thatx∈ X andy∈ X andz∈ X
andx 6= y andx 6= z andy 6= z.

(6) For every setX such that 3⊆ X and for all setsx, y there exists a setz such thatz∈ X and
x 6= z andy 6= z.

2. PARTIAL L INE SPACES

Let Sbe a topological structure. A block ofS is an element of the topology ofS.
Let Sbe a topological structure and letx, y be points ofS. We say thatx, y are collinear if and

only if:

(Def. 1) x = y or there exists a blockl of Ssuch that{x,y} ⊆ l .

Let Sbe a topological structure and letT be a subset ofS. We say thatT is closed under lines if
and only if:

(Def. 2) For every blockl of Ssuch that 2⊆ l ∩T holdsl ⊆ T.

We say thatT is strong if and only if:
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(Def. 3) For all pointsx, y of Ssuch thatx∈ T andy∈ T holdsx, y are collinear.

Let Sbe a topological structure. We say thatS is void if and only if:

(Def. 4) The topology ofS is empty.

We say thatS is degenerated if and only if:

(Def. 5) The carrier ofS is a block ofS.

We say thatShas non trivial blocks if and only if:

(Def. 6) For every blockk of Sholds 2⊆ k.

We say thatS is identifying close blocks if and only if:

(Def. 7) For all blocksk, l of Ssuch that 2⊆ k∩ l holdsk = l .

We say thatS is truly-partial if and only if:

(Def. 8) There exist pointsx, y of Ssuch thatx, y are not collinear.

We say thatShas no isolated points if and only if:

(Def. 9) For every pointx of S there exists a blockl of Ssuch thatx∈ l .

We say thatS is connected if and only if the condition (Def. 10) is satisfied.

(Def. 10) Letx, y be points ofS. Then there exists a finite sequencef of elements of the carrier ofS
such that

(i) x = f (1),

(ii) y = f (len f ), and

(iii) for every natural numberi such that 1≤ i andi < len f and for all pointsa, b of Ssuch that
a = f (i) andb = f (i +1) holdsa, b are collinear.

We say thatS is strongly connected if and only if the condition (Def. 11) is satisfied.

(Def. 11) Letx be a point ofSandX be a subset ofS. SupposeX is closed under lines and strong.
Then there exists a finite sequencef of elements of 2the carrier ofS such that

(i) X = f (1),

(ii) x∈ f (len f ),

(iii) for every subsetW of Ssuch thatW ∈ rng f holdsW is closed under lines and strong, and

(iv) for every natural numberi such that 1≤ i andi < len f holds 2⊆ f (i)∩ f (i +1) .

We now state two propositions:

(7) Let X be a non empty set. Suppose 3⊆ X . Let Sbe a topological structure. Suppose the
carrier ofS= X and the topology ofS= {L;L ranges over subsets ofX: 2 = L}. ThenS is
non empty, non void, non degenerated, non truly-partial, and identifying close blocks and has
non trivial blocks and no isolated points.

(8) Let X be a non empty set. Suppose 3⊆ X . Let K be a subset ofX. SupposeK = 2. Let
S be a topological structure. Suppose the carrier ofS= X and the topology ofS= {L;L

ranges over subsets ofX: 2 = L} \ {K}. ThenS is non empty, non void, non degenerated,
truly-partial, and identifying close blocks and has non trivial blocks and no isolated points.
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One can verify that there exists a topological structure which is strict, non empty, non void,
non degenerated, non truly-partial, and identifying close blocks and has non trivial blocks and no
isolated points and there exists a topological structure which is strict, non empty, non void, non
degenerated, truly-partial, and identifying close blocks and has non trivial blocks and no isolated
points.

Let Sbe a non void topological structure. Note that the topology ofS is non empty.
Let Sbe a topological structure with no isolated points and letx, y be points ofS. Let us observe

thatx, y are collinear if and only if:

(Def. 12) There exists a blockl of Ssuch that{x,y} ⊆ l .

A PLS is a non empty non void non degenerated identifying close blocks topological structure
with non trivial blocks.

Let F be a binary relation. We say thatF is TopStruct-yielding if and only if:

(Def. 13) For every setx such thatx∈ rngF holdsx is a topological structure.

Let us note that every function which is TopStruct-yielding is also 1-sorted yielding.
Let I be a set. One can check that there exists a many sorted set indexed byI which is TopStruct-

yielding.
Let us note that there exists a function which is TopStruct-yielding.
Let F be a binary relation. We say thatF is non-void-yielding if and only if:

(Def. 14) For every topological structureSsuch thatS∈ rngF holdsS is non void.

Let F be a TopStruct-yielding function. Let us observe thatF is non-void-yielding if and only
if:

(Def. 15) For every seti such thati ∈ rngF holdsi is a non void topological structure.

