Free Order Sorted Universal Algebra¹

Josef Urban Charles University Praha

Summary. Free Order Sorted Universal Algebra — the general construction for any locally directed signatures.

MML Identifier: OSAFREE.
WWW: http://mizar.org/JFM/Voll4/osafree.html

The articles [22], [13], [28], [33], [34], [10], [23], [12], [11], [7], [14], [35], [4], [19], [2], [21], [27], [15], [5], [3], [6], [1], [8], [26], [24], [18], [25], [9], [16], [17], [30], [32], [29], [31], and [20] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper *S* is an order sorted signature.

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. A subset of U_0 is called an order sorted generator set of U_0 if:

(Def. 1) For every OSSubset *O* of U_0 such that O = OSClit holds the sorts of OSGen O = the sorts of U_0 .

One can prove the following proposition

(1) Let *S* be an order sorted signature, U_0 be a strict non-empty order sorted algebra of *S*, and *A* be a subset of U_0 . Then *A* is an order sorted generator set of U_0 if and only if for every OSSubset *O* of U_0 such that O = OSClA holds $OSGen O = U_0$.

Let us consider S, let U_0 be a monotone order sorted algebra of S, and let I_1 be an order sorted generator set of U_0 . We say that I_1 is osfree if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let U_1 be a monotone non-empty order sorted algebra of *S* and *f* be a many sorted function from I_1 into the sorts of U_1 . Then there exists a many sorted function *h* from U_0 into U_1 such that *h* is a homomorphism of U_0 into U_1 and order-sorted and $h \upharpoonright I_1 = f$.

Let S be an order sorted signature and let I_1 be a monotone order sorted algebra of S. We say that I_1 is osfree if and only if:

(Def. 3) There exists an order sorted generator set of I_1 which is osfree.

¹This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102.

2. CONSTRUCTION OF FREE ORDER SORTED ALGEBRAS FOR GIVEN SIGNATURE

Let *S* be an order sorted signature and let *X* be a many sorted set indexed by *S*. The functor OSREL*X* yields a relation between [: the operation symbols of *S*, {the carrier of *S*}:] $\cup \bigcup$ coprod(*X*) and ([: the operation symbols of *S*, {the carrier of *S*}:] $\cup \bigcup$ coprod(*X*))^{*} and is defined by the condition (Def. 4).

- (Def. 4) Let *a* be an element of [: the operation symbols of *S*, {the carrier of *S*}:] \cup \cup coprod(*X*) and *b* be an element of ([: the operation symbols of *S*, {the carrier of *S*}:] \cup \cup coprod(*X*))*. Then $\langle a, b \rangle \in OSRELX$ if and only if the following conditions are satisfied:
 - (i) $a \in [:$ the operation symbols of *S*, {the carrier of *S*}:], and
 - (ii) for every operation symbol o of S such that $\langle o, \text{ the carrier of } S \rangle = a$ holds len b = len Arity(o) and for every set x such that $x \in \text{dom } b$ holds if $b(x) \in [:\text{the operation symbols of } S$, {the carrier of S}:], then for every operation symbol o_1 of S such that $\langle o_1, \text{ the carrier of } S \rangle = b(x)$ holds the result sort of $o_1 \leq \text{Arity}(o)_x$ and if $b(x) \in \bigcup \text{coprod}(X)$, then there exists an element i of S such that $i \leq \text{Arity}(o)_x$ and $b(x) \in \text{coprod}(i, X)$.

In the sequel S denotes an order sorted signature, X denotes a many sorted set indexed by S, o denotes an operation symbol of S, and b denotes an element of ([:the operation symbols of S, {the carrier of S}:] $\cup \bigcup \operatorname{coprod}(X)$)*.

We now state the proposition

- (2) $\langle \langle o, \text{ the carrier of } S \rangle, b \rangle \in \text{OSRELX}$ if and only if the following conditions are satisfied:
- (i) $\operatorname{len} b = \operatorname{len} \operatorname{Arity}(o)$, and
- (ii) for every set x such that $x \in \text{dom } b$ holds if $b(x) \in [:$ the operation symbols of S, {the carrier of S}:], then for every operation symbol o_1 of S such that $\langle o_1, \text{ the carrier of } S \rangle = b(x)$ holds the result sort of $o_1 \leq \text{Arity}(o)_x$ and if $b(x) \in \bigcup \text{coprod}(X)$, then there exists an element *i* of S such that $i \leq \text{Arity}(o)_x$ and $b(x) \in \text{coprod}(i, X)$.

