Partial Functions from a Domain to a Domain

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. The value of a partial function from a domain to a domain and a inverse partial function are introduced. The value and inverse function were defined in the article [1], but new definitions are introduced. The basic properties of the value, the inverse partial function, the identity partial function, the composition of partial functions, the $1-1$ partial function, the restriction of a partial function, the image, the inverse image and the graph are proved. Constant partial functions are introduced, too

MML Identifier: PARTFUN2.
WWW: http://mizar.org/JFM/Vol2/partfun2.html

The articles [5], [7], [8], [9], [1], [2], [4], [3], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: x, y, X, Y are sets, C, D, E are non empty sets, S_{1} is a subset of C, S_{2} is a subset of D, S_{3} is a subset of E, c, c_{1}, c_{2} are elements of C, d is an element of D, e is an element of E, f, f_{1}, g are partial functions from C to D, t is a partial function from D to C, s is a partial function from D to E, h is a partial function from C to E, and F is a partial function from D to D.

We now state several propositions:
(3) If $\operatorname{dom} f=\operatorname{dom} g$ and for every c such that $c \in \operatorname{dom} f$ holds $f_{c}=g_{c}$, then $f=g$.
(4) $y \in \operatorname{rng} f$ iff there exists c such that $c \in \operatorname{dom} f$ and $y=f_{c}$.
$(6)^{2} \quad h=s \cdot f$ if and only if the following conditions are satisfied:
(i) for every c holds $c \in \operatorname{dom} h$ iff $c \in \operatorname{dom} f$ and $f_{c} \in \operatorname{dom} s$, and
(ii) for every c such that $c \in \operatorname{dom} h$ holds $h_{c}=s_{f_{c}}$.
(9) If $c \in \operatorname{dom} f$ and $f_{c} \in \operatorname{dom} s$, then $(s \cdot f)_{c}=s_{f_{c}}$.
(10) If $\operatorname{rng} f \subseteq \operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)_{c}=s_{f_{c}}$.

Let us consider D and let us consider S_{2}. Then $\operatorname{id}_{\left(S_{2}\right)}$ is a partial function from D to D. We now state several propositions:
$(12)^{4} \quad F=\operatorname{id}_{\left(S_{2}\right)}$ iff dom $F=S_{2}$ and for every d such that $d \in S_{2}$ holds $F_{d}=d$.
$(14)^{5}$ If $d \in \operatorname{dom} F \cap S_{2}$, then $F_{d}=\left(F \cdot \operatorname{id}_{\left(S_{2}\right)}\right)_{d}$.

[^0](15) $d \in \operatorname{dom}\left(\operatorname{id}_{\left(S_{2}\right)} \cdot F\right)$ iff $d \in \operatorname{dom} F$ and $F_{d} \in S_{2}$.
(16) If for all c_{1}, c_{2} such that $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$ and $f_{c_{1}}=f_{c_{2}}$ holds $c_{1}=c_{2}$, then f is one-to-one.
(17) If f is one-to-one and $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} f$ and $f_{x}=f_{y}$, then $x=y$.

Let us mention that \emptyset is one-to-one.
Let us consider X, Y. Observe that there exists a partial function from X to Y which is one-toone.

Let us consider X, Y and let f be an one-to-one partial function from X to Y. Then f^{-1} is a partial function from Y to X.

One can prove the following propositions:
(18) Let f be an one-to-one partial function from C to D and g be a partial function from D to C. Then $g=f^{-1}$ if and only if the following conditions are satisfied:
(i) $\operatorname{dom} g=\operatorname{rng} f$, and
(ii) for all d, c holds $d \in \operatorname{rng} f$ and $c=g_{d}$ iff $c \in \operatorname{dom} f$ and $d=f_{c}$.
(22 $]^{6}$ For every one-to-one partial function f from C to D such that $c \in \operatorname{dom} f$ holds $c=\left(f^{-1}\right)_{f_{c}}$ and $c=\left(f^{-1} \cdot f\right)_{c}$.
(23) For every one-to-one partial function f from C to D such that $d \in \operatorname{rng} f$ holds $d=f_{\left(f^{-1}\right)_{d}}$ and $d=\left(f \cdot f^{-1}\right)_{d}$.
(24) Suppose f is one-to-one and $\operatorname{dom} f=\operatorname{rng} t$ and $\operatorname{rng} f=\operatorname{dom} t$ and for all c, d such that $c \in \operatorname{dom} f$ and $d \in \operatorname{dom} t$ holds $f_{c}=d$ iff $t_{d}=c$. Then $t=f^{-1}$.
$(32]^{7} g=f\left\lceil X\right.$ iff $\operatorname{dom} g=\operatorname{dom} f \cap X$ and for every c such that $c \in \operatorname{dom} g$ holds $g_{c}=f_{c}$.
(34) If $c \in \operatorname{dom} f \cap X$, then $(f \upharpoonright X)_{c}=f_{c}$.
(35) If $c \in \operatorname{dom} f$ and $c \in X$, then $(f \upharpoonright X)_{c}=f_{c}$.
(36) If $c \in \operatorname{dom} f$ and $c \in X$, then $f_{c} \in \operatorname{rng}(f \mid X)$.

