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The articles([10],[14],[[15],[[17],[13],[116],[14],.[9],.[8],[15], [[2], [6], 1], ([11], [[1B],[[1R], and 7]
provide the notation and terminology for this paper.

1. PRELIMINARIES

Letl be a set, lef be a many sorted set indexed hyand letp be a finite sequence of elements of
I. Observe thaf - pis finite sequence-like.

Let Sbhe a non empty many sorted signature. A sort symb@&iefan element o§.

Let Sbe a non empty many sorted signature. An operation symbS8liefan element of the
operation symbols db.

Let Sbe a non void non empty many sorted signature and ket an operation symbol @&
Then the result sort af is an element of.

We consider overloaded many sorted signatures as extensions of many sorted signature as sys-
tems

( a carrier, operation symbols, an overloading, an arity, a resulf,sort
where the carrier is a set, the operation symbols constitute a set, the overloading is an equivalence
relation of the operation symbols, the arity is a function from the operation symbols into the*carrier
and the result sort is a function from the operation symbols into the carrier.

We consider relation sorted signatures as extensions of many sorted signature and relational
structure as systems

(a carrier, an internal relation, operation symbols, an arity, a resul},sort
where the carrier is a set, the internal relation is a binary relation on the carrier, the operation
symbols constitute a set, the arity is a function from the operation symbols into the ‘Gamigthe
result sort is a function from the operation symbols into the carrier.

We consider overloaded relation sorted signatures as extensions of overloaded many sorted sig-
nature and relation sorted signature as systems

( a carrier, an internal relation, operation symbols, an overloading, an arity, a result sort
where the carrier is a set, the internal relation is a binary relation on the carrier, the operation
symbols constitute a set, the overloading is an equivalence relation of the operation symbols, the
arity is a function from the operation symbols into the cafriand the result sort is a function from
the operation symbols into the carrier.

1This work was done during author’s research visit in Bialystok, funded by the CALCULEMUS grant
HPRN-CT-2000-00102.
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For simplicity, we adopt the following conventioA, O are non empty set® is an order inA,
O is an equivalence relation &, f is a function fromO into A*, andg is a function fromO into A.
One can prove the following proposition

(1) (A,R 0,04, f,g) is non empty, non void, reflexive, transitive, and antisymmetric.

Let us consideA, R, O, Oy, f, g. One can check thaA,R,0, 04, f,g) is strict, non empty,
reflexive, transitive, and antisymmetric.

2. THE NOTIONS. ORDER-SORTED, DISCERNABLE, OP-DISCRETE

In the sequeB denotes an overloaded relation sorted signature.
Let us considefs. We say thaSis order-sorted if and only if:

(Def. ZE] Sis reflexive, transitive, and antisymmetric.

Let us observe that every overloaded relation sorted signature which is order-sorted is also re-

flexive, transitive, and antisymmetric and there exists an overloaded relation sorted signature which
is strict, non empty, non void, and order-sorted.

One can verify that there exists an overloaded many sorted signature which is non empty and
non void.

Let S be a non empty non void overloaded many sorted signature and yebe operation
symbols ofS. The predicate = y is defined as follows:

(Def. 3) (x,y) € the overloading o&

Let us notice that the predicate* y is reflexive and symmetric.
The following proposition is true

(2) LetShe anonempty non void overloaded many sorted signature,ando, be operation
symbols ofS. If 02 0; ando; = 0,, theno = 0.

Let Sbe a non empty non void overloaded many sorted signature. We sdyithdiscernable
if and only if the condition (Def. 4) is satisfied.

(Def. 4) Letx, y be operation symbols & Supposex =y and Arity(x) = Arity (y) and the result
sort ofx = the result sort of. Thenx=y.

We say thaSis op-discrete if and only if:
(Def. 5) The Over|OadIng (ﬁ: |dthe Operation Symb0|3 -

One can prove the following propositions:

(3) LetSbhe a non empty non void overloaded many sorted signature. $ieop-discrete if
and only if for all operation symbols y of Ssuch tha = y holdsx =y.

