Order Sorted Algebras¹

Josef Urban Charles University Praha

Summary. Initial notions for order sorted algebras.

MML Identifier: OSALG_1.

WWW: http://mizar.org/JFM/Vol14/osalg_1.html

The articles [10], [14], [15], [17], [3], [16], [4], [9], [8], [5], [2], [6], [1], [11], [13], [12], and [7] provide the notation and terminology for this paper.

1. Preliminaries

Let I be a set, let f be a many sorted set indexed by I, and let p be a finite sequence of elements of I. Observe that $f \cdot p$ is finite sequence-like.

Let *S* be a non empty many sorted signature. A sort symbol of *S* is an element of *S*.

Let S be a non empty many sorted signature. An operation symbol of S is an element of the operation symbols of S.

Let S be a non void non empty many sorted signature and let o be an operation symbol of S. Then the result sort of o is an element of S.

We consider overloaded many sorted signatures as extensions of many sorted signature as systems

\(\langle \alpha \) carrier, operation symbols, an overloading, an arity, a result sort \(\rangle\),

where the carrier is a set, the operation symbols constitute a set, the overloading is an equivalence relation of the operation symbols, the arity is a function from the operation symbols into the carrier*, and the result sort is a function from the operation symbols into the carrier.

We consider relation sorted signatures as extensions of many sorted signature and relational structure as systems

⟨ a carrier, an internal relation, operation symbols, an arity, a result sort ⟩,

where the carrier is a set, the internal relation is a binary relation on the carrier, the operation symbols constitute a set, the arity is a function from the operation symbols into the carrier*, and the result sort is a function from the operation symbols into the carrier.

We consider overloaded relation sorted signatures as extensions of overloaded many sorted signature and relation sorted signature as systems

 \langle a carrier, an internal relation, operation symbols, an overloading, an arity, a result sort \rangle , where the carrier is a set, the internal relation is a binary relation on the carrier, the operation symbols constitute a set, the overloading is an equivalence relation of the operation symbols, the arity is a function from the operation symbols into the carrier*, and the result sort is a function from the operation symbols into the carrier.

 $^{^1\}mathrm{This}$ work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102.

For simplicity, we adopt the following convention: A, O are non empty sets, R is an order in A, O_1 is an equivalence relation of O, f is a function from O into A^* , and g is a function from O into A. One can prove the following proposition

(1) $\langle A, R, O, O_1, f, g \rangle$ is non empty, non void, reflexive, transitive, and antisymmetric.

Let us consider A, R, O, O_1 , f, g. One can check that $\langle A, R, O, O_1, f, g \rangle$ is strict, non empty, reflexive, transitive, and antisymmetric.

2. The Notions: Order-Sorted, Discernable, Op-Discrete

In the sequel *S* denotes an overloaded relation sorted signature.

Let us consider S. We say that S is order-sorted if and only if:

(Def. 2)¹ S is reflexive, transitive, and antisymmetric.

Let us observe that every overloaded relation sorted signature which is order-sorted is also reflexive, transitive, and antisymmetric and there exists an overloaded relation sorted signature which is strict, non empty, non void, and order-sorted.

One can verify that there exists an overloaded many sorted signature which is non empty and non void.

Let S be a non empty non void overloaded many sorted signature and let x, y be operation symbols of S. The predicate $x \cong y$ is defined as follows:

(Def. 3) $\langle x, y \rangle \in$ the overloading of *S*.

Let us notice that the predicate $x \cong y$ is reflexive and symmetric.

The following proposition is true

(2) Let S be a non empty non void overloaded many sorted signature and o, o_1 , o_2 be operation symbols of S. If $o \cong o_1$ and $o_1 \cong o_2$, then $o \cong o_2$.

Let S be a non empty non void overloaded many sorted signature. We say that S is discernable if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let x, y be operation symbols of S. Suppose $x \cong y$ and Arity(x) = Arity(y) and the result sort of x = the result sort of y. Then x = y.

