Paracompact and Metrizable Spaces

Leszek Borys Warsaw University Białystok

Summary. We give an example of a compact space. Next we define a locally finite subset family of a topological space and a paracompact topological space. An open sets family of a metric space we define next and it has been shown that the metric space with any open sets family is a topological space. Next we define metrizable space.

MML Identifier: PCOMPS 1.

WWW: http://mizar.org/JFM/Vol3/pcomps_1.html

The articles [12], [4], [14], [1], [13], [8], [6], [10], [7], [5], [11], [15], [2], [3], and [9] provide the notation and terminology for this paper.

We adopt the following convention: P_1 denotes a metric structure, x denotes an element of P_1 , and r, p, q denote real numbers.

We now state the proposition

(1) If $r \le p$, then $Ball(x, r) \subseteq Ball(x, p)$.

In the sequel T denotes a topological space and A denotes a subset of T. The following three propositions are true:

- (2) $\overline{A} \neq \emptyset$ iff $A \neq \emptyset$.
- (3) If $\overline{A} = \emptyset$, then $A = \emptyset$.
- (4) \overline{A} is closed.

For simplicity, we adopt the following convention: T is a non empty topological space, x is a point of T, V, W are subsets of T, and F_1 is a family of subsets of T.

Next we state the proposition

(5) If F_1 is a cover of T, then for every x there exists W such that $x \in W$ and $W \in F_1$.

Let X be a set. Then 2^X is a non empty family of subsets of X.

Let D be a set. The functor $\{D\}_{\text{top}}$ yielding a topological structure is defined as follows:

(Def. 1)
$$\{D\}_{\text{top}} = \langle D, 2^D \rangle$$
.

Let D be a set. One can check that $\{D\}_{top}$ is strict and topological space-like.

Let *D* be a non empty set. Note that $\{D\}_{top}$ is non empty.

In the sequel a is a set.

One can prove the following propositions:

- (7)¹ The topology of $\{a\}_{top} = 2^a$.
- (8) The carrier of $\{a\}_{top} = a$.
- (9) $\{\{a\}\}_{\text{top}}$ is compact.
- (10) If T is a T_2 space, then $\{x\}$ is closed.

We adopt the following rules: x is a point of T, A, B are subsets of T, and F_1 , G_1 are families of subsets of T.

Let T be a topological structure and let I_1 be a family of subsets of T. We say that I_1 is locally finite if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x be a point of T. Then there exists a subset W of T such that $x \in W$ and W is open and $\{V; V \text{ ranges over subsets of } T: V \in I_1 \land V \text{ meets } W\}$ is finite.

The following propositions are true:

- (11) For every W holds $\{V : V \in F_1 \land V \text{ meets } W\} \subseteq F_1$.
- (12) If $F_1 \subseteq G_1$ and G_1 is locally finite, then F_1 is locally finite.
- (13) If F_1 is finite, then F_1 is locally finite.

Let T be a topological structure and let F_1 be a family of subsets of T. The functor clf F_1 yielding a family of subsets of T is defined as follows:

(Def. 3) For every subset Z of T holds $Z \in \operatorname{clf} F_1$ iff there exists a subset W of T such that $Z = \overline{W}$ and $W \in F_1$.

One can prove the following propositions:

- (14) $\operatorname{clf} F_1$ is closed.
- (15) If $F_1 = \emptyset$, then clf $F_1 = \emptyset$.
- (16) If $F_1 = \{V\}$, then $clf F_1 = \{\overline{V}\}$.
- (17) If $F_1 \subseteq G_1$, then $\operatorname{clf} F_1 \subseteq \operatorname{clf} G_1$.
- (18) $\operatorname{clf}(F_1 \cup G_1) = \operatorname{clf} F_1 \cup \operatorname{clf} G_1$.
- (19) If F_1 is finite, then $\overline{\bigcup F_1} = \bigcup \text{clf } F_1$.
- (20) F_1 is finer than clf F_1 .

The scheme *Lambda1top* deals with a topological space \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a family \mathcal{C} of subsets of \mathcal{A} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

There exists a function f from $\mathcal B$ into $\mathcal C$ such that for every subset Z of $\mathcal A$ such that $Z \in \mathcal B$ holds $f(Z) = \mathcal F(Z)$

provided the parameters meet the following condition:

• For every subset *Z* of \mathcal{A} such that $Z \in \mathcal{B}$ holds $\mathcal{F}(Z) \in \mathcal{C}$.

The following propositions are true:

- (21) If F_1 is locally finite, then clf F_1 is locally finite.
- (22) $\bigcup F_1 \subseteq \bigcup \operatorname{clf} F_1$.
- (23) If F_1 is locally finite, then $\overline{\bigcup F_1} = \bigcup \operatorname{clf} F_1$.
- (24) If F_1 is locally finite and closed, then $\bigcup F_1$ is closed.