Let S be an order sorted signature and let X be a many sorted set indexed by S. The functor DTConOSAX yields a tree construction structure and is defined by:

Let S be an order sorted signature and let X be a many sorted set indexed by S. Note that DTConOSAX is strict and non empty.

The following proposition is true

(3) Let S be an order sorted signature and X be a non-empty many sorted set indexed by S. Then the nonterminals of DTConOSAX = [: the operation symbols of S, {the carrier of S}:] and the terminals of DTConOSAX = ∪ coprod(X).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. Note that DTConOSAX has terminals, nonterminals, and useful nonterminals.

We now state the proposition

(4) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and t be a set. Then t ∈ the terminals of DTConOSAX if and only if there exists an element s of S and there exists a set x such that x ∈ X(s) and t = ⟨x, s⟩.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *o* be an operation symbol of *S*. The functor OSSym(o, X) yields a symbol of DTConOSA*X* and is defined as follows:

(Def. 6) OSSym $(o, X) = \langle o, \text{ the carrier of } S \rangle$.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. The functor ParsedTerms(X, s) yields a subset of TS(DTConOSAX) and is defined by the condition (Def. 7).

(Def. 7) ParsedTerms(X, s) = {a; a ranges over elements of TS(DTConOSAX): $\bigvee_{s_1: \text{element of } S} \bigvee_{x: \text{set}} (s_1 \le s \land x \in X(s_1) \land a = \text{the root tree of } \langle x, s_1 \rangle) \lor \bigvee_{o: \text{operation symbol of } S} (\langle o, \text{the carrier of } S \rangle = a(\emptyset) \land \text{the result sort of } o \le s$)}.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. Observe that ParsedTerms(X, s) is non empty.

Let *S* be an order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. The functor ParsedTerms X yields an order sorted set of *S* and is defined by:

(Def. 8) For every element s of S holds (ParsedTermsX)(s) = ParsedTerms(X,s).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. Observe that ParsedTerms X is non-empty.

Next we state four propositions:

- (5) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *o* be an operation symbol of *S*, and *x* be a set. Suppose $x \in ((\text{ParsedTerms } X)^{\#} \cdot \text{the arity of } S)(o)$. Then *x* is a finite sequence of elements of TS(DTConOSA*X*).
- (6) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and p be a finite sequence of elements of TS(DTConOSAX). Then p ∈ ((ParsedTermsX)[#] · the arity of S)(o) if and only if dom p = domArity(o) and for every natural number n such that n ∈ dom p holds p(n) ∈ ParsedTerms(X, Arity(o)_n).
- (7) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and p be a finite sequence of elements of TS(DTConOSAX). Then OSSym(o,X) ⇒ the roots of p if and only if p ∈ ((ParsedTermsX)[#] · the arity of S)(o).
- (8) For every order sorted signature *S* and for every non-empty many sorted set *X* indexed by *S* holds \bigcup rng ParsedTerms *X* = TS(DTConOSA*X*).

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let o be an operation symbol of S. The functor PTDenOp(o,X) yields a function from $((ParsedTermsX)^{\#} \cdot the arity of S)(o)$ into $(ParsedTermsX \cdot the result sort of S)(o)$ and is defined by:

(Def. 9) For every finite sequence p of elements of TS(DTConOSAX) such that $OSSym(o,X) \Rightarrow$ the roots of p holds (PTDenOp(o,X))(p) = OSSym(o,X)-tree(p).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTOperX yields a many sorted function from $(ParsedTermsX)^{\#}$ the arity of S into ParsedTermsX the result sort of S and is defined as follows:

(Def. 10) For every operation symbol *o* of *S* holds (PTOper X)(o) = PTDenOp(o, X).

Let *S* be an order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. The functor ParsedTermsOSA*X* yields an order sorted algebra of *S* and is defined by:

(Def. 11) ParsedTermsOSA $X = \langle ParsedTerms X, PTOper X \rangle$.

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. Note that ParsedTermsOSAX is strict and non-empty.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *o* be an operation symbol of *S*. Then OSSym(o, X) is a nonterminal of DTConOSA*X*.

