Partial Functions from a Domain to a Domain

Jarosław Kotowicz Warsaw University Białystok

Summary. The value of a partial function from a domain to a domain and a inverse partial function are introduced. The value and inverse function were defined in the article [1], but new definitions are introduced. The basic properties of the value, the inverse partial function, the identity partial function, the composition of partial functions, the 1-1 partial function, the restriction of a partial function, the image, the inverse image and the graph are proved. Constant partial functions are introduced, too.

MML Identifier: PARTFUN2.

WWW: http://mizar.org/JFM/Vol2/partfun2.html

The articles [5], [7], [8], [9], [1], [2], [4], [3], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: x, y, X, Y are sets, C, D, E are non empty sets, S_1 is a subset of C, S_2 is a subset of D, S_3 is a subset of E, c, c_1 , c_2 are elements of C, d is an element of D, e is an element of E, f, f_1 , g are partial functions from C to D, t is a partial function from D to C, s is a partial function from D to E, h is a partial function from C to E, and F is a partial function from D to D.

We now state several propositions:

- (3)¹ If dom f = dom g and for every c such that $c \in \text{dom } f$ holds $f_c = g_c$, then f = g.
- (4) $y \in \operatorname{rng} f$ iff there exists *c* such that $c \in \operatorname{dom} f$ and $y = f_c$.
- $(6)^2$ $h = s \cdot f$ if and only if the following conditions are satisfied:
- (i) for every c holds $c \in \text{dom } h$ iff $c \in \text{dom } f$ and $f_c \in \text{dom } s$, and
- (ii) for every *c* such that $c \in \text{dom } h$ holds $h_c = s_{f_c}$.
- (9)³ If $c \in \text{dom } f$ and $f_c \in \text{dom } s$, then $(s \cdot f)_c = s_{f_c}$.
- (10) If rng $f \subseteq \operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)_c = s_{f_c}$.

Let us consider *D* and let us consider S_2 . Then $id_{(S_2)}$ is a partial function from *D* to *D*. We now state several propositions:

- $(12)^4$ $F = id_{(S_2)}$ iff dom $F = S_2$ and for every d such that $d \in S_2$ holds $F_d = d$.
- (14)⁵ If $d \in \operatorname{dom} F \cap S_2$, then $F_d = (F \cdot \operatorname{id}_{(S_2)})_d$.

 $^{^{1}}$ The propositions (1) and (2) have been removed.

² The proposition (5) has been removed.

³ The propositions (7) and (8) have been removed.

⁴ The proposition (11) has been removed.

⁵ The proposition (13) has been removed.

- (15) $d \in \operatorname{dom}(\operatorname{id}_{(S_2)} \cdot F)$ iff $d \in \operatorname{dom} F$ and $F_d \in S_2$.
- (16) If for all c_1, c_2 such that $c_1 \in \text{dom } f$ and $c_2 \in \text{dom } f$ and $f_{c_1} = f_{c_2}$ holds $c_1 = c_2$, then f is one-to-one.
- (17) If f is one-to-one and $x \in \text{dom } f$ and $y \in \text{dom } f$ and $f_x = f_y$, then x = y.

Let us mention that \emptyset is one-to-one.

Let us consider X, Y. Observe that there exists a partial function from X to Y which is one-to-one.

Let us consider X, Y and let f be an one-to-one partial function from X to Y. Then f^{-1} is a partial function from Y to X.

One can prove the following propositions:

- (18) Let *f* be an one-to-one partial function from *C* to *D* and *g* be a partial function from *D* to *C*. Then $g = f^{-1}$ if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} g = \operatorname{rng} f$, and
- (ii) for all d, c holds $d \in \operatorname{rng} f$ and $c = g_d$ iff $c \in \operatorname{dom} f$ and $d = f_c$.
- (22)⁶ For every one-to-one partial function f from C to D such that $c \in \text{dom } f$ holds $c = (f^{-1})_{f_c}$ and $c = (f^{-1} \cdot f)_c$.
- (23) For every one-to-one partial function f from C to D such that $d \in \operatorname{rng} f$ holds $d = f_{(f^{-1})_d}$ and $d = (f \cdot f^{-1})_d$.
- (24) Suppose f is one-to-one and dom $f = \operatorname{rng} t$ and $\operatorname{rng} f = \operatorname{dom} t$ and for all c, d such that $c \in \operatorname{dom} f$ and $d \in \operatorname{dom} t$ holds $f_c = d$ iff $t_d = c$. Then $t = f^{-1}$.
- $(32)^7$ $g = f \upharpoonright X$ iff dom $g = \text{dom } f \cap X$ and for every c such that $c \in \text{dom } g$ holds $g_c = f_c$.
- (34)⁸ If $c \in \text{dom } f \cap X$, then $(f \upharpoonright X)_c = f_c$.
- (35) If $c \in \text{dom } f$ and $c \in X$, then $(f \upharpoonright X)_c = f_c$.
- (36) If $c \in \text{dom } f$ and $c \in X$, then $f_c \in \text{rng}(f \mid X)$.