Let us consider C, D and let us consider X, f. Then $X \upharpoonright f$ is a partial function from C to D.
Next we state a number of propositions:
(37) $g=X \upharpoonright f$ if and only if the following conditions are satisfied:
(i) for every c holds $c \in \operatorname{dom} g$ iff $c \in \operatorname{dom} f$ and $f_{c} \in X$, and
(ii) for every c such that $c \in \operatorname{dom} g$ holds $g_{c}=f_{c}$.
(38) $c \in \operatorname{dom}(X \mid f)$ iff $c \in \operatorname{dom} f$ and $f_{c} \in X$.
(39) If $c \in \operatorname{dom}(X \mid f)$, then $(X \mid f)_{c}=f_{c}$.
(40) $\quad S_{2}=f^{\circ} X$ iff for every d holds $d \in S_{2}$ iff there exists c such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f_{c}$.
(41) $d \in(f \text { qua relation between } C \text { and } D)^{\circ} X$ iff there exists c such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f_{c}$.
(42) If $c \in \operatorname{dom} f$, then $f^{\circ}\{c\}=\left\{f_{c}\right\}$.
(43) If $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$, then $f^{\circ}\left\{c_{1}, c_{2}\right\}=\left\{f_{c_{1}}, f_{c_{2}}\right\}$.
(44) $S_{1}=f^{-1}(X)$ iff for every c holds $c \in S_{1}$ iff $c \in \operatorname{dom} f$ and $f_{c} \in X$.

[^1](46 $)^{9}$ For every f there exists a function g from C into D such that for every c such that $c \in \operatorname{dom} f$ holds $g(c)=f_{c}$.
(47) $f \approx g$ iff for every c such that $c \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $f_{c}=g_{c}$.

In this article we present several logical schemes. The scheme PartFuncExD deals with non empty sets \mathcal{A}, \mathcal{B} and a binary predicate \mathcal{P}, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element d of \mathcal{A} holds $d \in \operatorname{dom} f$ iff there exists an element c of \mathcal{B} such that $\mathcal{P}[d, c]$, and
(ii) for every element d of \mathcal{A} such that $d \in \operatorname{dom} f$ holds $\mathcal{P}\left[d, f_{d}\right]$
for all values of the parameters.
The scheme LambdaPFD deals with non empty sets \mathcal{A}, \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A}
holds $d \in \operatorname{dom} f$ iff $\mathcal{P}[d]$ and for every element d of \mathcal{A} such that $d \in \operatorname{dom} f$ holds $f_{d}=\mathcal{F}(d)$
for all values of the parameters.
The scheme UnPartFuncD deals with non empty sets \mathcal{A}, \mathcal{B}, a set \mathcal{C}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:

Let f, g be partial functions from \mathcal{A} to \mathcal{B}. Suppose that
(i) $\operatorname{dom} f=\mathcal{C}$,
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds $f_{c}=\mathcal{F}(c)$,
(iii) $\operatorname{dom} g=\mathcal{C}$, and
(iv) for every element c of \mathcal{A} such that $c \in \operatorname{dom} g$ holds $g_{c}=\mathcal{F}(c)$.

Then $f=g$
for all values of the parameters.
Let us consider C, D and let us consider S_{1}, d. Then $S_{1} \longmapsto d$ is a partial function from C to D.
One can prove the following propositions:
(48) If $c \in S_{1}$, then $\left(S_{1} \longmapsto d\right)_{c}=d$.
(49) If for every c such that $c \in \operatorname{dom} f$ holds $f_{c}=d$, then $f=\operatorname{dom} f \longmapsto d$.
(50) If $c \in \operatorname{dom} f$, then $f \cdot\left(S_{3} \longmapsto c\right)=S_{3} \longmapsto f_{c}$.
(51) $\operatorname{id}_{\left(S_{1}\right)}$ is total iff $S_{1}=C$.
(52) If $S_{1} \longmapsto d$ is total, then $S_{1} \neq \emptyset$.
(53) $\quad S_{1} \longmapsto d$ is total iff $S_{1}=C$.