One can prove the following propositions:

- (9) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and s be an element of S. Then (the sorts of ParsedTermsOSAX)(s) = {a; a ranges over elements of TS(DTConOSAX): V_{s1:element of S} V_{x:set} (s₁ ≤ s ∧ x ∈ X(s₁) ∧ a = the root tree of ⟨x, s₁⟩) ∨ V_{o:operation symbol of S} (⟨o, the carrier of S⟩ = a(0) ∧ the result sort of o ≤ s)}.
- (10) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s*, *s*₁ be elements of *S*, and *x* be a set. Suppose $x \in X(s)$. Then
- (i) the root tree of $\langle x, s \rangle$ is an element of TS(DTConOSAX),
- (ii) for every set z holds $\langle z, \text{ the carrier of } S \rangle \neq (\text{the root tree of } \langle x, s \rangle)(\emptyset)$, and
- (iii) the root tree of $\langle x, s \rangle \in$ (the sorts of ParsedTermsOSAX) (s_1) iff $s \leq s_1$.
- (11) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *t* be an element of TS(DTConOSAX), and *o* be an operation symbol of *S*. Suppose $t(\emptyset) = \langle o, \text{the carrier of } S \rangle$. Then
- (i) there exists a subtree sequence p joinable by OSSym(o,X) such that t = OSSym(o,X)-tree(p) and $OSSym(o,X) \Rightarrow$ the roots of p and $p \in Args(o, ParsedTermsOSAX)$ and t = (Den(o, ParsedTermsOSAX))(p),
- (ii) for every element s_2 of S and for every set x holds $t \neq$ the root tree of $\langle x, s_2 \rangle$, and
- (iii) for every element s_1 of *S* holds $t \in (\text{the sorts of ParsedTermsOSA}(s_1))$ iff the result sort of $o \leq s_1$.
- (12) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, n_1 be a symbol of DTConOSAX, and t_1 be a finite sequence of elements of TS(DTConOSAX). Suppose $n_1 \Rightarrow$ the roots of t_1 . Then
 - (i) $n_1 \in$ the nonterminals of DTConOSAX,
- (ii) n_1 -tree $(t_1) \in TS(DTConOSAX)$, and
- (iii) there exists an operation symbol o of S such that $n_1 = \langle o, \text{the carrier of } S \rangle$ and $t_1 \in \text{Args}(o, \text{ParsedTermsOSA}X)$ and n_1 -tree $(t_1) = (\text{Den}(o, \text{ParsedTermsOSA}X))(t_1)$ and for every element s_1 of S holds n_1 -tree $(t_1) \in (\text{the sorts of ParsedTermsOSA}X)(s_1)$ iff the result sort of $o \leq s_1$.
- (13) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *o* be an operation symbol of *S*, and *x* be a finite sequence. Then $x \in \text{Args}(o, \text{ParsedTermsOSA}X)$ if and only if the following conditions are satisfied:
- (i) x is a finite sequence of elements of TS(DTConOSAX), and
- (ii) $OSSym(o, X) \Rightarrow$ the roots of *x*.
- (14) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and *t* be an element of TS(DTConOSA*X*). Then there exists a sort symbol *s* of *S* such that $t \in (\text{the sorts of ParsedTermsOSA}(s))$ and for every element s_1 of *S* such that $t \in (\text{the sorts of ParsedTermsOSA}(s_1))$ holds $s \leq s_1$.

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let t be an element of TS(DTConOSAX). The functor LeastSortt yields a sort symbol of S and is defined by:

(Def. 12) $t \in (\text{the sorts of ParsedTermsOSA}X)(\text{LeastSort}t) \text{ and for every element } s_1 \text{ of } S \text{ such that} t \in (\text{the sorts of ParsedTermsOSA}X)(s_1) \text{ holds LeastSort}t \leq s_1.$

Let *S* be a non empty non void many sorted signature and let *A* be a non-empty algebra over *S*. An element of *A* is an element of \bigcup (the sorts of *A*). One can prove the following propositions:

(15) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and x be a set. Then x is an element of ParsedTermsOSAX if and only if x is an element of TS(DTConOSAX).