¹ The proposition (6) has been removed.

Let I_1 be a topological structure. We say that I_1 is paracompact if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let F_1 be a family of subsets of I_1 . Suppose F_1 is a cover of I_1 and open. Then there exists a family G_1 of subsets of I_1 which is open, a cover of I_1 , finer than F_1 , and locally finite.

Let us observe that there exists a non empty topological space which is paracompact. We now state four propositions:

- (25) If T is compact, then T is paracompact.
- (26) Suppose that
 - (i) T is paracompact,
- (ii) A is closed,
- (iii) B is closed,
- (iv) A misses B, and
- (v) for every x such that $x \in B$ there exist subsets V, W of T such that V is open and W is open and $A \subseteq V$ and $X \in W$ and Y misses W.

Then there exist subsets Y, Z of T such that Y is open and Z is open and $A \subseteq Y$ and $B \subseteq Z$ and Y misses Z.

- (27) If T is a T_2 space and paracompact, then T is a T_3 space.
- (28) If T is a T_2 space and paracompact, then T is a T_4 space.

We use the following convention: x, y, z denote elements of P_1 and V, W denote subsets of P_1 . The scheme SubFamExM deals with a metric structure $\mathcal A$ and a unary predicate $\mathcal P$, and states that:

There exists a family F of subsets of \mathcal{A} such that for every subset B of \mathcal{A} holds $B \in F$ iff $\mathcal{P}[B]$

for all values of the parameters.

Let us consider P_1 . The open set family of P_1 yields a family of subsets of P_1 and is defined as follows:

(Def. 5) For every V holds $V \in$ the open set family of P_1 iff for every x such that $x \in V$ there exists r such that r > 0 and $Ball(x, r) \subseteq V$.

The following propositions are true:

- (29) For every *x* there exists *r* such that r > 0 and $Ball(x, r) \subseteq$ the carrier of P_1 .
- (30) For every real number r such that P_1 is triangle and $y \in Ball(x, r)$ there exists p such that p > 0 and $Ball(y, p) \subseteq Ball(x, r)$.
- (31) If P_1 is triangle and $y \in Ball(x,r) \cap Ball(z,p)$, then there exists q such that $Ball(y,q) \subseteq Ball(x,r)$ and $Ball(y,q) \subseteq Ball(z,p)$.
- $(33)^2$ For every real number r such that P_1 is triangle holds $Ball(x,r) \in the$ open set family of P_1 .
- (34) The carrier of $P_1 \in$ the open set family of P_1 .
- (35) Let given V, W. Suppose $V \in$ the open set family of P_1 and $W \in$ the open set family of P_1 . Then $V \cap W \in$ the open set family of P_1 .
- (36) Let *A* be a family of subsets of P_1 . Suppose $A \subseteq$ the open set family of P_1 . Then $\bigcup A \in$ the open set family of P_1 .

² The proposition (32) has been removed.

(37) \langle the carrier of P_1 , the open set family of $P_1 \rangle$ is a topological space.

Let us consider P_1 . The functor $(P_1)_{top}$ yielding a topological structure is defined as follows:

(Def. 6) $(P_1)_{top} = \langle \text{the carrier of } P_1, \text{ the open set family of } P_1 \rangle$.

Let us consider P_1 . Observe that $(P_1)_{top}$ is strict and topological space-like.

Let P_1 be a non empty metric structure. One can check that $(P_1)_{top}$ is non empty.

We now state the proposition

(38) For every non empty metric space P_1 holds $(P_1)_{top}$ is a T_2 space.

Let D be a set and let f be a function from [D, D] into \mathbb{R} . We say that f is a metric of D if and only if:

(Def. 7) For all elements a, b, c of D holds f(a,b) = 0 iff a = b and f(a,b) = f(b,a) and $f(a,c) \le f(a,b) + f(b,c)$.

The following proposition is true

(39) Let D be a set and f be a function from [:D,D:] into \mathbb{R} . Then f is a metric of D if and only if $\langle D,f\rangle$ is a metric space.

Let D be a non empty set and let f be a function from [D, D] into \mathbb{R} . Let us assume that f is a metric of D. The functor MetrSp(D, f) yields a strict non empty metric space and is defined by:

(Def. 8) $\operatorname{MetrSp}(D, f) = \langle D, f \rangle$.

Let I_1 be a non empty topological structure. We say that I_1 is metrizable if and only if the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from [: the carrier of I_1 , the carrier of I_1 :] into \mathbb{R} such that f is a metric of the carrier of I_1 and the open set family of MetrSp((the carrier of I_1), f) = the topology of I_1 .

Let us note that there exists a non empty topological space which is strict and metrizable.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [5] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/compts_1.html.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [9] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [10] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [13] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[14] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.}$
- [15] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 8, 1991

Published January 2, 2004