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Summary. In the monography 6] W. Szmielew introduced the parallelity plai8s
), where||C Sx Sx Sx S. In this text we omit upper bound axiom which must be satisfied by
the parallelity planes (see also E.Kusak [4]). Further we will list those theorems which remain
true when we pass from the parallelity planes to the parallelity spaces. We construct a model
of the parallelity space in Abelian groyp x F x F;+g,—g,0g), whereF is a field.

MML Identifier: PARSP_1.

WWW: http://mizar.org/JFM/Voll/parsp_1.html

The articles|[8],[[3], [11], 9], 7], [2], [1], [10], and[5] provide the notation and terminology for
this paper.
We adopt the following conventiort denotes a field, b, ¢, f, g, h denote elements &, and
X, y denote elements dfthe carrier ofF, the carrier ofF, the carrier of .
Let us consideF. The functor+g yielding a binary operation ofthe carrier ofF, the carrier
of F, the carrier of ] is defined by:

(Def. 1) +r(X,y) = (X1 +Y1, X2+ Y2, X3+ Y3).

Let us consideF, x, y. The functorx+y yielding an element dfthe carrier of~, the carrier of
F, the carrier ofF ] is defined as follows:

(Def. 2) x+y=4+r(X,y).
The following two propositions are true:
G x+y=(a+y1,%+Y2, X +Ys).
(4) (ab,c)+(f,gh)=(a+f b+gcth).

Let us consideF. The functor—g yields a unary operation drthe carrier ofF, the carrier of
F, the carrier of ] and is defined as follows:

(Def. 3) —r(X) = (—x1, =Xz, —Xa).

Let us consideF, x. The functor—x yields an element ofthe carrier ofF, the carrier ofF,
the carrier of~ ] and is defined by:

(Def. 4) —x=—g(X).

The following proposition is true

1Supported by RPBP.II1-24.C6.
1 The propositions (1) and (2) have been removed.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol1/parsp_1.html

PARALLELITY SPACES 2

Tl —x=(—x1, —x2, —X3).

In the sequeS denotes a set.
Let us consideB. A set is called a 4-ary relation ov8iif:

(Def.5) ItC[SSSS].

We introduce parallelity structures which are extensions of 1-sorted structure and are systems
( a carrier, a parallelity,
where the carrier is a set and the parallelity is a 4-ary relation over the carrier.
Let us observe that there exists a parallelity structure which is non empty.
In the sequeF is a field andP; is a non empty parallelity structure.
Let us consideP; and leta, b, c, d be elements oP;. The predicate,b || c,d is defined as
follows:

(Def. 6) (a,b,c,d) € the parallelity ofP;.
Let us consideF . The functorF3 yields a set and is defined by:
(Def.7) F3= [the carrier ofF, the carrier ofF, the carrier ofF .

Let us consideF. One can verify thafF 2 is non empty.
Let us consideF. The functor(F3)* yields a set and is defined by:

(Def. 8) (F3)*=[F3 F3 F3 F3].

Let us consideF. Note that(F3)* is non empty.

We adopt the following conventioxis a set an@, b, ¢, d, e, f, g, h are elements dfthe carrier
of F, the carrier o, the carrier of~ .

Let us consideF. The functorPar’r yielding a set is defined by the condition (Def. 9).

(Def. 9) x e Par'k if and only if the following conditions are satisfied:
() xe(F3% and

(i) thereexist, b, ¢, d suchthak= (a,b,c,d) and(a; —b)-(c;—dp) — (€1 —d1) - (az—b2) =
O and(ay —by) - (c3—ds) — (€1 —d1) - (83 —bg) = Or and(az —bz) - (c3 — ds) — (C2 — dp) -
(613 — bg) =0Of.

Next we state the proposition
(13f] Par'e C [F3 F3, F3 F3).
Let us consideF. The functorParg yielding a 4-ary relation ovef? is defined as follows:
(Def. 10) Parg = Par'k.
Let us consideF. The functor Affs yielding a parallelity structure is defined by:
(Def. 11)  Affes = (F3 Parg).

Let us consideF. Observe that Affs is strict and non empty.
We now state two propositions:

(16} The carrier of Affs = F3.
(17) The parallelity of Afgs = Parg.

In the sequed, b, ¢, d, p, g, r, sare elements of Affs.
One can prove the following propositions:

2 The propositions (5) and (6) have been removed.
3 The propositions (8)—-(12) have been removed.
4 The propositions (14) and (15) have been removed.
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(18) a,b||c,diff (a,b,c,d) € Parg.
(19) (a,b,c,d) € Parg if and only if the following conditions are satisfied:
() (ab,cd)e(F?* and

(i) there existe, f, g, hsuch thata,b,c,d) = (e, f,g,h) and(e; — f1) - (g2 —hz) — (g1 —hy) -
(62— f2) =0r and(ey — f1)- (g3 —h3) — (g1 —h1) - (e3— f3) = Or and(ez — f2) - (g3 —h3) —
(2 —h2) - (e3—f3) = 0.