- (16) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s* be an element of *S*, and *x* be a set. If $x \in (\text{the sorts of ParsedTermsOSA}X)(s)$, then *x* is an element of TS(DTConOSA*X*).
- (17) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s* be an element of *S*, and *x* be a set. Suppose $x \in X(s)$. Let *t* be an element of TS(DTConOSA*X*). If t = the root tree of $\langle x, s \rangle$, then LeastSortt = s.
- (18) Let *S* be an order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *o* be an operation symbol of *S*, *x* be an element of $\operatorname{Args}(o, \operatorname{ParsedTermsOSA}X)$, and *t* be an element of $\operatorname{TS}(\operatorname{DTConOSA}X)$. If $t = (\operatorname{Den}(o, \operatorname{ParsedTermsOSA}X))(x)$, then $\operatorname{LeastSort} t =$ the result sort of *o*.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let o_2 be an operation symbol of *S*. Note that $\operatorname{Args}(o_2, \operatorname{ParsedTermsOSA}X)$ is non empty.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *x* be a finite sequence of elements of TS(DTConOSAX). The functor LeastSorts*x* yielding an element of (the carrier of *S*)^{*} is defined by:

 $(Def. 14)^1$ dom LeastSorts x = dom x and for every natural number y such that $y \in dom x$ there exists an element t of TS(DTConOSAX) such that t = x(y) and (LeastSorts x)(y) = LeastSort t.

One can prove the following proposition

(19) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and x be a finite sequence of elements of TS(DTConOSAX). Then $LeastSortsx \le Arity(o)$ if and only if $x \in Args(o, ParsedTermsOSAX)$.

One can verify that there exists a monotone order sorted signature which is locally directed and regular.

Let *S* be a locally directed regular monotone order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, let *o* be an operation symbol of *S*, and let *x* be a finite sequence of elements of TS(DTConOSA*X*). Let us assume that OSSym(LBound(*o*,LeastSorts*x*),*X*) \Rightarrow the roots of *x*. The functor $\pi_x o$ yielding an element of TS(DTConOSA*X*) is defined as follows:

(Def. 15) $\pi_x o = \text{OSSym}(\text{LBound}(o, \text{LeastSorts}x), X)$ -tree(x).

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *t* be a symbol of DTConOSA*X*. Let us assume that there exists a finite sequence *p* such that $t \Rightarrow p$. The functor [@](*X*,*t*) yielding an operation symbol of *S* is defined by:

(Def. 16) $\langle {}^{@}(X,t) \rangle$, the carrier of $S \rangle = t$.

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *t* be a symbol of DTConOSA*X*. Let us assume that $t \in$ the terminals of DTConOSA*X*. The functor $\prod t$ yielding an element of TS(DTConOSA*X*) is defined by:

(Def. 17) $\prod t$ = the root tree of t.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor LCongruence X yields a monotone order sorted congruence of ParsedTermsOSAX and is defined by:

(Def. 18) For every monotone order sorted congruence R of ParsedTermsOSAX holds LCongruence $X \subseteq R$.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor FreeOSAX yielding a strict non-empty monotone order sorted algebra of S is defined by:

¹ The definition (Def. 13) has been removed.

(Def. 19) FreeOSAX = QuotOSAlg(ParsedTermsOSAX,LCongruenceX).

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *t* be a symbol of DTConOSA*X*. The functor [@]*t* yielding a subset of [:TS(DTConOSAX)], the carrier of *S*:] is defined by the condition (Def. 20).

(Def. 20) [@] $t = \{ \langle \text{the root tree of } t, s_1 \rangle; s_1 \text{ ranges over elements of } S: \bigvee_{s:\text{element of } S} \bigvee_{x:\text{set}} (x \in X(s) \land t = \langle x, s \rangle \land s \leq s_1) \}.$

Let *S* be an order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, let n_1 be a symbol of DTConOSA*X*, and let *x* be a finite sequence of elements of $2^{[TS(DTConOSAX), \text{the carrier of } S:]}$. The functor ${}^{@}(n_1, x)$ yielding a subset of [TS(DTConOSAX), the carrier of S:] is defined by the condition (Def. 21).

(Def. 21) [@](n_1, x) = {{(Den(o_2 , ParsedTermsOSAX))(x_2), s_3 }; o_2 ranges over operation symbols of *S*, x_2 ranges over elements of Args(o_2 , ParsedTermsOSAX), s_3 ranges over elements of *S*: $\bigvee_{o_1:\text{operation symbol of } S}$ ($n_1 = \langle o_1$, the carrier of $S \rangle \land o_1 \cong o_2 \land \text{len Arity}(o_1) = \text{len Arity}(o_2) \land$ the result sort of $o_1 \le s_3 \land$ the result sort of $o_2 \le s_3$) $\land \bigvee_{w_3:\text{element of } (\text{the carrier of } S)^* (\text{dom } w_3 = \text{dom} x \land \bigwedge_{y:\text{natural number}} (y \in \text{dom} x \Rightarrow \langle x_2(y), (w_3)_y \rangle \in x(y)))$ }.