(4) For every non empty non void overloaded many sorted sign8tuweh thaSis op-discrete
holdsSis discernable.

3. ORDER SORTED SIGNATURE

In the sequef, is a non empty non void many sorted signature.

Let us consideSy. The functor OSSig§ yielding a strict non empty non void order-sorted
overloaded relation sorted signature is defined by the conditions (Def. 6).

1 The definition (Def. 1) has been removed.
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(Def. 6)()) The carrier oy = the carrier of OSSig§y,
(i)  idthe carrier ofs, = the internal relation of OSSidh,
(iii)  the operation symbols di = the operation symbols of OSSi&#
(iv)  idthe operation symbols & = the overloading of OSSidh,
(v) the arity ofS = the arity of OSSigi%, and
(vi) the result sort oy = the result sort of OSSidgh.

Next we state the proposition
(5) OSSigry is discrete and op-discrete.

Let us note that there exists a strict non empty non void order-sorted overloaded relation sorted
signature which is discrete, op-discrete, and discernable.

Let us mention that every non empty non void overloaded relation sorted signature which is
op-discrete is also discernable.

Let us conside®. Observe that OSSidh is discrete and op-discrete.

An order sorted signature is a discernable non empty non void order-sorted overloaded relation
sorted signature.

We adopt the following rulesSdenotes a non empty posst, s, denote elements & andwy,
w, denote elements of (the carrier &f.

Let us consideS and letw;, w» be elements of (the carrier 8*. The predicatev; < w; is
defined by:

(Def. 7) lenwy = lenw, and for every setsuch that € domw; and for alls;, s, such thas; = wy (i)
ands; = ws(i) holdss; < .

Let us note that the predicatg < ws is reflexive.
We now state two propositions:

(6) Forall elementsn, w; of (the carrier ofS)* such thatv; <w, andw, < wj holdsw; = ws.

(7) If Sis discrete andv; < wo, thenwy = ws.

We adopt the following conventior8is an order sorted signatur,o;, 0, are operation sym-
bols ofS, andw; is an element of (the carrier &*.
The following proposition is true

(8) If Sis discrete ana; =2 0, and Arity(01) < Arity (02) and the result sort af; < the result
sort ofoy, theno; = 0,.

Let us consideBand let us considar. We say thab is monotone if and only if:

(Def. 8) For everyo, such thato 22 0, and Arity(o) < Arity (02) holds the result sort ob < the
result sort ofos.

Let us consideB. We say thaBis monotone if and only if:
(Def. 9) Every operation symbol &is monotone.

Next we state the proposition
(9) If Sis op-discrete, theBis monotone.

One can verify that there exists an order sorted signature which is monotone.

Let Sbe a monotone order sorted signature. One can verify that there exists an operation symbol
of Swhich is monotone.

Let She a monotone order sorted signature. Note that every operation synfislmbnotone.

One can check that every order sorted signature which is op-discrete is also monotone.

One can prove the following proposition
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(10) If Sis monotone and Arit§o;) = 0 ando; = 0, and Arity(oy) = 0, theno; = 0.
Let us consides, o, 01, wi. We say thab; has least args far, wy if and only if:

(Def. 10) o= 01 andw; < Arity (01) and for everyo, such thato 2 o, andw; < Arity (02) holds
Arity (01) < Arity (02).

We say thab; has least sort foo, wy if and only if:

(Def. 11) 0205 andw; < Arity (01) and for everyo, such thab = o, andw; < Arity (02) holds the
result sort ofo; < the result sort obs.

Let us conside§, o, o1, wi. We say thab; has least rank foo, wy if and only if:
(Def. 12) 05 has least args fay, wy and least sort foo, w;.
Let us consides, 0. We say thab is regular if and only if:

(Def. 13) o is monotone and for eveny; such thatw; < Arity (0) holds there exists; which has
least args fop, ws.

Let S; be a monotone order sorted signature. We sayShest regular if and only if:
(Def. 14) Every operation symbol & is regular.

In the seque§; is a monotone order sorted signatuweg; are operation symbols &, andw;
is an element of (the carrier & )*.