Let us consider C, D and let us consider f, X. We say that f is a constant on X if and only if:
(Def. 31^{10} There exists d such that for every c such that $c \in X \cap \operatorname{dom} f$ holds $f_{c}=d$.
Next we state a number of propositions:
(55 $\sqrt{11} f$ is a constant on X iff for all c_{1}, c_{2} such that $c_{1} \in X \cap \operatorname{dom} f$ and $c_{2} \in X \cap \operatorname{dom} f$ holds $f_{c_{1}}=f_{c_{2}}$.
(56) If X meets $\operatorname{dom} f$, then f is a constant on X iff there exists d such that $\operatorname{rng}(f \upharpoonright X)=\{d\}$.
(57) If f is a constant on X and $Y \subseteq X$, then f is a constant on Y.
(58) If X misses $\operatorname{dom} f$, then f is a constant on X.
(59) If $f \backslash S_{1}=\operatorname{dom}\left(f \backslash S_{1}\right) \longmapsto d$, then f is a constant on S_{1}.

[^2](60) f is a constant on $\{x\}$.
(61) If f is a constant on X and a constant on Y and $X \cap Y$ meets $\operatorname{dom} f$, then f is a constant on $X \cup Y$.
(62) If f is a constant on Y, then $f\lceil X$ is a constant on Y.
(63) $\quad S_{1} \longmapsto d$ is a constant on S_{1}.
(64) $f \subseteq g$ iff $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every c such that $c \in \operatorname{dom} f$ holds $f_{c}=g_{c}$.
(65) $c \in \operatorname{dom} f$ and $d=f_{c}$ iff $\langle c, d\rangle \in f$.
(66) If $\langle c, e\rangle \in s \cdot f$, then $\left\langle c, f_{c}\right\rangle \in f$ and $\left\langle f_{c}, e\right\rangle \in s$.
(67) If $f=\{\langle c, d\rangle\}$, then $f_{c}=d$.
(68) If $\operatorname{dom} f=\{c\}$, then $f=\left\{\left\langle c, f_{c}\right\rangle\right\}$.
(69) If $f_{1}=f \cap g$ and $c \in \operatorname{dom} f_{1}$, then $\left(f_{1}\right)_{c}=f_{c}$ and $\left(f_{1}\right)_{c}=g_{c}$.
(70) If $c \in \operatorname{dom} f$ and $f_{1}=f \cup g$, then $\left(f_{1}\right)_{c}=f_{c}$.
(71) If $c \in \operatorname{dom} g$ and $f_{1}=f \cup g$, then $\left(f_{1}\right)_{c}=g_{c}$.
(72) If $c \in \operatorname{dom} f_{1}$ and $f_{1}=f \cup g$, then $\left(f_{1}\right)_{c}=f_{c}$ or $\left(f_{1}\right)_{c}=g_{c}$.
(73) $c \in \operatorname{dom} f$ and $c \in S_{1}$ iff $\left\langle c, f_{c}\right\rangle \in f \mid S_{1}$.
(74) $\quad c \in \operatorname{dom} f$ and $f_{c} \in S_{2}$ iff $\left\langle c, f_{c}\right\rangle \in S_{2} \upharpoonright f$.
(75) $c \in f^{-1}\left(S_{2}\right)$ iff $\left\langle c, f_{c}\right\rangle \in f$ and $f_{c} \in S_{2}$.
(76) f is a constant on X iff there exists d such that for every c such that $c \in X \cap \operatorname{dom} f$ holds $f(c)=d$.
(77) f is a constant on X iff for all c_{1}, c_{2} such that $c_{1} \in X \cap \operatorname{dom} f$ and $c_{2} \in X \cap \operatorname{dom} f$ holds $f\left(c_{1}\right)=f\left(c_{2}\right)$.
(78) If $d \in f^{\circ} X$, then there exists c such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f(c)$.
(79) If f is one-to-one, then $d \in \operatorname{rng} f$ and $c=f^{-1}(d) \operatorname{iff} c \in \operatorname{dom} f$ and $d=f(c)$.

References

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[4] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funcop_1.html.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[6] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4. html.
[7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[8] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html
[9] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html

Received May 31, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (1) and (2) have been removed.
 ${ }^{2}$ The proposition (5) has been removed.
 ${ }^{3}$ The propositions (7) and (8) have been removed.
 ${ }^{4}$ The proposition (11) has been removed.
 ${ }^{5}$ The proposition (13) has been removed.

[^1]: ${ }^{6}$ The propositions (19)-(21) have been removed.
 ${ }^{7}$ The propositions (25)-(31) have been removed.
 ${ }^{8}$ The proposition (33) has been removed.

[^2]: ${ }^{9}$ The proposition (45) has been removed.
 ${ }^{10}$ The definitions (Def. 1) and (Def. 2) have been removed.
 ${ }^{11}$ The proposition (54) has been removed.

