Kuratowski - Zorn Lemma¹

Wojciech A. Trybulec Warsaw University Grzegorz Bancerek Warsaw University Białystok

Summary. The goal of this article is to prove Kuratowski - Zorn lemma. We prove it in a number of forms (theorems and schemes). We introduce the following notions: a relation is a quasi (or partial, or linear) order, a relation quasi (or partially, or linearly) orders a set, minimal and maximal element in a relation, inferior and superior element of a relation, a set has lower (or upper) Zorn property w.r.t. a relation. We prove basic theorems concerning those notions and theorems that relate them to the notions introduced in [8]. At the end of the article we prove some theorems that belong rather to [10], [12] or [2].

MML Identifier: ORDERS_2.

WWW: http://mizar.org/JFM/Vol1/orders_2.html

The articles [7], [5], [9], [10], [3], [12], [11], [4], [2], [6], [8], and [1] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: R, P denote binary relations, X, X_1 , Y, Z, x, y denote sets, O denotes an order in X, A denotes a non empty poset, C denotes a chain of A, S denotes a subset of A, and a, b denote elements of A.

We now state two propositions:

- (1) $\operatorname{dom} O = X$ and $\operatorname{rng} O = X$.
- (2) field O = X.

Let us consider R. We say that R is quasi-order if and only if:

(Def. 1) R is reflexive and transitive.

We introduce R is a quasi-order as a synonym of R is quasi-order. We say that R is partial-order if and only if:

(Def. 2) R is reflexive, transitive, and antisymmetric.

We introduce *R* is a partial order as a synonym of *R* is partial-order. We say that *R* is linear-order if and only if:

(Def. 3) R is reflexive, transitive, antisymmetric, and connected.

We introduce *R* is a linear order as a synonym of *R* is linear-order. We now state a number of propositions:

(6)¹ If R is a quasi order, then R^{\sim} is a quasi order.

1

¹Supported by RPBP.III-24.C1.

¹ The propositions (3)–(5) have been removed.

- (7) If R is a partial order, then R^{\sim} is a partial order.
- (8) If R is a linear order, then R^{\sim} is a linear order.
- (9) If R is well-ordering, then R is a quasi order, a partial order, and a linear order.
- (10) If R is a linear order, then R is a quasi order and a partial order.
- (11) If R is a partial order, then R is a quasi order.
- (12) O is a partial order.
- (13) O is a quasi order.
- (14) If O is connected, then O is a linear order.
- (15) If R is a quasi order, then $R|^2X$ is a quasi order.
- (16) If R is a partial order, then $R|^2X$ is a partial order.
- (17) If R is a linear order, then $R|^2X$ is a linear order.
- (18) field((the internal relation of A) $|^2S$) = S.
- (19) If (the internal relation of A) $|^2 S$ is a linear order, then S is a chain of A.
- (20) (The internal relation of A) $|^2C$ is a linear order.
- (21) \emptyset is a quasi order and \emptyset is a partial order and \emptyset is a linear order and \emptyset is well-ordering.
- (22) id_X is a quasi order and id_X is a partial order.

Let us consider R, X. We say that R quasi orders X if and only if:

(Def. 4) R is reflexive in X and transitive in X.

We say that *R* partially orders *X* if and only if:

(Def. 5) R is reflexive in X, transitive in X, and antisymmetric in X.

We say that *R* linearly orders *X* if and only if:

(Def. 6) R is reflexive in X, transitive in X, antisymmetric in X, and connected in X.

One can prove the following propositions:

- $(26)^2$ If R well orders X, then R quasi orders X and R partially orders X and R linearly orders X.
- (27) If R linearly orders X, then R quasi orders X and R partially orders X.
- (28) If R partially orders X, then R quasi orders X.
- (29) If R is a quasi order, then R quasi orders field R.
- (30) If R quasi orders Y and $X \subseteq Y$, then R quasi orders X.
- (31) If R quasi orders X, then $R|^2X$ is a quasi order.
- (32) If R is a partial order, then R partially orders field R.
- (33) If *R* partially orders *Y* and $X \subseteq Y$, then *R* partially orders *X*.
- (34) If R partially orders X, then $R|^2X$ is a partial order.
- (35) If R is a linear order, then R linearly orders field R.

