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Summary. We give an example of a compact space. Next we define a locally finite
subset family of a topological space and a paracompact topological space. An open sets family
of a metric space we define next and it has been shown that the metric space with any open
sets family is a topological space. Next we define metrizable space.
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The articles [12], [4], [14], [1], [13], [8], [6], [10], [7], [5], [11], [15], [2], [3], and [9] provide the
notation and terminology for this paper.

We adopt the following convention:P1 denotes a metric structure,x denotes an element ofP1,
andr, p, q denote real numbers.

We now state the proposition

(1) If r ≤ p, then Ball(x, r)⊆ Ball(x, p).

In the sequelT denotes a topological space andA denotes a subset ofT.
The following three propositions are true:

(2) A 6= /0 iff A 6= /0.

(3) If A = /0, thenA = /0.

(4) A is closed.

For simplicity, we adopt the following convention:T is a non empty topological space,x is a
point ofT, V, W are subsets ofT, andF1 is a family of subsets ofT.

Next we state the proposition

(5) If F1 is a cover ofT, then for everyx there existsW such thatx∈W andW ∈ F1.

Let X be a set. Then 2X is a non empty family of subsets ofX.
Let D be a set. The functor{D}top yielding a topological structure is defined as follows:

(Def. 1) {D}top = 〈D,2D〉.

Let D be a set. One can check that{D}top is strict and topological space-like.
Let D be a non empty set. Note that{D}top is non empty.
In the sequela is a set.
One can prove the following propositions:
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(7)1 The topology of{a}top = 2a.

(8) The carrier of{a}top = a.

(9) {{a}}top is compact.

(10) If T is aT2 space, then{x} is closed.

We adopt the following rules:x is a point ofT, A, B are subsets ofT, andF1, G1 are families of
subsets ofT.

Let T be a topological structure and letI1 be a family of subsets ofT. We say thatI1 is locally
finite if and only if the condition (Def. 2) is satisfied.

(Def. 2) Letx be a point ofT. Then there exists a subsetW of T such thatx∈W andW is open and
{V;V ranges over subsets ofT: V ∈ I1 ∧ V meetsW} is finite.

The following propositions are true:

(11) For everyW holds{V : V ∈ F1 ∧ V meetsW} ⊆ F1.

(12) If F1 ⊆G1 andG1 is locally finite, thenF1 is locally finite.

(13) If F1 is finite, thenF1 is locally finite.

Let T be a topological structure and letF1 be a family of subsets ofT. The functor clfF1 yielding
a family of subsets ofT is defined as follows:

(Def. 3) For every subsetZ of T holdsZ ∈ clf F1 iff there exists a subsetW of T such thatZ = W
andW ∈ F1.

One can prove the following propositions:

(14) clfF1 is closed.

(15) If F1 = /0, then clfF1 = /0.

(16) If F1 = {V}, then clfF1 = {V}.

(17) If F1 ⊆G1, then clfF1 ⊆ clf G1.

(18) clf(F1∪G1) = clf F1∪clf G1.

(19) If F1 is finite, then
⋃

F1 =
⋃

clf F1.

(20) F1 is finer than clfF1.

The schemeLambda1topdeals with a topological spaceA , a familyB of subsets ofA , a family
C of subsets ofA , and a unary functorF yielding a subset ofA , and states that:

There exists a functionf from B into C such that for every subsetZ of A such that
Z ∈ B holds f (Z) = F (Z)

provided the parameters meet the following condition:
• For every subsetZ of A such thatZ ∈ B holdsF (Z) ∈ C .

The following propositions are true:

(21) If F1 is locally finite, then clfF1 is locally finite.

(22)
⋃

F1 ⊆
⋃

clf F1.

(23) If F1 is locally finite, then
⋃

F1 =
⋃

clf F1.

(24) If F1 is locally finite and closed, then
⋃

F1 is closed.

1 The proposition (6) has been removed.
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Let I1 be a topological structure. We say thatI1 is paracompact if and only if the condition
(Def. 4) is satisfied.