We say that *S* is op-discrete if and only if:

(Def. 5) The overloading of $S = id_{the operation symbols of } S$.

One can prove the following propositions:

- (3) Let S be a non empty non void overloaded many sorted signature. Then S is op-discrete if and only if for all operation symbols x, y of S such that $x \cong y$ holds x = y.
- (4) For every non empty non void overloaded many sorted signature *S* such that *S* is op-discrete holds *S* is discernable.

3. ORDER SORTED SIGNATURE

In the sequel S_0 is a non empty non void many sorted signature.

Let us consider S_0 . The functor OSSign S_0 yielding a strict non empty non void order-sorted overloaded relation sorted signature is defined by the conditions (Def. 6).

¹ The definition (Def. 1) has been removed.

- (Def. 6)(i) The carrier of S_0 = the carrier of OSSign S_0 ,
 - (ii) $id_{the \ carrier \ of \ S_0} = the \ internal \ relation \ of \ OSSign S_0$,
 - (iii) the operation symbols of S_0 = the operation symbols of OSSign S_0 ,
 - (iv) $id_{the operation symbols of } S_0 = the overloading of OSSign S_0,$
 - (v) the arity of S_0 = the arity of OSSign S_0 , and
 - (vi) the result sort of S_0 = the result sort of OSSign S_0 .

Next we state the proposition

(5) OSSign S_0 is discrete and op-discrete.

Let us note that there exists a strict non empty non void order-sorted overloaded relation sorted signature which is discrete, op-discrete, and discernable.

Let us mention that every non empty non void overloaded relation sorted signature which is op-discrete is also discernable.

Let us consider S_0 . Observe that OSSign S_0 is discrete and op-discrete.

An order sorted signature is a discernable non empty non void order-sorted overloaded relation sorted signature.

We adopt the following rules: S denotes a non empty poset, s_1 , s_2 denote elements of S, and w_1 , w_2 denote elements of (the carrier of S)*.

Let us consider S and let w_1 , w_2 be elements of (the carrier of S)*. The predicate $w_1 \le w_2$ is defined by:

(Def. 7) $\operatorname{len} w_1 = \operatorname{len} w_2$ and for every set i such that $i \in \operatorname{dom} w_1$ and for all s_1 , s_2 such that $s_1 = w_1(i)$ and $s_2 = w_2(i)$ holds $s_1 \le s_2$.

Let us note that the predicate $w_1 \le w_2$ is reflexive.

We now state two propositions:

- (6) For all elements w_1 , w_2 of (the carrier of S)* such that $w_1 \le w_2$ and $w_2 \le w_1$ holds $w_1 = w_2$.
- (7) If S is discrete and $w_1 \le w_2$, then $w_1 = w_2$.

We adopt the following convention: S is an order sorted signature, o, o_1 , o_2 are operation symbols of S, and w_1 is an element of (the carrier of S)*.

The following proposition is true

(8) If S is discrete and $o_1 \cong o_2$ and Arity $(o_1) \leq \text{Arity}(o_2)$ and the result sort of $o_1 \leq \text{the result}$ sort of o_2 , then $o_1 = o_2$.

Let us consider S and let us consider o. We say that o is monotone if and only if:

(Def. 8) For every o_2 such that $o \cong o_2$ and $Arity(o) \leq Arity(o_2)$ holds the result sort of $o \leq the$ result sort of o_2 .

Let us consider S. We say that S is monotone if and only if:

(Def. 9) Every operation symbol of *S* is monotone.

Next we state the proposition

(9) If *S* is op-discrete, then *S* is monotone.

One can verify that there exists an order sorted signature which is monotone.

Let *S* be a monotone order sorted signature. One can verify that there exists an operation symbol of *S* which is monotone.

Let S be a monotone order sorted signature. Note that every operation symbol of S is monotone.

One can check that every order sorted signature which is op-discrete is also monotone.

One can prove the following proposition

(10) If S is monotone and Arity $(o_1) = \emptyset$ and $o_1 \cong o_2$ and Arity $(o_2) = \emptyset$, then $o_1 = o_2$.