Let F be a binary relation. We say thatF is trivial-yielding if and only if:

(Def. 16) For every setSsuch thatS∈ rngF holdsS is trivial.

Let F be a binary relation. We say thatF is non-Trivial-yielding if and only if:

(Def. 17) For every 1-sorted structureSsuch thatS∈ rngF holdsS is non trivial.

Let us observe that every binary relation which is non-Trivial-yielding is also nonempty.
Let F be a 1-sorted yielding function. Let us observe thatF is non-Trivial-yielding if and only

if:

(Def. 18) For every seti such thati ∈ rngF holdsi is a non trivial 1-sorted structure.

Let I be a non empty set, letA be a TopStruct-yielding many sorted set indexed byI , and let j
be an element ofI . ThenA( j) is a topological structure.

Let F be a binary relation. We say thatF is PLS-yielding if and only if:

(Def. 19) For every setx such thatx∈ rngF holdsx is a PLS.

One can verify the following observations:

∗ every function which is PLS-yielding is also nonempty and TopStruct-yielding,

∗ every TopStruct-yielding function which is PLS-yielding is also non-void-yielding, and

∗ every TopStruct-yielding function which is PLS-yielding is also non-Trivial-yielding.

Let I be a set. One can verify that there exists a many sorted set indexed byI which is PLS-
yielding.

Let I be a non empty set, letA be a PLS-yielding many sorted set indexed byI , and let j be an
element ofI . ThenA( j) is a PLS.

Let I be a set and letA be a many sorted set indexed byI . We say thatA is Segre-like if and only
if:
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(Def. 20) There exists an elementi of I such that for every elementj of I such thati 6= j holdsA( j)
is non empty and trivial.

Let I be a set and letA be a many sorted set indexed byI . Note that{A} is trivial-yielding.
The following proposition is true

(9) Let I be a non empty set,A be a many sorted set indexed byI , i be an element ofI , andS
be a non trivial set. ThenA+· (i,S) is non trivial-yielding.

Let I be a non empty set and letA be a many sorted set indexed byI . Note that{A} is Segre-like.
We now state two propositions:

(10) For every non empty setI and for every many sorted setA indexed byI and for all setsi, S
holds{A}+· (i,S) is Segre-like.

(11) LetI be a non empty set,A be a nonempty 1-sorted yielding many sorted set indexed byI ,
andB be an element of the support ofA. Then{B} is a many sorted subset indexed by the
support ofA.

Let I be a non empty set and letA be a nonempty 1-sorted yielding many sorted set indexed
by I . One can check that there exists a many sorted subset indexed by the support ofA which is
Segre-like, trivial-yielding, and non-empty.

Let I be a non empty set and letA be a non-Trivial-yielding 1-sorted yielding many sorted set
indexed byI . Observe that there exists a many sorted subset indexed by the support ofA which is
Segre-like, non trivial-yielding, and non-empty.

Let I be a non empty set. One can verify that there exists a many sorted set indexed byI which
is Segre-like and non trivial-yielding.

Let I be a non empty set and letB be a Segre-like non trivial-yielding many sorted set indexed
by I . The functor index(B) yielding an element ofI is defined as follows:

(Def. 21) B(index(B)) is non trivial.

The following proposition is true

(12) LetI be a non empty set,A be a Segre-like non trivial-yielding many sorted set indexed by
I , andi be an element ofI . If i 6= index(A), thenA(i) is non empty and trivial.

Let I be a non empty set. One can check that every many sorted set indexed byI which is
Segre-like and non trivial-yielding is also non-empty.

One can prove the following proposition

(13) Let I be a non empty set andA be a many sorted set indexed byI . Then 2⊆ ∏A if and
only if A is non-empty and non trivial-yielding.

Let I be a non empty set and letB be a Segre-like non trivial-yielding many sorted set indexed
by I . Note that∏B is non trivial.

3. SEGRE’ S PRODUCT

Let I be a non empty set and letA be a nonempty TopStruct-yielding many sorted set indexed byI .
The functor SegreBlocksA yields a family of subsets of∏ (the support ofA) and is defined by the
condition (Def. 22).

(Def. 22) Letx be a set. Thenx∈ SegreBlocksA if and only if there exists a Segre-like many sorted
subsetB indexed by the support ofA such thatx = ∏B and there exists an elementi of I such
thatB(i) is a block ofA(i).

Let I be a non empty set and letA be a nonempty TopStruct-yielding many sorted set indexed by
I . The functor SegreProductA yields a non empty topological structure and is defined as follows:
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(Def. 23) SegreProductA = 〈∏ (the support ofA),SegreBlocksA〉.

The following propositions are true:

(14) LetI be a non empty set andA be a nonempty TopStruct-yielding many sorted set indexed
by I . Then every point of SegreProductA is a many sorted set indexed byI .

