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Summary. We give an example of a compact space. Next we define a locally finite
subset family of a topological space and a paracompact topological space. An open sets family
of a metric space we define next and it has been shown that the metric space with any open
sets family is a topological space. Next we define metrizable space.
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The articles[[12],[[4],[[14],T0],128],8],6],01101,17],[15], [11],115],[12],[[8], and [9] provide the
notation and terminology for this paper.

We adopt the following conventior?, denotes a metric structuredenotes an element &%,
andr, p, g denote real numbers.

We now state the proposition

(1) Ifr <p,thenBal(xr) C Ball(x, p).

In the sequeTl denotes a topological space alsdenotes a subset of.
The following three propositions are true:

(2) A£0iff A£0.
(3) IfA=0,thenA=0.
(4) Ais closed.

For simplicity, we adopt the following conventiof: is a non empty topological spacejs a
point of T, V, W are subsets of, andF; is a family of subsets of .
Next we state the proposition

(5) If Fpis acover ofT, then for every there exist® such thak € W andW € F;.

Let X be a set. Then’2is a non empty family of subsets Xf
Let D be a set. The functdD }1qp yielding a topological structure is defined as follows:

(Def. 1) {D}op= (D,2P).

Let D be a set. One can check tH& }1op, is strict and topological space-like.
Let D be a non empty set. Note thgD }1op is non empty.

In the sequed is a set.

One can prove the following propositions:
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(7ﬂ The topology of{a}op = 22.
(8) The carrier ofa}iop = a.
(9) {{a}}topis compact.
(10) If T is aT, space, thekx} is closed.

We adopt the following rulestis a point of T, A, B are subsets of, andF;, G; are families of
subsets of .

Let T be a topological structure and lietbe a family of subsets df. We say that; is locally
finite if and only if the condition (Def. 2) is satisfied.

(Def. 2) Letxbe a point ofT. Then there exists a sub&¥tof T such thak € W andW is open and
{V;V ranges over subsets of V € 11 A V meetsVN} is finite.

The following propositions are true:

(11) ForevenyW holds{V :V € F1 A V meetsW} C F.
(12) If FL € Gy andG; is locally finite, thenF; is locally finite.
(13) If Fy is finite, thenF; is locally finite.

LetT be atopological structure and etbe a family of subsets &f. The functor clf; yielding
a family of subsets of is defined as follows:

(Def. 3) For every subsé of T holdsZ c clf Fy iff there exists a subs&V of T such thaZ =W
andW € F.

One can prove the following propositions:

(14) clfFy is closed.

(15) If F =0, then clfF; = 0.

(16) If Fp ={V},thenclfF; = {V}.
(17) If Fy C Gy, then clffFy C clf G;.
(18) clf(FLUGy) = clf FuclfG;.
(19) If Fy is finite, thenJFy = Jclf Fy.
(20) Fqis finer than clf.

The schemé&ambdaltopleals with a topological space, a family B of subsets of2, a family
C of subsets of4, and a unary functof yielding a subset afi, and states that:
There exists a functiofi from B into ¢ such that for every subs&tof 4 such that
Z e Bholdsf(Z2) = F(Z)
provided the parameters meet the following condition:
e For every subset of 4 such thaZ € B holds ¥ (Z) € C.
The following propositions are true:

(21) If Fy is locally finite, then clf; is locally finite.
(22) UFR CUclfFy.

(23) If Fyis locally finite, then JF; = Jclf Fy.

(24) If Fy is locally finite and closed, theg F; is closed.

1 The proposition (6) has been removed.
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Let |1 be a topological structure. We say thatis paracompact if and only if the condition
(Def. 4) is satisfied.

(Def. 4) LetF; be a family of subsets df. Supposé-; is a cover ofl; and open. Then there exists
a family G; of subsets of; which is open, a cover df, finer thanF;, and locally finite.

Let us observe that there exists a non empty topological space which is paracompact.
We now state four propositions:

(25) If T is compact, theii is paracompact.

(26) Suppose that
(i) T is paracompact,
(i) Aisclosed,

(i)  Bis closed,

(iv) AmissesB, and

(v) for everyxsuch thak € B there exist subsets, W of T such tha¥ is open andV is open
andA CV andx € W andV missed\.

Then there exist subsefsZ of T such that is open and is open andh CY andB C Z and
Y misse<.

(27) If T is aT, space and paracompact, thEis aTs space.

(28) If T is aT, space and paracompact, tHeis aT, space.

We use the following conventiorx, y, zdenote elements ¢ andV, W denote subsets &% .
The schemé&ubFamExMleals with a metric structurd and a unary predicat®, and states

that:
There exists a famil{ of subsets of2 such that for every subsBtof 2 holdsB € F

iff P[B]
for all values of the parameters.
Let us consideP;. The open set family oP; yields a family of subsets d?, and is defined as

follows:

(Def. 5) For every/ holdsV < the open set family o iff for every x such thak € V there exists
r such thar > 0 and Bal(x,r) C V.

The following propositions are true:
(29) For every there exists such thatr > 0 and Bal(x,r) C the carrier ofP;.

(30) For every real numbersuch thatP; is triangle andy € Ball(x,r) there existg such that
p > 0 and Bally, p) C Ball(x,r).

(31) If Py is triangle andy € Ball(x,r) N Ball(z, p), then there exists such that Bally,q) C
Ball(x,r) and Bally,q) C Ball(z, p).

(33E] For every real numbar such thatP; is triangle holds Ballx,r) € the open set family of
Pr.

(34) The carrier oP; € the open set family of;.

(35) Letgivenv,W. Supposé&/ € the open set family oP; andW € the open set family of;.
ThenV NW € the open set family of;.

(36) LetAbe afamily of subsets d?. Suppose C the open set family oP,. ThenJA € the
open set family of.

2 The proposition (32) has been removed.
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(37) (the carrier ofPy, the open set family o) is a topological space.

Let us consideP;. The functor(Py)top Yielding a topological structure is defined as follows:
(Def. 6) (P1)top = (the carrier ofP, the open set family dfy).

Let us consideP;. Observe thatP )top is strict and topological space-like.
Let P. be a non empty metric structure. One can check atop is non empty.
We now state the proposition

(38) For every non empty metric spaegholds(Py)iop is aT, space.

Let D be a set and let be a function fronf: D, D] into R. We say thaff is a metric ofD if and
only if:

(Def. 7) For all elements, b, c of D holds f(a, b) =0 iff a=b and f(a,b) = f(b,a) and f(a,
c) < f(a, b)+ f(b, c).

The following proposition is true

(39) LetD be a setand be a function fronj: D, D ] into R. Thenf is a metric ofD if and only
if (D, f) is a metric space.

Let D be a non empty set and létbe a function fronf. D, D] into R. Let us assume thdtis a
metric of D. The functor MetrS(D, f) yields a strict non empty metric space and is defined by:

(Def. 8) MetrSgD, f) = (D, f).

Let I; be a non empty topological structure. We say thais metrizable if and only if the
condition (Def. 9) is satisfied.

(Def. 9) There exists a functiof from [:the carrier ofl1, the carrier ofl; ] into R such thatf is
a metric of the carrier of; and the open set family of Metr§jthe carrier ofl;), f) = the
topology ofl;.

Let us note that there exists a non empty topological space which is strict and metrizable.
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