(Def. 4) LetF1 be a family of subsets ofI1. SupposeF1 is a cover ofI1 and open. Then there exists
a familyG1 of subsets ofI1 which is open, a cover ofI1, finer thanF1, and locally finite.

Let us observe that there exists a non empty topological space which is paracompact.
We now state four propositions:

(25) If T is compact, thenT is paracompact.

(26) Suppose that

(i) T is paracompact,

(ii) A is closed,

(iii) B is closed,

(iv) A missesB, and

(v) for everyx such thatx∈ B there exist subsetsV, W of T such thatV is open andW is open
andA⊆V andx∈W andV missesW.

Then there exist subsetsY, Z of T such thatY is open andZ is open andA⊆Y andB⊆ Z and
Y missesZ.

(27) If T is aT2 space and paracompact, thenT is aT3 space.

(28) If T is aT2 space and paracompact, thenT is aT4 space.

We use the following convention:x, y, z denote elements ofP1 andV, W denote subsets ofP1.
The schemeSubFamExMdeals with a metric structureA and a unary predicateP , and states

that:
There exists a familyF of subsets ofA such that for every subsetB of A holdsB∈ F
iff P [B]

for all values of the parameters.
Let us considerP1. The open set family ofP1 yields a family of subsets ofP1 and is defined as

follows:

(Def. 5) For everyV holdsV ∈ the open set family ofP1 iff for every x such thatx∈V there exists
r such thatr > 0 and Ball(x, r)⊆V.

The following propositions are true:

(29) For everyx there existsr such thatr > 0 and Ball(x, r)⊆ the carrier ofP1.

(30) For every real numberr such thatP1 is triangle andy∈ Ball(x, r) there existsp such that
p > 0 and Ball(y, p)⊆ Ball(x, r).

(31) If P1 is triangle andy ∈ Ball(x, r)∩Ball(z, p), then there existsq such that Ball(y,q) ⊆
Ball(x, r) and Ball(y,q)⊆ Ball(z, p).

(33)2 For every real numberr such thatP1 is triangle holds Ball(x, r) ∈ the open set family of
P1.

(34) The carrier ofP1 ∈ the open set family ofP1.

(35) Let givenV, W. SupposeV ∈ the open set family ofP1 andW ∈ the open set family ofP1.
ThenV ∩W ∈ the open set family ofP1.

(36) LetA be a family of subsets ofP1. SupposeA⊆ the open set family ofP1. Then
⋃

A∈ the
open set family ofP1.

2 The proposition (32) has been removed.
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(37) 〈the carrier ofP1, the open set family ofP1〉 is a topological space.

Let us considerP1. The functor(P1)top yielding a topological structure is defined as follows:

(Def. 6) (P1)top = 〈the carrier ofP1, the open set family ofP1〉.

Let us considerP1. Observe that(P1)top is strict and topological space-like.
Let P1 be a non empty metric structure. One can check that(P1)top is non empty.
We now state the proposition

(38) For every non empty metric spaceP1 holds(P1)top is aT2 space.

Let D be a set and letf be a function from[:D, D :] into R. We say thatf is a metric ofD if and
only if:

(Def. 7) For all elementsa, b, c of D holds f (a, b) = 0 iff a = b and f (a, b) = f (b, a) and f (a,
c)≤ f (a, b)+ f (b, c).

The following proposition is true

(39) LetD be a set andf be a function from[:D, D :] into R. Then f is a metric ofD if and only
if 〈D, f 〉 is a metric space.

Let D be a non empty set and letf be a function from[:D, D :] into R. Let us assume thatf is a
metric ofD. The functor MetrSp(D, f ) yields a strict non empty metric space and is defined by:

(Def. 8) MetrSp(D, f ) = 〈D, f 〉.

Let I1 be a non empty topological structure. We say thatI1 is metrizable if and only if the
condition (Def. 9) is satisfied.

(Def. 9) There exists a functionf from [: the carrier ofI1, the carrier ofI1 :] into R such thatf is
a metric of the carrier ofI1 and the open set family of MetrSp((the carrier ofI1), f ) = the
topology ofI1.

Let us note that there exists a non empty topological space which is strict and metrizable.
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