Let *S* be a locally directed order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. The functor PTClasses *X* yielding a function from TS(DTConOSAX) into $2^{[TS(DTConOSAX), the carrier of S]}$ is defined by the conditions (Def. 22).

- (Def. 22)(i) For every symbol t of DTConOSAX such that $t \in$ the terminals of DTConOSAX holds (PTClasses X)(the root tree of t) = [@]t, and
 - (ii) for every symbol n_1 of DTConOSAX and for every finite sequence t_1 of elements of TS(DTConOSAX) such that $n_1 \Rightarrow$ the roots of t_1 holds (PTClassesX) $(n_1$ -tree (t_1)) = ${}^{@}(n_1, \text{PTClasses}X \cdot t_1)$.

Next we state four propositions:

- (20) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and *t* be an element of TS(DTConOSAX). Then
 - (i) for every element s of S holds $t \in (\text{the sorts of ParsedTermsOSA}X)(s)$ iff $\langle t, s \rangle \in (\text{PTClasses }X)(t)$, and
- (ii) for every element *s* of *S* and for every element *y* of TS(DTConOSAX) such that $\langle y, s \rangle \in$ (PTClasses *X*)(*t*) holds $\langle t, s \rangle \in$ (PTClasses *X*)(*y*).
- (21) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, t be an element of TS(DTConOSAX), and s be an element of S. If there exists an element y of TS(DTConOSAX) such that $\langle y, s \rangle \in (\text{PTClasses}X)(t)$, then $\langle t, s \rangle \in (\text{PTClasses}X)(t)$.
- (22) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *x*, *y* be elements of TS(DTConOSA*X*), and s_1 , s_2 be elements of *S*. Suppose $s_1 \le s_2$ and $x \in (\text{the sorts of ParsedTermsOSA$ *X* $})(s_1)$ and $y \in (\text{the sorts of ParsedTermsOSA$ *X* $})(s_1)$. Then $\langle y, s_1 \rangle \in (\text{PTClasses}X)(x)$ if and only if $\langle y, s_2 \rangle \in (\text{PTClasses}X)(x)$.
- (23) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *x*, *y*, *z* be elements of TS(DTConOSA*X*), and *s* be an element of *S*. If $\langle y, s \rangle \in (\text{PTClasses}X)(x)$ and $\langle z, s \rangle \in (\text{PTClasses}X)(y)$, then $\langle x, s \rangle \in (\text{PTClasses}X)(z)$.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTCongruence X yields an equivalence order sorted relation of ParsedTermsOSAX and is defined by the condition (Def. 23).

(Def. 23) Let *i* be a set. Suppose $i \in$ the carrier of *S*. Then (PTCongruence X) $(i) = \{\langle x, y \rangle; x \text{ ranges} over elements of TS(DTConOSAX), y ranges over elements of TS(DTConOSAX): <math>\langle x, i \rangle \in (PTClasses X)(y)\}$.

The following propositions are true:

