Parallelity Spaces¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Michał Muzalewski Warsaw University Białystok

Summary. In the monography [6] W. Szmielew introduced the parallelity planes $\langle S; \| \rangle$, where $\| \subseteq S \times S \times S \times S$. In this text we omit upper bound axiom which must be satisfied by the parallelity planes (see also E.Kusak [4]). Further we will list those theorems which remain true when we pass from the parallelity planes to the parallelity spaces. We construct a model of the parallelity space in Abelian group $\langle F \times F \times F; +_F, -_F, \mathbf{0}_F \rangle$, where F is a field.

MML Identifier: PARSP_1.

WWW: http://mizar.org/JFM/Vol1/parsp_1.html

The articles [8], [3], [11], [9], [7], [2], [1], [10], and [5] provide the notation and terminology for this paper.

We adopt the following convention: F denotes a field, a, b, c, f, g, h denote elements of F, and x, y denote elements of F; the carrier of F, the carrier of F:

Let us consider F. The functor $+_F$ yielding a binary operation on [: the carrier of F, the carrier of F, the carrier of F:] is defined by:

(Def. 1)
$$+_F(x, y) = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$$
.

Let us consider F, x, y. The functor x + y yielding an element of [: the carrier of F, the carrier of F:] is defined as follows:

(Def. 2)
$$x + y = +_F(x, y)$$
.

The following two propositions are true:

(3)¹
$$x+y = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$$
.

(4)
$$\langle a, b, c \rangle + \langle f, g, h \rangle = \langle a + f, b + g, c + h \rangle$$
.

Let us consider F. The functor $-_F$ yields a unary operation on [: the carrier of F, the carrier of F, the carrier of F:] and is defined as follows:

(Def. 3)
$$-F(x) = \langle -x_1, -x_2, -x_3 \rangle$$
.

Let us consider F, x. The functor -x yields an element of [: the carrier of F, the carrier of F, the carrier of F:] and is defined by:

(Def. 4)
$$-x = -F(x)$$
.

The following proposition is true

¹Supported by RPBP.III-24.C6.

¹ The propositions (1) and (2) have been removed.

$$(7)^2$$
 $-x = \langle -x_1, -x_2, -x_3 \rangle.$

In the sequel S denotes a set.

Let us consider S. A set is called a 4-ary relation over S if:

(Def. 5) It
$$\subseteq [:S, S, S, S:]$$
.

We introduce parallelity structures which are extensions of 1-sorted structure and are systems \langle a carrier, a parallelity \rangle ,

where the carrier is a set and the parallelity is a 4-ary relation over the carrier.

Let us observe that there exists a parallelity structure which is non empty.

In the sequel F is a field and P_1 is a non empty parallelity structure.

Let us consider P_1 and let a, b, c, d be elements of P_1 . The predicate a, $b \parallel c$, d is defined as follows:

(Def. 6) $\langle a, b, c, d \rangle \in \text{the parallelity of } P_1.$

Let us consider F. The functor F^3 yields a set and is defined by:

(Def. 7) $F^3 = [$: the carrier of F, the carrier of F; the carrier of F:].

Let us consider F. One can verify that F^3 is non empty.

Let us consider F. The functor $(F^3)^4$ yields a set and is defined by:

(Def. 8)
$$(F^3)^4 = [:F^3, F^3, F^3, F^3].$$

Let us consider F. Note that $(F^3)^4$ is non empty.

We adopt the following convention: x is a set and a, b, c, d, e, f, g, h are elements of [: the carrier of F, the carrier of F:].

Let us consider F. The functor $\mathbf{Par'}_F$ yielding a set is defined by the condition (Def. 9).

- (Def. 9) $x \in \mathbf{Par'}_F$ if and only if the following conditions are satisfied:
 - (i) $x \in (F^3)^4$, and
 - (ii) there exist a, b, c, d such that $x = \langle a, b, c, d \rangle$ and $(a_1 b_1) \cdot (c_2 d_2) (c_1 d_1) \cdot (a_2 b_2) = 0_F$ and $(a_1 b_1) \cdot (c_3 d_3) (c_1 d_1) \cdot (a_3 b_3) = 0_F$ and $(a_2 b_2) \cdot (c_3 d_3) (c_2 d_2) \cdot (a_3 b_3) = 0_F$.

Next we state the proposition

$$(13)^3$$
 Par'_F $\subseteq [:F^3, F^3, F^3, F^3:].$

Let us consider F. The functor \mathbf{Par}_F yielding a 4-ary relation over F^3 is defined as follows:

(Def. 10)
$$\mathbf{Par}_F = \mathbf{Par'}_F$$
.

Let us consider F. The functor Aff_{F^3} yielding a parallelity structure is defined by:

(Def. 11)
$$\operatorname{Aff}_{F^3} = \langle F^3, \mathbf{Par}_F \rangle$$
.