Let us consider S, o, o_1 , w_1 . We say that o_1 has least args for o, w_1 if and only if:

(Def. 10) $o \cong o_1$ and $w_1 \leq \operatorname{Arity}(o_1)$ and for every o_2 such that $o \cong o_2$ and $w_1 \leq \operatorname{Arity}(o_2)$ holds $\operatorname{Arity}(o_1) \leq \operatorname{Arity}(o_2)$.

We say that o_1 has least sort for o, w_1 if and only if:

(Def. 11) $o \cong o_1$ and $w_1 \leq \operatorname{Arity}(o_1)$ and for every o_2 such that $o \cong o_2$ and $w_1 \leq \operatorname{Arity}(o_2)$ holds the result sort of $o_1 \leq$ the result sort of o_2 .

Let us consider S, o, o_1 , w_1 . We say that o_1 has least rank for o, w_1 if and only if:

(Def. 12) o_1 has least args for o, w_1 and least sort for o, w_1 .

Let us consider S, o. We say that o is regular if and only if:

(Def. 13) o is monotone and for every w_1 such that $w_1 \le \operatorname{Arity}(o)$ holds there exists o_1 which has least args for o, w_1 .

Let S_1 be a monotone order sorted signature. We say that S_1 is regular if and only if:

(Def. 14) Every operation symbol of S_1 is regular.

In the sequel S_1 is a monotone order sorted signature, o, o_1 are operation symbols of S_1 , and w_1 is an element of (the carrier of S_1)*.

One can prove the following propositions:

- (11) S_1 is regular iff for all o, w_1 such that $w_1 \le \operatorname{Arity}(o)$ holds there exists o_1 which has least rank for o, w_1 .
- (12) For every monotone order sorted signature S_1 such that S_1 is op-discrete holds S_1 is regular.

Let us observe that there exists a monotone order sorted signature which is regular.

Let us mention that every monotone order sorted signature which is op-discrete is also regular.

Let S_2 be a regular monotone order sorted signature. Observe that every operation symbol of S_2 is regular.

We adopt the following convention: S_2 denotes a regular monotone order sorted signature, o, o_3 , o_4 denote operation symbols of S_2 , and w_1 denotes an element of (the carrier of S_2)*.

One can prove the following proposition

(13) If $w_1 \le \text{Arity}(o)$ and o_3 has least args for o, w_1 and o_4 has least args for o, w_1 , then $o_3 = o_4$.

Let us consider S_2 , o, w_1 . Let us assume that $w_1 \le \operatorname{Arity}(o)$. The functor LBound (o, w_1) yields an operation symbol of S_2 and is defined as follows:

(Def. 15) LBound(o, w_1) has least args for o, w_1 .

The following proposition is true

(14) For every w_1 such that $w_1 \leq \operatorname{Arity}(o)$ holds $\operatorname{LBound}(o, w_1)$ has least rank for o, w_1 .

In the sequel *R* is a non empty poset and *z* is a non empty set.

Let us consider R, z. The functor ConstOSSet(R,z) yielding a many sorted set indexed by the carrier of R is defined as follows:

(Def. 16) ConstOSSet(R, z) = (the carrier of R) $\longmapsto z$.

Next we state the proposition

(15) ConstOSSet(R, z) is non-empty and for all elements s_1 , s_2 of R such that $s_1 \le s_2$ holds (ConstOSSet(R, z))(s_1) \subseteq (ConstOSSet(R, z))(s_2).

Let us consider *R* and let *M* be a many sorted set indexed by *R*. We say that *M* is order-sorted if and only if:

(Def. 18)² For all elements s_1 , s_2 of R such that $s_1 \le s_2$ holds $M(s_1) \subseteq M(s_2)$.

One can prove the following proposition

(16) ConstOSSet(R,z) is order-sorted.

Let us consider R. One can check that there exists a many sorted set indexed by R which is order-sorted.