Let us consider *C*, *D* and let us consider *X*, *f*. Then X | f is a partial function from *C* to *D*. Next we state a number of propositions:

- (37) $g = X \upharpoonright f$ if and only if the following conditions are satisfied:
- (i) for every *c* holds $c \in \text{dom } g$ iff $c \in \text{dom } f$ and $f_c \in X$, and
- (ii) for every *c* such that $c \in \text{dom } g$ holds $g_c = f_c$.
- (38) $c \in \operatorname{dom}(X \upharpoonright f)$ iff $c \in \operatorname{dom} f$ and $f_c \in X$.
- (39) If $c \in \text{dom}(X \upharpoonright f)$, then $(X \upharpoonright f)_c = f_c$.
- (40) $S_2 = f^{\circ}X$ iff for every *d* holds $d \in S_2$ iff there exists *c* such that $c \in \text{dom } f$ and $c \in X$ and $d = f_c$.
- (41) $d \in (f \text{ qua relation between } C \text{ and } D)^{\circ}X$ iff there exists c such that $c \in \text{dom } f$ and $c \in X$ and $d = f_c$.
- (42) If $c \in \operatorname{dom} f$, then $f^{\circ}\{c\} = \{f_c\}$.
- (43) If $c_1 \in \text{dom } f$ and $c_2 \in \text{dom } f$, then $f^{\circ}\{c_1, c_2\} = \{f_{c_1}, f_{c_2}\}$.
- (44) $S_1 = f^{-1}(X)$ iff for every *c* holds $c \in S_1$ iff $c \in \text{dom } f$ and $f_c \in X$.

⁶ The propositions (19)–(21) have been removed.

⁷ The propositions (25)–(31) have been removed.

⁸ The proposition (33) has been removed.

- (46)⁹ For every f there exists a function g from C into D such that for every c such that $c \in \text{dom } f$ holds $g(c) = f_c$.
- (47) $f \approx g$ iff for every *c* such that $c \in \text{dom } f \cap \text{dom } g$ holds $f_c = g_c$.

In this article we present several logical schemes. The scheme *PartFuncExD* deals with non empty sets \mathcal{A} , \mathcal{B} and a binary predicate \mathcal{P} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element d of \mathcal{A} holds $d \in \text{dom } f$ iff there exists an element c of \mathcal{B} such that $\mathcal{P}[d,c]$, and

(ii) for every element d of \mathcal{A} such that $d \in \text{dom } f$ holds $\mathcal{P}[d, f_d]$

for all values of the parameters.

The scheme *LambdaPFD* deals with non empty sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A} holds $d \in \text{dom } f$ iff $\mathcal{P}[d]$ and for every element d of \mathcal{A} such that $d \in \text{dom } f$ holds $f_d = \mathcal{F}(d)$

for all values of the parameters.

The scheme *UnPartFuncD* deals with non empty sets \mathcal{A} , \mathcal{B} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} , and states that:

Let f, g be partial functions from \mathcal{A} to \mathcal{B} . Suppose that

- (i) $\operatorname{dom} f = \mathcal{C}$,
- (ii) for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds $f_c = \mathcal{F}(c)$,
- (iii) $\operatorname{dom} g = C$, and
- (iv) for every element c of \mathcal{A} such that $c \in \text{dom } g$ holds $g_c = \mathcal{F}(c)$.
 - Then f = g

for all values of the parameters.