One can prove the following propositions:

(11) S is regular iff for allo, wi such thatv; < Arity (0) holds there exists; which has least
rank foro, wy.

(12) For every monotone order sorted signatrsuch that, is op-discrete holdS; is regular.

Let us observe that there exists a monotone order sorted signature which is regular.
Let us mention that every monotone order sorted signature which is op-discrete is also regular.

Let S be a regular monotone order sorted signature. Observe that every operation sySbol of
is regular.

We adopt the following conventior®, denotes a regular monotone order sorted signatyog,
04 denote operation symbols 8f, andw; denotes an element of (the carrierSj*.
One can prove the following proposition

(13) Ifwy < Arity (0) andos has least args fay, w; andog has least args fay, wy, thenos = 04.

Let us considef, 0, wy. Let us assume that; < Arity (0). The functor LBoundo, w;) yields
an operation symbol &, and is defined as follows:

(Def. 15) LBoundo,w) has least args far, w;.

The following proposition is true

(14) For everyw; such thatv; < Arity (0) holds LBoundo, w;) has least rank foo, wj.

In the sequeR is a non empty poset arrds a non empty set.

Let us consideR, z. The functor ConstOSS®, ) yielding a many sorted set indexed by the
carrier ofR is defined as follows:

(Def. 16) ConstOSSER, z) = (the carrier oR) — z

Next we state the proposition

(15) ConstOSSéR z) is non-empty and for all elemenss, s, of R such thats; < s, holds
(ConstOSSéER, 2))(s1) C (ConstOSSER, 2))(s,).
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Let us consideR and letM be a many sorted set indexed RyWe say thaM is order-sorted if
and only if:

(Def. 1@ For all elements;, s, of Rsuch thats; < s holdsM(s;) € M(sp).

One can prove the following proposition
(16) ConstOSSéR z) is order-sorted.

Let us consideR. One can check that there exists a many sorted set index&iwdyich is
order-sorted.

Let us consideR, z. Then ConstOSSER, z) is an order-sorted many sorted set indexedRby

Let Rbe a non empty poset. An order sorted sk an order-sorted many sorted set indexed
by R.

Let R be a non empty poset. One can check that there exists an order sortedRsehich is
non-empty.

We adopt the following conventiorsy, s, denote sort symbols & o, 01, 02, 03 denote operation
symbols ofS, andwy, w, denote elements of (the carrier 9f .

Let us consideSand letM be an algebra ove3. We say thaM is order-sorted if and only if:

(Def. 19) For alls;, s, such thas; < s, holds (the sorts o) (s;) C (the sorts oM)(sp).

One can prove the following proposition

(17) For every algebr® over SholdsM is order-sorted iff the sorts dfl are an order sorted
set ofS

In the sequelC; is a many sorted function fromMiConstOSSéB, z))* - the arity of S into
ConstOSS€R, z) - the result sort of.

Let us consideB, z, C;. The functor ConstOS{S, z,C,) yields a strict non-empty algebra over
Sand is defined as follows:

(Def.20) The sorts of ConstO382zC;) = ConstOSS€5z) and the characteristics of
ConstOSAS z,C1) =C;.

One can prove the following proposition
(18) ConstOSAS z,C,) is order-sorted.

Let us considefs. Observe that there exists an algebra dverhich is strict, non-empty, and
order-sorted.

Let us consides, z, C;. Observe that ConstOS8 z,C;) is order-sorted.

Let us consideB. An order sorted algebra &is an order-sorted algebra ov@r

The following proposition is true

(19) For every discrete order sorted signatBi®lds every algebra ov&is order-sorted.

Let S be a discrete order sorted signature. One can verify that every algebr8 wmverder-
sorted.

In the sequeA denotes an order sorted algebresof

One can prove the following proposition

(20) If wy < Wy, then (the sorts oA)#(wy) C (the sorts ofd)(w,).

In the sequeM is an algebra oves.
Let us considefy, M. The functor OSAIgM yielding a strict order sorted algebra of OSSHn
is defined by:

(Def. 21) The sorts of OSAINI = the sorts oM and the characteristics of OSAW = the charac-
teristics ofM.