Let us consider R, z. Then ConstOSSet(R,z) is an order-sorted many sorted set indexed by R.

Let *R* be a non empty poset. An order sorted set of *R* is an order-sorted many sorted set indexed by *R*.

Let R be a non empty poset. One can check that there exists an order sorted set of R which is non-empty.

We adopt the following convention: s_1 , s_2 denote sort symbols of S, o, o_1 , o_2 , o_3 denote operation symbols of S, and w_1 , w_2 denote elements of (the carrier of S)*.

Let us consider S and let M be an algebra over S. We say that M is order-sorted if and only if:

(Def. 19) For all s_1 , s_2 such that $s_1 \le s_2$ holds (the sorts of M) $(s_1) \subseteq$ (the sorts of M) (s_2) .

One can prove the following proposition

(17) For every algebra M over S holds M is order-sorted iff the sorts of M are an order sorted set of S.

In the sequel C_1 is a many sorted function from $(\text{ConstOSSet}(S, z))^{\#}$ the arity of S into ConstOSSet(S, z) the result sort of S.

Let us consider S, z, C_1 . The functor ConstOSA(S, z, C_1) yields a strict non-empty algebra over S and is defined as follows:

(Def. 20) The sorts of $ConstOSA(S, z, C_1) = ConstOSSet(S, z)$ and the characteristics of $ConstOSA(S, z, C_1) = C_1$.

One can prove the following proposition

(18) ConstOSA(S, z, C_1) is order-sorted.

Let us consider S. Observe that there exists an algebra over S which is strict, non-empty, and order-sorted.

Let us consider S, z, C_1 . Observe that ConstOSA(S, z, C_1) is order-sorted.

Let us consider *S*. An order sorted algebra of *S* is an order-sorted algebra over *S*.

The following proposition is true

(19) For every discrete order sorted signature S holds every algebra over S is order-sorted.

Let S be a discrete order sorted signature. One can verify that every algebra over S is order-sorted

In the sequel A denotes an order sorted algebra of S.

One can prove the following proposition

(20) If $w_1 \le w_2$, then (the sorts of A)[#](w_1) \subseteq (the sorts of A)[#](w_2).

In the sequel M is an algebra over S_0 .

Let us consider S_0 , M. The functor OSAlg M yielding a strict order sorted algebra of OSSign S_0 is defined by:

(Def. 21) The sorts of OSAlgM =the sorts of M and the characteristics of OSAlgM =the characteristics of M.

² The definition (Def. 17) has been removed.

In the sequel *A* denotes an order sorted algebra of *S*.

The following proposition is true

(21) For all elements w_1 , w_2 , w_3 of (the carrier of S)* such that $w_1 \le w_2$ and $w_2 \le w_3$ holds $w_1 \le w_3$.

Let us consider S, o_1 , o_2 . The predicate $o_1 \le o_2$ is defined as follows:

(Def. 22) $o_1 \cong o_2$ and Arity $(o_1) \leq \text{Arity}(o_2)$ and the result sort of $o_1 \leq \text{the result sort of } o_2$.

Let us note that the predicate $o_1 \le o_2$ is reflexive.

One can prove the following propositions:

- (22) If $o_1 \le o_2$ and $o_2 \le o_1$, then $o_1 = o_2$.
- (23) If $o_1 \le o_2$ and $o_2 \le o_3$, then $o_1 \le o_3$.
- (24) If the result sort of $o_1 \le$ the result sort of o_2 , then Result $(o_1,A) \subseteq \text{Result}(o_2,A)$.
- (25) If $Arity(o_1) \le Arity(o_2)$, then $Args(o_1, A) \subseteq Args(o_2, A)$.
- (26) If $o_1 \le o_2$, then $\operatorname{Args}(o_1, A) \subseteq \operatorname{Args}(o_2, A)$ and $\operatorname{Result}(o_1, A) \subseteq \operatorname{Result}(o_2, A)$.