Let us consider *C*, *D* and let us consider S_1 , *d*. Then $S_1 \mapsto d$ is a partial function from *C* to *D*. One can prove the following propositions:

- (48) If $c \in S_1$, then $(S_1 \longmapsto d)_c = d$.
- (49) If for every *c* such that $c \in \text{dom } f$ holds $f_c = d$, then $f = \text{dom } f \longmapsto d$.
- (50) If $c \in \operatorname{dom} f$, then $f \cdot (S_3 \longmapsto c) = S_3 \longmapsto f_c$.
- (51) $\operatorname{id}_{(S_1)}$ is total iff $S_1 = C$.
- (52) If $S_1 \mapsto d$ is total, then $S_1 \neq \emptyset$.
- (53) $S_1 \mapsto d$ is total iff $S_1 = C$.

Let us consider C, D and let us consider f, X. We say that f is a constant on X if and only if:

(Def. 3)¹⁰ There exists d such that for every c such that $c \in X \cap \text{dom } f$ holds $f_c = d$.

Next we state a number of propositions:

- $(55)^{11}$ f is a constant on X iff for all c_1, c_2 such that $c_1 \in X \cap \text{dom } f$ and $c_2 \in X \cap \text{dom } f$ holds $f_{c_1} = f_{c_2}$.
- (56) If *X* meets dom *f*, then *f* is a constant on *X* iff there exists *d* such that $rng(f|X) = \{d\}$.
- (57) If *f* is a constant on *X* and $Y \subseteq X$, then *f* is a constant on *Y*.
- (58) If X misses dom f, then f is a constant on X.
- (59) If $f \upharpoonright S_1 = \operatorname{dom}(f \upharpoonright S_1) \longmapsto d$, then *f* is a constant on S_1 .

⁹ The proposition (45) has been removed.

¹⁰ The definitions (Def. 1) and (Def. 2) have been removed.

¹¹ The proposition (54) has been removed.

- (60) f is a constant on $\{x\}$.
- (61) If f is a constant on X and a constant on Y and $X \cap Y$ meets dom f, then f is a constant on $X \cup Y$.
- (62) If f is a constant on Y, then $f \upharpoonright X$ is a constant on Y.
- (63) $S_1 \mapsto d$ is a constant on S_1 .
- (64) $f \subseteq g$ iff dom $f \subseteq$ dom g and for every c such that $c \in$ dom f holds $f_c = g_c$.
- (65) $c \in \operatorname{dom} f$ and $d = f_c$ iff $\langle c, d \rangle \in f$.
- (66) If $\langle c, e \rangle \in s \cdot f$, then $\langle c, f_c \rangle \in f$ and $\langle f_c, e \rangle \in s$.
- (67) If $f = \{ \langle c, d \rangle \}$, then $f_c = d$.
- (68) If dom $f = \{c\}$, then $f = \{\langle c, f_c \rangle\}$.
- (69) If $f_1 = f \cap g$ and $c \in \text{dom } f_1$, then $(f_1)_c = f_c$ and $(f_1)_c = g_c$.
- (70) If $c \in \text{dom } f$ and $f_1 = f \cup g$, then $(f_1)_c = f_c$.
- (71) If $c \in \text{dom } g$ and $f_1 = f \cup g$, then $(f_1)_c = g_c$.
- (72) If $c \in \text{dom } f_1$ and $f_1 = f \cup g$, then $(f_1)_c = f_c$ or $(f_1)_c = g_c$.
- (73) $c \in \text{dom } f \text{ and } c \in S_1 \text{ iff } \langle c, f_c \rangle \in f \upharpoonright S_1.$
- (74) $c \in \text{dom } f \text{ and } f_c \in S_2 \text{ iff } \langle c, f_c \rangle \in S_2 | f.$
- (75) $c \in f^{-1}(S_2)$ iff $\langle c, f_c \rangle \in f$ and $f_c \in S_2$.
- (76) f is a constant on X iff there exists d such that for every c such that $c \in X \cap \text{dom } f$ holds f(c) = d.
- (77) f is a constant on X iff for all c_1, c_2 such that $c_1 \in X \cap \text{dom } f$ and $c_2 \in X \cap \text{dom } f$ holds $f(c_1) = f(c_2)$.
- (78) If $d \in f^{\circ}X$, then there exists *c* such that $c \in \text{dom } f$ and $c \in X$ and d = f(c).
- (79) If f is one-to-one, then $d \in \operatorname{rng} f$ and $c = f^{-1}(d)$ iff $c \in \operatorname{dom} f$ and d = f(c).

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [4] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funcop_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [6] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4. html.
- [7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [8] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

[9] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_ 1.html.

Received May 31, 1990

Published January 2, 2004