- (24) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and *x*, *y*, *s* be sets. If $\langle x, s \rangle \in (\operatorname{PTClasses} X)(y)$, then $x \in \operatorname{TS}(\operatorname{DTConOSA} X)$ and $y \in \operatorname{TS}(\operatorname{DTConOSA} X)$ and $s \in$ the carrier of *S*.
- (25) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *C* be a component of *S*, and *x*, *y* be sets. Then $\langle x, y \rangle \in \text{CompClass}(\text{PTCongruence} X, C)$ if and only if there exists an element s_1 of *S* such that $s_1 \in C$ and $\langle x, s_1 \rangle \in (\text{PTClasses} X)(y)$.
- (26) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s* be an element of *S*, and *x* be an element of (the sorts of ParsedTermsOSA*X*)(*s*). Then OSClass(PTCongruence *X*, *x*) = $\pi_1((PTClasses X)(x))$.
- (27) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and *R* be a many sorted relation indexed by ParsedTermsOSAX. Then R = PTCongruence X if and only if the following conditions are satisfied:
 - (i) for all elements s₁, s₂ of S and for every set x such that x ∈ X(s₁) holds if s₁ ≤ s₂, then (the root tree of (x, s₁)), the root tree of (x, s₁)) ∈ R(s₂) and for every set y such that (the root tree of (x, s₁)), y) ∈ R(s₂) or (y, the root tree of (x, s₁)) ∈ R(s₂) holds s₁ ≤ s₂ and y = the root tree of (x, s₁), and
- (ii) for all operation symbols o_1 , o_2 of S and for every element x_1 of $\operatorname{Args}(o_1, \operatorname{ParsedTermsOSA}X)$ and for every element x_2 of $\operatorname{Args}(o_2, \operatorname{ParsedTermsOSA}X)$ and for every element s_3 of S holds $\langle (\operatorname{Den}(o_1, \operatorname{ParsedTermsOSA}X))(x_1), (\operatorname{Den}(o_2, \operatorname{ParsedTermsOSA}X))(x_2) \rangle \in R(s_3)$ iff $o_1 \cong o_2$ and len $\operatorname{Arity}(o_1) = \operatorname{len}\operatorname{Arity}(o_2)$ and the result sort of $o_1 \leq s_3$ and the result sort of $o_2 \leq s_3$ and there exists an element w_3 of (the carrier of S)* such that dom $w_3 = \operatorname{dom} x_1$ and for every natural number y such that $y \in \operatorname{dom} w_3$ holds $\langle x_1(y), x_2(y) \rangle \in R((w_3)_y)$.
- (28) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then PTCongruence X is monotone.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. Observe that PTCongruence X is monotone.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. The functor PTVars(s,X) yields a subset of (the sorts of ParsedTermsOSAX)(*s*) and is defined as follows:

(Def. 24) For every set x holds $x \in \text{PTVars}(s, X)$ iff there exists a set a such that $a \in X(s)$ and x = the root tree of $\langle a, s \rangle$.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. Note that PTVars(s, X) is non empty. Next we state the proposition

(29) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and *s* be an element of *S*. Then $PTVars(s, X) = \{$ the root tree of *t*; *t* ranges over symbols of DTConOSAX : $t \in$ the terminals of DTConOSAX $\land t_2 = s \}$.

Let *S* be a locally directed order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. The functor PTVars*X* yielding a subset of ParsedTermsOSA*X* is defined by:

(Def. 25) For every element *s* of *S* holds (PTVars X)(s) = PTVars(s, X).

One can prove the following proposition

(30) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then PTVars X is non-empty.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. The functor OSFreeGen(s, X) yielding a subset of (the sorts of FreeOSA*X*)(s) is defined as follows:

(Def. 26) For every set x holds $x \in OSFreeGen(s, X)$ iff there exists a set a such that $a \in X(s)$ and x = (OSNatHom(ParsedTermsOSAX, LCongruenceX))(s) (the root tree of $\langle a, s \rangle$).

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. One can verify that OSFreeGen(s, X) is non empty.

- Next we state the proposition
- (31) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, and s be an element of S. Then OSFreeGen $(s,X) = \{(OSNatHom(ParsedTermsOSAX, LCongruenceX))(s)(the root tree of t); t ranges over symbols of DTConOSAX : t \in the terminals of DTConOSAX \land t_2 = s\}.$

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor OSFreeGenX yields an order sorted generator set of FreeOSAX and is defined by:

(Def. 27) For every element *s* of *S* holds (OSFreeGenX)(*s*) = OSFreeGen(*s*,*X*).

The following proposition is true

(32) Let *S* be a locally directed order sorted signature and *X* be a non-empty many sorted set indexed by *S*. Then OSFreeGen*X* is non-empty.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. One can check that OSFreeGenX is non-empty.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, let *R* be an order sorted congruence of ParsedTermsOSA*X*, and let *t* be an element of TS(DTConOSAX). The functor OSClass(R,t) yields an element of OSClass(R,LeastSortt) and is defined as follows:

(Def. 28) For every element *s* of *S* and for every element *x* of (the sorts of ParsedTermsOSAX)(*s*) such that t = x holds OSClass(R, t) = OSClass(R, x).