Let us consider S, A. We say that A is monotone if and only if:

(Def. 23) For all o_1 , o_2 such that $o_1 \le o_2$ holds $Den(o_2, A) \upharpoonright Args(o_1, A) = Den(o_1, A)$.

One can prove the following two propositions:

- (27) Let *A* be a non-empty order sorted algebra of *S*. Then *A* is monotone if and only if for all o_1, o_2 such that $o_1 \le o_2$ holds $Den(o_1, A) \subseteq Den(o_2, A)$.
- (28) If S is discrete and op-discrete, then A is monotone.

Let us consider S, z and let z_1 be an element of z. The functor TrivialOSA(S,z, z_1) yielding a strict order sorted algebra of S is defined by:

(Def. 24) The sorts of TrivialOSA(S, z, z_1) = ConstOSSet(S, z) and for every o holds Den(o, TrivialOSA(S, z, z_1)) = Args(o, TrivialOSA(S, z, z_1)) $\longmapsto z_1$.

We now state the proposition

(29) For every element z_1 of z holds TrivialOSA (S, z, z_1) is non-empty and TrivialOSA (S, z, z_1) is monotone.

Let us consider S. One can verify that there exists an order sorted algebra of S which is monotone, strict, and non-empty.

Let us consider S, z and let z_1 be an element of z. One can verify that TrivialOSA (S, z, z_1) is monotone and non-empty.

In the sequel o_5 , o_6 denote operation symbols of S.

Let us consider S. The functor OperNames S yielding a non empty family of subsets of the operation symbols of S is defined by:

(Def. 25) OperNames S = Classes (the overloading of S).

Let us consider S. One can verify that every element of OperNames S is non empty.

Let us consider *S*. An OperName of *S* is an element of OperNames *S*.

Let us consider S, o_5 . The functor Name o_5 yields an OperName of S and is defined by:

(Def. 26) Name $o_5 = [o_5]_{\text{the overloading of } S}$.

We now state three propositions:

- (30) $o_5 \cong o_6 \text{ iff } o_6 \in [o_5]_{\text{the overloading of } S}$.
- (31) $o_5 \cong o_6$ iff Name $o_5 = \text{Name } o_6$.
- (32) For every set X holds X is an OperName of S iff there exists o_5 such that $X = \text{Name } o_5$.

Let us consider S and let o be an OperName of S. We see that the element of o is an operation symbol of S.

One can prove the following propositions:

- (33) For every OperName o_8 of S and for every operation symbol o_7 of S holds o_7 is an element of o_8 iff Name $o_7 = o_8$.
- (34) Let S_2 be a regular monotone order sorted signature, o_5 , o_6 be operation symbols of S_2 , and w be an element of (the carrier of S_2)*. If $o_5 \cong o_6$ and len Arity(o_5) = len Arity(o_6) and $w \leq \text{Arity}(o_5)$ and $w \leq \text{Arity}(o_6)$, then LBound(o_5, w) = LBound(o_6, w).

Let S_2 be a regular monotone order sorted signature, let o_8 be an OperName of S_2 , and let w be an element of (the carrier of S_2)*. Let us assume that there exists an element o_7 of o_8 such that $w \le \operatorname{Arity}(o_7)$. The functor LBound (o_8, w) yielding an element of o_8 is defined as follows:

(Def. 27) For every element o_7 of o_8 such that $w \le \text{Arity}(o_7)$ holds $LBound(o_8, w) = LBound(o_7, w)$.

Next we state the proposition

(35) Let S be a regular monotone order sorted signature, o be an operation symbol of S, and w_1 be an element of (the carrier of S)*. If $w_1 \le \operatorname{Arity}(o)$, then LBound $(o, w_1) \le o$.

ACKNOWLEDGMENTS

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Adam Grabowski. On the category of posets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/orders_3.html.
- [8] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [9] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/egrel_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [12] Andrzej Trybulec. Many sorted algebras. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
- [13] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.

- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [16] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [17] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received September 19, 2002

Published January 2, 2004