(15) LetI be a non empty set andA be a nonempty TopStruct-yielding many sorted set indexed
by I . If there exists an elementi of I such thatA(i) is non void, then SegreProductA is non
void.

(16) LetI be a non empty set andA be a nonempty TopStruct-yielding many sorted set indexed
by I . Suppose that for every elementi of I holdsA(i) is non degenerated and there exists an
elementi of I such thatA(i) is non void. Then SegreProductA is non degenerated.

(17) LetI be a non empty set andA be a nonempty TopStruct-yielding many sorted set indexed
by I . Suppose that for every elementi of I holdsA(i) has non trivial blocks and there exists
an elementi of I such thatA(i) is non void. Then SegreProductA has non trivial blocks.

(18) Let I be a non empty set andA be a nonempty TopStruct-yielding many sorted set in-
dexed byI . Suppose that for every elementi of I holdsA(i) is identifying close blocks and
has non trivial blocks and there exists an elementi of I such thatA(i) is non void. Then
SegreProductA is identifying close blocks.

Let I be a non empty set and letA be a PLS-yielding many sorted set indexed byI . Then
SegreProductA is a PLS.

Next we state a number of propositions:

(19) LetT be a topological structure andSbe a subset ofT. If S is trivial, thenS is strong and
closed under lines.

(20) Let S be an identifying close blocks topological structure,l be a block ofS, andL be a
subset ofS. If L = l , thenL is closed under lines.

(21) LetSbe a topological structure,l be a block ofS, andL be a subset ofS. If L = l , thenL is
strong.

(22) For every non void topological structureSholdsΩS is closed under lines.

(23) LetI be a non empty set,A be a Segre-like non trivial-yielding many sorted set indexed by
I , andx, y be many sorted sets indexed byI . If x∈ ∏A andy∈ ∏A, then for every seti such
that i 6= index(A) holdsx(i) = y(i).

(24) Let I be a non empty set,A be a PLS-yielding many sorted set indexed byI , andx be a
set. Thenx is a block of SegreProductA if and only if there exists a Segre-like non trivial-
yielding many sorted subsetL indexed by the support ofA such thatx = ∏L andL(index(L))
is a block ofA(index(L)).

(25) Let I be a non empty set,A be a PLS-yielding many sorted set indexed byI , andP be a
many sorted set indexed byI . SupposeP is a point of SegreProductA. Let i be an element of
I andp be a point ofA(i). ThenP+· (i, p) is a point of SegreProductA.

(26) Let I be a non empty set andA, B be Segre-like non trivial-yielding many sorted sets
indexed byI . Suppose 2⊆ ∏A∩∏B. Then index(A) = index(B) and for every seti such
that i 6= index(A) holdsA(i) = B(i).

(27) LetI be a non empty set,A be a Segre-like non trivial-yielding many sorted set indexed by
I , andN be a non trivial set. ThenA+· (index(A),N) is Segre-like and non trivial-yielding.

(28) LetSbe a non empty non void identifying close blocks topological structure with no iso-
lated points. IfS is strongly connected, thenS is connected.
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(29) Let I be a non empty set,A be a PLS-yielding many sorted set indexed byI , andS be a
subset of SegreProductA. ThenS is non trivial, strong, and closed under lines if and only if
there exists a Segre-like non trivial-yielding many sorted subsetB indexed by the support of
A such thatS= ∏B and for every subsetC of A(index(B)) such thatC = B(index(B)) holds
C is strong and closed under lines.
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[9] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.

[10] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[11] Artur Korniłowicz. Some basic properties of many sorted sets.Journal of Formalized Mathematics, 7, 1995.http://mizar.org/JFM/
Vol7/pzfmisc1.html.

[12] Beata Madras. Product of family of universal algebras.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/Vol5/
pralg_1.html.

[13] Beata Padlewska. Families of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/setfam_1.html.

[14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Vol1/pre_topc.html.

[15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables.Journal of Formalized Mathematics,
11, 1999.http://mizar.org/JFM/Vol11/polynom1.html.

[16] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[17] Andrzej Trybulec. Many-sorted sets.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/Vol5/pboole.html.

[18] Andrzej Trybulec. Many sorted algebras.Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
html.

[19] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[20] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received May 29, 2000

Published January 2, 2004

http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/realset1.html
http://mizar.org/JFM/Vol1/realset1.html
http://mizar.org/JFM/Vol6/msualg_2.html
http://mizar.org/JFM/Vol6/msualg_2.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol7/pzfmisc1.html
http://mizar.org/JFM/Vol7/pzfmisc1.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol1/setfam_1.html
http://mizar.org/JFM/Vol1/pre_topc.html
http://mizar.org/JFM/Vol11/polynom1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol5/pboole.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	on segre's product of partial line spaces By adam naumowicz