² The propositions (23)–(25) have been removed.

- (36) If *R* linearly orders *Y* and $X \subseteq Y$, then *R* linearly orders *X*.
- (37) If R linearly orders X, then $R|^2X$ is a linear order.
- (38) If R quasi orders X, then R^{\smile} quasi orders X.
- (39) If R partially orders X, then R^{\smile} partially orders X.
- (40) If R linearly orders X, then R^{\sim} linearly orders X.
- (41) O quasi orders X.
- (42) O partially orders X.
- (43) If R partially orders X, then $R|^2X$ is an order in X.
- (44) If R linearly orders X, then $R|^2X$ is an order in X.
- (45) If R well orders X, then $R \mid^2 X$ is an order in X.
- (46) If the internal relation of A linearly orders S, then S is a chain of A.
- (47) The internal relation of A linearly orders C.
- (48) id_X quasi orders X and id_X partially orders X.

Let us consider R, X. We say that X has the upper Zorn property w.r.t. R if and only if:

(Def. 7) For every Y such that $Y \subseteq X$ and $R \mid^2 Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle y, x \rangle \in R$.

We say that *X* has the lower Zorn property w.r.t. *R* if and only if:

(Def. 8) For every Y such that $Y \subseteq X$ and $R \mid^2 Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle x, y \rangle \in R$.

We now state four propositions:

- $(51)^3$ If X has the upper Zorn property w.r.t. R, then $X \neq \emptyset$.
- (52) If *X* has the lower Zorn property w.r.t. *R*, then $X \neq \emptyset$.
- (53) X has the upper Zorn property w.r.t. R iff X has the lower Zorn property w.r.t. R^{\sim} .
- (54) X has the upper Zorn property w.r.t. R^{\sim} iff X has the lower Zorn property w.r.t. R.

Let us consider R, x. We say that x is maximal in R if and only if:

- (Def. 9) $x \in \text{field } R$ and it is not true that there exists y such that $y \in \text{field } R$ and $y \neq x$ and $\langle x, y \rangle \in R$. We say that x is minimal in R if and only if:
- (Def. 10) $x \in \text{field } R$ and it is not true that there exists y such that $y \in \text{field } R$ and $y \neq x$ and $\langle y, x \rangle \in R$. We say that x is superior of R if and only if:
- (Def. 11) $x \in \text{field } R$ and for every y such that $y \in \text{field } R$ and $y \neq x$ holds $\langle y, x \rangle \in R$.

We say that *x* is inferior of *R* if and only if:

(Def. 12) $x \in \text{field } R \text{ and for every } y \text{ such that } y \in \text{field } R \text{ and } y \neq x \text{ holds } \langle x, y \rangle \in R.$

One can prove the following propositions:

³ The propositions (49) and (50) have been removed.

- $(59)^4$ If x is inferior of R and R is antisymmetric, then x is minimal in R.
- (60) If x is superior of R and R is antisymmetric, then x is maximal in R.
- (61) If x is minimal in R and R is connected, then x is inferior of R.
- (62) If x is maximal in R and R is connected, then x is superior of R.
- (63) If $x \in X$ and x is superior of R and $X \subseteq \text{field } R$ and R is reflexive, then X has the upper Zorn property w.r.t. R.
- (64) If $x \in X$ and x is inferior of R and $X \subseteq \text{field } R$ and R is reflexive, then X has the lower Zorn property w.r.t. R.
- (65) x is minimal in R iff x is maximal in R^{\sim} .
- (66) x is minimal in R^{\smile} iff x is maximal in R.
- (67) x is inferior of R iff x is superior of R^{\smile} .
- (68) x is inferior of R^{\smile} iff x is superior of R.
- (69) a is minimal in the internal relation of A iff for every b holds $b \not< a$.
- (70) a is maximal in the internal relation of A iff for every b holds $a \not< b$.
- (71) a is superior of the internal relation of A iff for every b such that $a \neq b$ holds b < a.
- (72) a is inferior of the internal relation of A iff for every b such that $a \neq b$ holds a < b.
- (73) If for every C there exists a such that for every b such that $b \in C$ holds $b \le a$, then there exists a such that for every b holds $a \ne b$.