(20) a,b|| c,dif and only if the following conditions are satisfied:
() (ab.cd)e(F3)* and
(i) there existe, f, g, hsuch thafa,b,c,d) = (e f,g,h) and(e; — f1) - (g2 —hz) — (g1 —h1) -

(&2— f2) =0 and(e1 — f1)- (gs—hz) — (91— 1) - (e3— f3) = Or and(e; — f2) - (gz —h3) —
(92— h2)- (&3~ f3) = OF.

(21) The carrier of Affs = [:the carrier ofF, the carrier ofF, the carrier of J.
(22) (ab,c,d) € (F3)%

(23) a,b|| c.dif and only if there exisg, f, g, h such that{a,b,c,d) = (e f,g,h) and(e; —
f1)-(g2—hz) — (91 —M) (&2 — f2) = Or and(e1— f1) - (93 —hg) — (91 — 1) - (63— f3) = O
and(ez — f2) - (g3 —hz) — (92— h2) - (63 — f3) = Of.

(24) ab]||b,a

(25) ab]|c,c

(26) Ifa,b|| p,ganda,b||r,s, thenp,q]|r,sora=h.
(27) Ifab|| ac,thenb,a]|b,c.

(28) There existsl such thai, b || c,d anda,c || b, d.

Let I be a non empty parallelity structure. We say thas parallelity space-like if and only if
the condition (Def. 12) is satisfied.
(Def. 12) Leta, b, c,d, p, g, r, sbe elements of;. Then
() abllba
(i) ab]lcc,
(i) if a,b|| p,ganda,b||r,s, thenp,q||r,sora=b,
(iv) if a,b]|ac, thenb,al||b,c, and
(v) there exists an elemerbdf I; such thag,b || c,xanda,c || b, x.

One can verify that there exists a non empty parallelity structure which is strict and parallelity
space-like.

A parallelity space is a parallelity space-like non empty parallelity structure.

We adopt the following conventior®; is a parallelity space aral b, ¢, d, p, g, r, sare elements
of Py.

We now state a number of propositions:

35 ab]ab.
(36) Ifab||c,d,thenc,d || ab.
(37) aal|b,c
(38) Ifab||c,d,thenb,al|c,d.

5 The propositions (29)-(34) have been removed.
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(39) Ifab]|c,d,thenab||d,c.

(40) Ifab]|c,d,thenb,a|| c,d anda,b || d,candb,a || d,candc,d || a,bandd,c || a,b and
c,d || b,aandd,c || b,a

(41) Suppose,b||a,c. Thena,c||a,bandb,al|a,canda,b|| c,aanda,c||b,aandb,a||c,a
andc,a || a,b andc,a || b,aandb,a || b,c anda,b || b,c andb,a || c,b andb,c || b,a and
a,b||c,bandc,b || b,aandb,c|| a,bandc,b || a,bandc,a|| c,banda,c|| c,bandc,a|| b,c
anda,c || b,candc,b || c,aandb,c || c,aandc,b || a,candb,c || a,c.

(42) Ifa=borc=dora=candb=dora=dandb=c,thenab||c,d.
(43) Ifa#bandp,q|l abandab | r,s thenp,q]|r,s.

(44) Ifa,b}j ac, thena#bandb+#candc#a.

(45) Ifa,b}jc,d,thena=£bandc=#d.

(47@ Suppose,b}f a,c. Thena,c}j a,bandb,a}j a,canda,b}j c,aanda,c}j b,aandb,a}jc,a
andc,a} a,b andc,a}j b,a andb,a}j b,c anda,b }j b,c andb,a }j c,b andb,c }j b,a and
b,a}j c,bandc,b}j b,aandb,c}j a,bandc,b}j a,bandc,a}j c,banda,c}j c,bandc,a}jb,c
anda,c}| b,candc,b }j c,aandb,c}j c,aandc,b }j a,candb,c}j a,c.

(48) Ifa,b}jc,danda,b || p,gandc,d ||r,sandp+# qandr #s thenp, g} r,s.

(49) Ifa,b}fa,candab || p,ganda,c|| p,r andb,c|| g,r andp# q, thenp,q}f p,r.
(50) Ifa,b}fa,canda,c|| p,r andb,c|| p,r, thenp=r.

(51) If p,glj p,r andp,r || p,sandaq,r || g,s, thenr =s.

(52) Ifa,b}jacandab || p,ganda,c || p,r anda,c || p,sandb,c || g,r andb,c || g,s, then
r=s

(53) Ifa,b|lacandab||ad,thenab||c,d.
(54) Ifforall a bholdsa= b, then for allp, g, r, sholdsp,q || r,s.

(55) Ifthere exish, b such that # b and for everyc holdsa,b || a, ¢, then for allp, g, r, sholds
p.allrs.

(56) Ifa,b}jacandp+#q,thenp,q}f p,aorp,g}f p,borp,g} p,c.
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