Let us consider F. Observe that Aff_{F^3} is strict and non empty.

We now state two propositions:

- $(16)^4$ The carrier of Aff_{F3} = F^3 .
- (17) The parallelity of $Aff_{F^3} = \mathbf{Par}_F$.

In the sequel a, b, c, d, p, q, r, s are elements of Aff_{F^3} . One can prove the following propositions:

² The propositions (5) and (6) have been removed.

³ The propositions (8)–(12) have been removed.

⁴ The propositions (14) and (15) have been removed.

- (18) $a,b \parallel c,d \text{ iff } \langle a,b,c,d \rangle \in \mathbf{Par}_F.$
- (19) $\langle a,b,c,d \rangle \in \mathbf{Par}_F$ if and only if the following conditions are satisfied:
 - (i) $\langle a, b, c, d \rangle \in (F^3)^4$, and
- (ii) there exist e, f, g, h such that $\langle a,b,c,d \rangle = \langle e,f,g,h \rangle$ and $(e_1 f_1) \cdot (g_2 h_2) (g_1 h_1) \cdot (e_2 f_2) = 0_F$ and $(e_1 f_1) \cdot (g_3 h_3) (g_1 h_1) \cdot (e_3 f_3) = 0_F$ and $(e_2 f_2) \cdot (g_3 h_3) (g_2 h_2) \cdot (e_3 f_3) = 0_F$.
- (20) $a,b \parallel c,d$ if and only if the following conditions are satisfied:
 - (i) $\langle a, b, c, d \rangle \in (F^3)^4$, and
- (ii) there exist e, f, g, h such that $\langle a,b,c,d \rangle = \langle e,f,g,h \rangle$ and $(e_1 f_1) \cdot (g_2 h_2) (g_1 h_1) \cdot (e_2 f_2) = 0_F$ and $(e_1 f_1) \cdot (g_3 h_3) (g_1 h_1) \cdot (e_3 f_3) = 0_F$ and $(e_2 f_2) \cdot (g_3 h_3) (g_2 h_2) \cdot (e_3 f_3) = 0_F$.
- (21) The carrier of Aff_{F^3} = [: the carrier of F, the carrier of F, the carrier of F:].
- (22) $\langle a, b, c, d \rangle \in (F^3)^4$.
- (23) $a,b \parallel c,d$ if and only if there exist e, f, g, h such that $\langle a,b,c,d \rangle = \langle e,f,g,h \rangle$ and $(e_1 f_1) \cdot (g_2 h_2) (g_1 h_1) \cdot (e_2 f_2) = 0_F$ and $(e_1 f_1) \cdot (g_3 h_3) (g_1 h_1) \cdot (e_3 f_3) = 0_F$ and $(e_2 f_2) \cdot (g_3 h_3) (g_2 h_2) \cdot (e_3 f_3) = 0_F$.
- (24) a,b || b,a.
- (25) $a,b \parallel c,c$.
- (26) If $a, b \parallel p, q$ and $a, b \parallel r, s$, then $p, q \parallel r, s$ or a = b.
- (27) If a, b || a, c, then b, a || b, c.
- (28) There exists d such that $a,b \parallel c,d$ and $a,c \parallel b,d$.

Let I_1 be a non empty parallelity structure. We say that I_1 is parallelity space-like if and only if the condition (Def. 12) is satisfied.

- (Def. 12) Let a, b, c, d, p, q, r, s be elements of I_1 . Then
 - (i) a, b || b, a,
 - (ii) $a,b \parallel c,c,$
 - (iii) if $a,b \parallel p,q$ and $a,b \parallel r,s$, then $p,q \parallel r,s$ or a=b,
 - (iv) if $a,b \parallel a,c$, then $b,a \parallel b,c$, and
 - (v) there exists an element x of I_1 such that $a, b \parallel c, x$ and $a, c \parallel b, x$.

One can verify that there exists a non empty parallelity structure which is strict and parallelity space-like.

A parallelity space is a parallelity space-like non empty parallelity structure.

We adopt the following convention: P_1 is a parallelity space and a, b, c, d, p, q, r, s are elements of P_1 .

We now state a number of propositions:

- $(35)^5$ $a,b \parallel a,b.$
- (36) If $a, b \parallel c, d$, then $c, d \parallel a, b$.
- (37) $a, a \parallel b, c$.
- (38) If $a, b \parallel c, d$, then $b, a \parallel c, d$.

⁵ The propositions (29)–(34) have been removed.

