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Summary. In this paper the concept of partial line spaces is presented. We also con-
struct the Segre’s product for a family of partial line spaces indexed by an arbitrary nonempty
set.
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The articles|[15],[[9],[119],[[18],[[2],[[10],[[20],[18],[16],[14],[[L], ([5], [[3], [[14], [17], [1B], (7], [14],
[12], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:
(1) For all functionsf, g such thaf] f = []gholds if f is non-empty, theg is non-empty.
(2) For every seX holds 2C X iff there exist sets, y such thak € X andy € X andx # .

(3) For every seK such that 22 X and for every sex there exists a satsuch thay € X and

X#Y.
(4) For every seX holds 2C X iff X is non trivial.

(5) For every seK holds 3C X iff there exist sets, y, zsuch thak € X andy € X andz e X
andx # y andx # zandy # z

(6) For every seK such that 32 X and for all set, y there exists a setsuch thatz € X and
X # zandy # z

2. PARTIAL LINE SPACES

Let Sbe a topological structure. A block &fis an element of the topology &
Let Sbe a topological structure and bety be points ofS. We say thak, y are collinear if and
only if:

(Def. 1) x =y orthere exists a blockof Ssuch that{x,y} C .

Let Sbe a topological structure and [Ethe a subset db. We say thaT is closed under lines if
and only if:

(Def. 2) For every block of Ssuch that 2ZZ INT holdsl CT.
We say thaf is strong if and only if:
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(Def. 3) For all points, y of Ssuch tha € T andy € T holdsx, y are collinear.
Let Sbe a topological structure. We say ti&it void if and only if:
(Def. 4) The topology ofis empty.
We say thaSis degenerated if and only if:
(Def. 5) The carrier o5is a block ofS,

We say thaS has non trivial blocks if and only if:

(Def. 6) For every block of Sholds 2C k.

We say thaSis identifying close blocks if and only if:

(Def. 7) For all block, | of Ssuch that 22 kAT holdsk =1.
We say thaSis truly-partial if and only if:
(Def. 8) There exist points, y of Ssuch thak, y are not collinear.
We say thaS has no isolated points if and only if:
(Def. 9) For every poink of Sthere exists a blockof Ssuch thak € |.
We say thaSis connected if and only if the condition (Def. 10) is satisfied.

(Def. 10) Letx, y be points ofS. Then there exists a finite sequerfcef elements of the carrier &
such that

i) x=f(),
(i) y=f(lenf),and
(iii)  for every natural numbeirsuch that < i andi < lenf and for all pointsa, b of Ssuch that
a= f(i) andb = f(i+1) holdsa, b are collinear.
We say thaSis strongly connected if and only if the condition (Def. 11) is satisfied.

(Def. 11) Letx be a point ofSandX be a subset 05. SupposeX is closed under lines and strong.
Then there exists a finite sequenfcef elements of ¥ caer ofS gych that
i X=1(1),
(i) xe f(lenf),
(iii)  for every subseW of Ssuch thatV € rngf holdsW is closed under lines and strong, and
(iv) for every natural numbersuch that i< i andi < lenf holds 2C f(i)N f(i+1).

We now state two propositions:

(7) LetX be a non empty set. Supposg3>:<. Let Sbe a topological structure. Suppose the

carrier ofS= X and the topology o8= {L;L ranges over subsets ¥f 2= L}. ThenSis
non empty, non void, non degenerated, non truly-partial, and identifying close blocks and has
non trivial blocks and no isolated points.

(8) LetX be a non empty set. Suppose&3X. Let K be a subset oK. SupposeK = 2. Let
S be a topological structure. Suppose the carrieBef X and the topology o5= {L;L
ranges over subsets ¥f 2= L} \ {K}. ThenSis non empty, non void, non degenerated,
truly-partial, and identifying close blocks and has non trivial blocks and no isolated points.
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One can verify that there exists a topological structure which is strict, non empty, non void,
non degenerated, non truly-partial, and identifying close blocks and has non trivial blocks and no
isolated points and there exists a topological structure which is strict, non empty, non void, non
degenerated, truly-partial, and identifying close blocks and has non trivial blocks and no isolated
points.

Let Sbe a non void topological structure. Note that the topolog8isfnon empty.

Let Sbe a topological structure with no isolated points anc/|gtbe points ofS. Let us observe
thatx, y are collinear if and only if:

(Def. 12) There exists a blodkof Ssuch that{x,y} C 1.