2 The definition (Def. 17) has been removed.
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In the sequeA denotes an order sorted algebr&sof
The following proposition is true

(21) For all elementsvi, w,, w3 of (the carrier ofS)* such thatw; < w, andw, < ws holds
Wy < Ws.

Let us consideB, 01, 02. The predicat®; < o0, is defined as follows:
(Def. 22) 07 =2 0p and Arity(01) < Arity (02) and the result sort af; < the result sort 06;.

Let us note that the predicabg < o, is reflexive.
One can prove the following propositions:

(22) If o <0y ando; < 01, thenoy = 0,.

(23) If o1 <0y ando; < 03, theno; < 03.

(24) If the result sort 0b; < the result sort 06, then Resu(io1,A) C Resulfoy, A).

(25) If Arity (01) < Arity (02), then Argg0o1,A) C Args(0g,A).

(26) If 01 < 0y, then Arggo1,A) C Args(oz,A) and Resulto;, A) C Resulfoy, A).
Let us considef5, A. We say thafA is monotone if and only if:

(Def. 23) For allog, 0, such thab; < o0, holds Deroy, A) [ Args(o1,A) = Den(01,A).

One can prove the following two propositions:

(27) LetA be a non-empty order sorted algebreSofThenA is monotone if and only if for all
01, 02 such thab; < 0, holds Derfo;,A) C Den(0y,A).

(28) If Sis discrete and op-discrete, th&ris monotone.

Let us considef5, zand letz; be an element af. The functor TrivialOSAS, z z;) yielding a
strict order sorted algebra &fis defined by:

(Def. 24) The sorts of TrivialOS£S z,z1) = ConstOSSéS z) and for everyo holds Derfo,
TrivialOSA(S z,z1)) = Args(o, TrivialOSA(S z,z1)) — z.

We now state the proposition

(29) For every elemert; of z holds TrivialOSAS, z z;) is non-empty and TrivialOS§S,z,z;)
is monotone.

Let us consideB. One can verify that there exists an order sorted algeb&wdfich is mono-
tone, strict, and non-empty.

Let us considefs, z and letz; be an element of. One can verify that TrivialOS£§,2,2;) is
monotone and non-empty.

In the sequebs, 0g denote operation symbols &f

Let us considelS. The functor OperNamésyielding a non empty family of subsets of the
operation symbols dis defined by:

(Def. 25) OperNameS= Classes (the overloading 6f.

Let us conside&. One can verify that every element of OperNai®ésnon empty.
Let us consideB. An OperName ofis an element of OperNam8s
Let us consideB, os. The functor Names yields an OperName @& and is defined by:

(Def. 26) Names = [0s]

the overloading ofS*

We now state three propositions:
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(30) o05=o0giff 05 € [05]the overloading ofS*
(31) o052 05 iff Nameos = Nameog.
(32) For every seX holdsX is an OperName dbiff there existsos such thatX = Nameos.

Let us conside6 and leto be an OperName &. We see that the element ofis an operation
symbol ofS.
One can prove the following propositions:

(33) For every OperNamaeg of Sand for every operation symboy of Sholdsoy is an element
of og iff Nameoy = og.

(34) LetS; be a regular monotone order sorted signatoge g be operation symbols ¢,
andw be an element of (the carrier 8§)*. If o5 = 0g and len Arity(0s) = len Arity(0s) and
w < Arity (05) andw < Arity (0s), then LBoundos, w) = LBound(og, w).

Let S be a regular monotone order sorted signaturepddie an OperName d¥, and letw
be an element of (the carrier 6f)*. Let us assume that there exists an elenegrif og such that
w < Arity (07). The functor LBoungos, w) yielding an element obg is defined as follows:

(Def. 27) For every element; of og such thatv < Arity (07) holds LBoundog, w) = LBoundo7,w).

Next we state the proposition

(35) LetShbe aregular monotone order sorted signataitge an operation symbol & andw;
be an element of (the carrier 8f*. If wy < Arity (0), then LBoundo,w;) < o.
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