- (39) If a, b || c, d, then a, b || d, c.
- (40) If $a,b \parallel c,d$, then $b,a \parallel c,d$ and $a,b \parallel d,c$ and $b,a \parallel d,c$ and $c,d \parallel a,b$ and $d,c \parallel a,b$ and $c,d \parallel b,a$ and $d,c \parallel b,a$.
- (41) Suppose $a,b \parallel a,c$. Then $a,c \parallel a,b$ and $b,a \parallel a,c$ and $a,b \parallel c,a$ and $a,c \parallel b,a$ and $b,a \parallel c,a$ and $c,a \parallel a,b$ and $c,a \parallel b,a$ and $b,a \parallel b,c$ and $a,b \parallel b,c$ and $b,a \parallel c,b$ and $b,a \parallel b,a$ and $a,b \parallel c,b$ and $c,b \parallel b,a$ and $b,c \parallel a,b$ and $c,b \parallel a,c$ an
- (42) If a = b or c = d or a = c and b = d or a = d and b = c, then $a, b \parallel c, d$.
- (43) If $a \neq b$ and $p, q \parallel a, b$ and $a, b \parallel r, s$, then $p, q \parallel r, s$.
- (44) If $a, b \not\parallel a, c$, then $a \neq b$ and $b \neq c$ and $c \neq a$.
- (45) If $a,b \not\parallel c,d$, then $a \neq b$ and $c \neq d$.
- (47)⁶ Suppose $a,b \not\parallel a,c$. Then $a,c \not\parallel a,b$ and $b,a \not\parallel a,c$ and $a,b \not\parallel c,a$ and $a,c \not\parallel b,a$ and $b,a \not\parallel c,a$ and $c,a \not\parallel a,b$ and $c,a \not\parallel b,a$ and $b,a \not\parallel b,c$ and $a,b \not\parallel b,c$ and $b,a \not\parallel c,b$ and $b,a \not\parallel c,b$ and $c,b \not\parallel b,a$ and $c,a \not\parallel a,b$ and $c,a \not\parallel c,b$ and $c,a \not\parallel c,b$ and $c,a \not\parallel b,c$ and $c,a \not\parallel b,c$ and $c,a \not\parallel b,c$ and $c,a \not\parallel c,b$ and $c,a \not\parallel b,c$ and $c,a \not\parallel b,c$ and $c,a \not\parallel b,c$ and $c,a \not\parallel c,b$ and $c,a \not\parallel c,b$ and $c,a \not\parallel b,c$ and $c,a \not\parallel b,c$ and $c,a \not\parallel c,b$ and $c,a \not\parallel c,b$ and $c,a \not\parallel b,c$ and $c,a \not\parallel c,b$ and c,a
- (48) If $a,b \not\parallel c,d$ and $a,b \mid\mid p,q$ and $c,d \mid\mid r,s$ and $p \neq q$ and $r \neq s$, then $p,q \not\parallel r,s$.
- (49) If $a,b \not\parallel a,c$ and $a,b \mid\mid p,q$ and $a,c \mid\mid p,r$ and $b,c \mid\mid q,r$ and $p \neq q$, then $p,q \not\parallel p,r$.
- (50) If $a,b \not\parallel a,c$ and $a,c \mid\mid p,r$ and $b,c \mid\mid p,r$, then p=r.
- (51) If $p,q \not\parallel p,r$ and $p,r \mid\mid p,s$ and $q,r \mid\mid q,s$, then r=s.
- (52) If $a,b \parallel a,c$ and $a,b \parallel p,q$ and $a,c \parallel p,r$ and $a,c \parallel p,s$ and $b,c \parallel q,r$ and $b,c \parallel q,s$, then r=s.
- (53) If $a, b \parallel a, c$ and $a, b \parallel a, d$, then $a, b \parallel c, d$.
- (54) If for all a, b holds a = b, then for all p, q, r, s holds $p, q \parallel r, s$.
- (55) If there exist a, b such that $a \neq b$ and for every c holds a, $b \parallel a$, c, then for all p, q, r, s holds p, $q \parallel r$, s.
- (56) If $a, b \not\parallel a, c$ and $p \neq q$, then $p, q \not\parallel p, a$ or $p, q \not\parallel p, b$ or $p, q \not\parallel p, c$.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [4] Eugeniusz Kusak. A new approach to dimension-free affine geometry. Bull. Acad. Polon. Sci. Sér. Sci. Math., 27(11–12):875–882, 1979.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [6] Wanda Szmielew. From Affine to Euclidean Geometry, volume 27. PWN D.Reidel Publ. Co., Warszawa Dordrecht, 1983.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

⁶ The proposition (46) has been removed.

- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- [10] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect 1.html.
- $[11] \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Vol1/subset_1.html. \\ \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Vol1/subset_1.html. \\ \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Vol1/subset_1.html. \\ \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Vol1/subset_1.html. \\ \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Vol1/subset_1.html. \\ \begin{tabular}{ll} \bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ Properties\ of\ subset$

Received November 23, 1989

Published January 2, 2004