A PLS is a non empty non void non degenerated identifying close blocks topological structure
with non trivial blocks.
Let F be a binary relation. We say thitis TopStruct-yielding if and only if:

(Def. 13) For every set such thak € rngF holdsx is a topological structure.

Let us note that every function which is TopStruct-yielding is also 1-sorted yielding.

Letl be a set. One can check that there exists a many sorted set indelxetiioh is TopStruct-
yielding.

Let us note that there exists a function which is TopStruct-yielding.

Let F be a binary relation. We say thi&tis non-void-yielding if and only if:

(Def. 14) For every topological structugsuch thatS € rngF holdsSis non void.

Let F be a TopStruct-yielding function. Let us observe thds non-void-yielding if and only
if:

(Def. 15) For every sdtsuch thai € rngF holdsi is a non void topological structure.
Let F be a binary relation. We say thitis trivial-yielding if and only if:
(Def. 16) For every sebsuch thatS e rngF holdsSis trivial.
Let F be a binary relation. We say thi&tis non-Trivial-yielding if and only if:
(Def. 17) For every 1-sorted structuBssuch thatS € rngF holdsSis non trivial.

Let us observe that every binary relation which is non-Trivial-yielding is also nonempty.
Let F be a 1-sorted yielding function. Let us observe thas non-Trivial-yielding if and only
if:

(Def. 18) For every sdtsuch that € rngF holdsi is a non trivial 1-sorted structure.

Let| be a non empty set, |I& be a TopStruct-yielding many sorted set indexed jgnd letj
be an element df. ThenA(j) is a topological structure.
Let F be a binary relation. We say thatis PLS-yielding if and only if:

(Def. 19) For every set such thak € rngF holdsxis a PLS.
One can verify the following observations:
x every function which is PLS-yielding is also nonempty and TopStruct-yielding,
x every TopStruct-yielding function which is PLS-yielding is also non-void-yielding, and
x  every TopStruct-yielding function which is PLS-yielding is also non-Trivial-yielding.

Let | be a set. One can verify that there exists a many sorted set indeXedltigh is PLS-
yielding.

Let| be a non empty set, Iét be a PLS-yielding many sorted set indexed pgnd letj be an
element ofl. ThenA(j) is a PLS.

Letl be a set and lek be a many sorted set indexedlbyVe say thaf is Segre-like if and only
if:
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(Def. 20) There exists an elemdrtf | such that for every elementof | such thai # j holdsA(j)
is non empty and trivial.

Let| be a set and leh be a many sorted set indexed lbyNote that{ A} is trivial-yielding.
The following proposition is true

(9) Letl be a non empty sefy be a many sorted set indexed by be an element df, andS
be a non trivial set. TheA+- (i,S) is non trivial-yielding.

Letl be a non empty set and latbe a many sorted set indexedlbyNote that{ A} is Segre-like.
We now state two propositions:

(10) For every non empty sétand for every many sorted sktindexed byl and for all sets, S
holds{A} +- (i, S) is Segre-like.

(11) Letl be a non empty sefy be a nonempty 1-sorted yielding many sorted set indexdd by
andB be an element of the support Af Then{B} is a many sorted subset indexed by the
support ofA.

Let | be a non empty set and l&tbe a nonempty 1-sorted yielding many sorted set indexed
by I. One can check that there exists a many sorted subset indexed by the supparhich is
Segre-like, trivial-yielding, and non-empty.

Let| be a non empty set and IAtbe a non-Trivial-yielding 1-sorted yielding many sorted set
indexed byl. Observe that there exists a many sorted subset indexed by the suppavhafth is
Segre-like, non trivial-yielding, and non-empty.

Letl be a non empty set. One can verify that there exists a many sorted set indexathioi
is Segre-like and non trivial-yielding.

Let| be a non empty set and IBtbe a Segre-like non trivial-yielding many sorted set indexed
by I. The functor indefB) yielding an element of is defined as follows:

(Def. 21) B(index(B)) is non trivial.

The following proposition is true

(12) Letl be a non empty sef be a Segre-like non trivial-yielding many sorted set indexed by
I, andi be an element df. If i # index(A), thenA(i) is non empty and trivial.

Let | be a non empty set. One can check that every many sorted set indexedhigh is
Segre-like and non trivial-yielding is also non-empty.
One can prove the following proposition

(13) Letl be a non empty set arlbe a many sorted set indexed hyThen 2C ﬁ if and
only if Ais non-empty and non trivial-yielding.