Next we state several propositions:

- (33) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *R* be an order sorted congruence of ParsedTermsOSA*X*, and *t* be an element of TS(DTConOSA*X*). Then $t \in OSClass(R, t)$.
- (34) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s* be an element of *S*, *t* be an element of TS(DTConOSA*X*), and *x*, *x*₁ be sets. Suppose $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$. Then $x_1 \in OSClass(PTCongruence X, t)$ if and only if $x_1 = t$.
- (35) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *R* be an order sorted congruence of ParsedTermsOSA*X*, and t_2 , t_3 be elements of TS(DTConOSA*X*). Then $t_3 \in OSClass(R, t_2)$ if and only if $OSClass(R, t_2) = OSClass(R, t_3)$.
- (36) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, R_1 , R_2 be order sorted congruences of ParsedTermsOSA*X*, and *t* be an element of TS(DTConOSA*X*). If $R_1 \subseteq R_2$, then OSClass(R_1, t) \subseteq OSClass(R_2, t).
- (37) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, *s* be an element of *S*, *t* be an element of TS(DTConOSA*X*), and *x*, *x*₁ be sets. Suppose $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$. Then $x_1 \in OSClass(LCongruenceX, t)$ if and only if $x_1 = t$.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, let *A* be a non-empty many sorted set indexed by the carrier of *S*, let *F* be a many sorted function from PTVars *X* into *A*, and let *t* be a symbol of DTConOSA *X*. Let us assume that $t \in$ the terminals of DTConOSA *X*. The functor $\pi(F, A, t)$ yielding an element of $\bigcup A$ is defined as follows:

(Def. 29) For every function f such that $f = F(t_2)$ holds $\pi(F, A, t) = f$ (the root tree of t).

One can prove the following proposition

(38) Let *S* be a locally directed order sorted signature, *X* be a non-empty many sorted set indexed by *S*, U_1 be a monotone non-empty order sorted algebra of *S*, and *f* be a many sorted function from PTVars *X* into the sorts of U_1 . Then there exists a many sorted function *h* from ParsedTermsOSA*X* into U_1 such that *h* is a homomorphism of ParsedTermsOSA*X* into U_1 and order-sorted and $h \upharpoonright PTVars X = f$.

Let *S* be a locally directed order sorted signature, let *X* be a non-empty many sorted set indexed by *S*, and let *s* be an element of *S*. The functor NHReverse(s,X) yields a function from OSFreeGen(s,X) into PTVars(s,X) and is defined by the condition (Def. 30).

(Def. 30) Let *t* be a symbol of DTConOSAX. Suppose (OSNatHom(ParsedTermsOSAX,LCongruenceX))(*s*)(the root tree of *t*) \in OSFreeGen(*s*,*X*). Then (NHReverse(*s*,*X*))((OSNatHom(ParsedTermsOSAX,LCongruenceX))(*s*)(the root tree of *t*)) = the root tree of *t*.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor NHReverse X yields a many sorted function from OSFreeGen X into PTVars X and is defined by:

(Def. 31) For every element *s* of *S* holds (NHReverse X)(*s*) = NHReverse(*s*, X).

We now state two propositions:

- (39) Let *S* be a locally directed order sorted signature and *X* be a non-empty many sorted set indexed by *S*. Then OSFreeGen*X* is osfree.
- (40) Let *S* be a locally directed order sorted signature and *X* be a non-empty many sorted set indexed by *S*. Then FreeOSA*X* is osfree.

Let *S* be a locally directed order sorted signature. Observe that there exists a non-empty monotone order sorted algebra of *S* which is osfree and strict.

3. MINIMAL TERMS

Let S be a locally directed regular monotone order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTMinX yields a function from TS(DTConOSAX) into TS(DTConOSAX) and is defined by the conditions (Def. 32).

- (Def. 32)(i) For every symbol t of DTConOSAX such that $t \in$ the terminals of DTConOSAX holds (PTMinX)(the root tree of t) = $\prod t$, and
 - (ii) for every symbol n_1 of DTConOSAX and for every finite sequence t_1 of elements of TS(DTConOSAX) such that $n_1 \Rightarrow$ the roots of t_1 holds $(\text{PTMin}X)(n_1\text{-tree}(t_1)) = \pi_{\text{PTMin}X\cdot t_1}(^{@}(X,n_1)).$

The following propositions are true:

- (41) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t be an element of TS(DTConOSAX). Then
 - (i) $(PTMin X)(t) \in OSClass(PTCongruence X, t),$
 - (ii) LeastSort(PTMinX)(t) \leq LeastSortt,

- (iii) for every element *s* of *S* and for every set *x* such that $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$ holds $(\operatorname{PTMin} X)(t) = t$, and
- (iv) for every operation symbol o of S and for every finite sequence t_1 of elements of TS(DTConOSAX) such that OSSym $(o,X) \Rightarrow$ the roots of t_1 and t = OSSym(o,X)-tree (t_1) holds LeastSortsPTMin $X \cdot t_1 \leq Arity(o)$ and $OSSym(o,X) \Rightarrow$ the roots of PTMin $X \cdot t_1$ and OSSym(LBound $(o, LeastSortsPTMinX \cdot t_1), X) \Rightarrow$ the roots of PTMin $X \cdot t_1$ and $(PTMinX)(t) = OSSym(LBound(o, LeastSortsPTMinX \cdot t_1), X)$ -tree $(PTMinX \cdot t_1)$.
- (42) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t, t_2 be elements of TS(DTConOSAX). If $t_2 \in OSClass(PTCongruence X, t)$, then $(PTMin X)(t_2) = (PTMin X)(t)$.
- (43) Let *S* be a locally directed regular monotone order sorted signature, *X* be a non-empty many sorted set indexed by *S*, and t_2 , t_3 be elements of TS(DTConOSA*X*). Then $t_3 \in$ OSClass(PTCongruence *X*, t_2) if and only if (PTMin *X*)(t_3) = (PTMin *X*)(t_2).
- (44) Let S be a locally directed regular monotone order sorted signature, X be a nonempty many sorted set indexed by S, and t_2 be an element of TS(DTConOSAX). Then $(PTMinX)((PTMinX)(t_2)) = (PTMinX)(t_2)$.
- (45) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, R be a monotone equivalence order sorted relation of ParsedTermsOSAX, and t be an element of TS(DTConOSAX). Then $\langle t, (\text{PTMin}X)(t) \rangle \in R(\text{LeastSort}t)$.
- (46) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and R be a monotone equivalence order sorted relation of ParsedTermsOSAX. Then PTCongruence $X \subseteq R$.
- (47) Let *S* be a locally directed regular monotone order sorted signature and *X* be a non-empty many sorted set indexed by *S*. Then LCongruence X = PTCongruence X.

Let *S* be a locally directed regular monotone order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. An element of TS(DTConOSAX) is called a minimal term of *S*, *X* if:

(Def. 33) (PTMin X)(it) = it.

Let *S* be a locally directed regular monotone order sorted signature and let *X* be a non-empty many sorted set indexed by *S*. The functor MinTerms*X* yielding a subset of TS(DTConOSAX) is defined by:

(Def. 34) $\operatorname{MinTerms} X = \operatorname{rng} \operatorname{PTMin} X$.

The following proposition is true

(48) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and x be a set. Then x is a minimal term of S, X if and only if $x \in MinTerms X$.

ACKNOWLEDGMENTS

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ funct_6.html.
- [4] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/trees_3.html.
- [6] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_ 4.html.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [8] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/dtconstr.html.
- [9] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http: //mizar.org/JFM/Vol6/msualg_2.html.
- [10] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [11] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [12] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [13] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [14] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [15] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part I. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/langl.html.
- [16] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar. org/JFM/Vol6/msualg_3.html.
- [17] Małgorzata Korolkiewicz. Many sorted quotient algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/ msualg_4.html.
- [18] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_1.html.
- [19] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/prob_1. html.
- [20] Beata Perkowska. Free many sorted universal algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/ msafree.html.
- [21] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/eqrel_1.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [23] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/mcart_1.html.
- [24] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [25] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [26] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_ 1.html.
- [27] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [28] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [29] Josef Urban. Homomorphisms of order sorted algebras. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/ Voll4/osalg_3.html.

- [30] Josef Urban. Order sorted algebras. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/Voll4/osalg_1.html.
- [31] Josef Urban. Order sorted quotient algebra. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/Vol14/osalg_ 4.html.
- [32] Josef Urban. Subalgebras of a order sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 14, 2002. http: //mizar.org/JFM/Voll4/osalg_2.html.
- [33] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [34] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.
- [35] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/relat_2.html.

Received September 19, 2002

Published January 2, 2004