Let] be a non empty set and IBtbe a Segre-like non trivial-yielding many sorted set indexed
by I. Note that[]B is non trivial.

3. SEGRESPRrRODUCT

Letl be a non empty set and latbe a nonempty TopStruct-yielding many sorted set indexeld by
The functor SegréBlocksA yields a family of subsets df] (the support o) and is defined by the
condition (Def. 22).

(Def. 22) Letx be a set. Ther € SegreBlocksA if and only if there exists a Segre-like many sorted
subseB indexed by the support @& such thak = [ B and there exists an elemermf | such
thatB(i) is a block ofA(i).

Letl be a non empty set and latbe a nonempty TopStruct-yielding many sorted set indexed by
I. The functor Segr&roduct yields a non empty topological structure and is defined as follows:
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(Def. 23) SegreProducA = ([ (the support oR),SegreBlocksA).

The following propositions are true:

(14) Letl be a non empty set amlbe a nonempty TopStruct-yielding many sorted set indexed
by |. Then every point of SegrBroduct is a many sorted set indexed hy

(15) Letl be a non empty set amlbe a nonempty TopStruct-yielding many sorted set indexed
by I. If there exists an elemenbf | such thatA(i) is non void, then SegrBroduct is non
void.

(16) Letl be a non empty set arlbe a nonempty TopStruct-yielding many sorted set indexed
by I. Suppose that for every elemandf | holdsA(i) is non degenerated and there exists an
element of | such thatA(i) is non void. Then SegrBroducf is non degenerated.

(17) Letl be a non empty set amlbe a nonempty TopStruct-yielding many sorted set indexed
by I. Suppose that for every elementdf | holdsA(i) has non trivial blocks and there exists
an element of | such thatA(i) is non void. Then SegrBroduci has non trivial blocks.

(18) Letl be a non empty set anAl be a nonempty TopStruct-yielding many sorted set in-
dexed byl. Suppose that for every elemantf | holdsA(i) is identifying close blocks and
has non trivial blocks and there exists an elemeot | such thatA(i) is non void. Then
SegreProduct is identifying close blocks.

Let | be a non empty set and Iétbe a PLS-yielding many sorted set indexedIbyThen
SegreProductiis a PLS.
Next we state a number of propositions:

(19) LetT be atopological structure arf®be a subset of . If Sis trivial, thenSis strong and
closed under lines.

(20) LetSbe an identifying close blocks topological structurdye a block ofS, andL be a
subset ofS. If L =1, thenL is closed under lines.

(21) LetSbe atopological structurépe a block ofS, andL be a subset db. If L =1, thenL is
strong.

(22) For every non void topological structugdoldsQg is closed under lines.

(23) Letl be a non empty sef\ be a Segre-like non trivial-yielding many sorted set indexed by
I, andx, y be many sorted sets indexed Ioyif x € [JA andy € [ A, then for every setsuch
thati # index(A) holdsx(i) = y(i).

(24) Letl be a non empty sef be a PLS-yielding many sorted set indexedlbgndx be a
set. Therx is a block of Segrd’roduct if and only if there exists a Segre-like non trivial-
yielding many sorted subsktindexed by the support @& such thak = []L andL(index(L))
is a block ofA(index(L)).

(25) Letl be a non empty sef) be a PLS-yielding many sorted set indexedlbgndP be a
many sorted set indexed bySupposé is a point of Segrd’roductA. Leti be an element of
| andp be a point ofA(i). ThenP+- (i, p) is a point of Segrd®roduct\.

(26) Letl be a non empty set andl, B be Segre-like non trivial-yielding many sorted sets

indexed byl. Suppose Z [TAN[]B. Then indexA) = index(B) and for every set such
thati # index(A) holdsA(i) = B(i).

(27) Letl be a non empty sef\ be a Segre-like non trivial-yielding many sorted set indexed by
I, andN be a non trivial set. TheA+- (index(A),N) is Segre-like and non trivial-yielding.

(28) LetShe a non empty non void identifying close blocks topological structure with no iso-
lated points. IfSis strongly connected, thefis connected.
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(29) Letl be a non empty sefA be a PLS-yielding many sorted set indexedlbandS be a
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subset of Segr®roduct. ThenSis non trivial, strong, and closed under lines if and only if

there exists a Segre-like non trivial-yielding many sorted suBsetlexed by the support of
A such thatS= []B and for every subs@ of A(index(B)) such thaC = B(indexB)) holds
C is strong and closed under lines.
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