Let *A* be a non empty set and let *O* be an order in *A*. One can verify that $\langle A, O \rangle$ is non empty. We now state several propositions:

- (74) If for every C there exists a such that for every b such that $b \in C$ holds $a \le b$, then there exists a such that for every b holds $b \not< a$.
- (75) For all R, X such that R partially orders X and field R = X and X has the upper Zorn property w.r.t. R holds there exists X which is maximal in R.
- (76) For all R, X such that R partially orders X and field R = X and X has the lower Zorn property w.r.t. R holds there exists X which is minimal in R.
- (77) Let given X. Suppose that
 - (i) $X \neq \emptyset$, and
- (ii) for every Z such that $Z \subseteq X$ and Z is \subseteq -linear there exists Y such that $Y \in X$ and for every X_1 such that $X_1 \in Z$ holds $X_1 \subseteq Y$.

Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Y \nsubseteq Z$.

- (78) Let given X. Suppose that
 - (i) $X \neq \emptyset$, and
- (ii) for every Z such that $Z \subseteq X$ and Z is \subseteq -linear there exists Y such that $Y \in X$ and for every X_1 such that $X_1 \in Z$ holds $Y \subseteq X_1$.

Then there exists *Y* such that $Y \in X$ and for every *Z* such that $Z \in X$ and $Z \neq Y$ holds $Z \nsubseteq Y$.

(79) Let given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and Z is \subseteq -linear holds $\bigcup Z \in X$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Y \not\subseteq Z$.

⁴ The propositions (55)–(58) have been removed.

(80) Let given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and Z is \subseteq -linear holds $\bigcap Z \in X$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Z \not\subseteq Y$.

In this article we present several logical schemes. The scheme Zorn Max deals with a non empty set \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists an element x of \mathcal{A} such that for every element y of \mathcal{A} such that $x \neq y$ holds not $\mathcal{P}[x,y]$

provided the following conditions are met:

- For every element x of \mathcal{A} holds $\mathcal{P}[x,x]$,
- For all elements x, y of \mathcal{A} such that $\mathcal{P}[x,y]$ and $\mathcal{P}[y,x]$ holds x=y,
- For all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x,y]$ and $\mathcal{P}[y,z]$ holds $\mathcal{P}[x,z]$, and
- Let given X. Suppose $X \subseteq \mathcal{A}$ and for all elements x, y of \mathcal{A} such that $x \in X$ and $y \in X$ holds $\mathcal{P}[x,y]$ or $\mathcal{P}[y,x]$. Then there exists an element y of \mathcal{A} such that for every element x of \mathcal{A} such that $x \in X$ holds $\mathcal{P}[x,y]$.

The scheme *Zorn Min* deals with a non empty set \mathcal{A} and a binary predicate \mathcal{P} , and states that: There exists an element x of \mathcal{A} such that for every element y of \mathcal{A} such that $x \neq y$ holds not $\mathcal{P}[y,x]$

provided the parameters meet the following conditions:

- For every element x of \mathcal{A} holds $\mathcal{P}[x,x]$,
- For all elements x, y of \mathcal{A} such that $\mathcal{P}[x,y]$ and $\mathcal{P}[y,x]$ holds x=y,
- For all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x,y]$ and $\mathcal{P}[y,z]$ holds $\mathcal{P}[x,z]$, and
- Let given X. Suppose $X \subseteq \mathcal{A}$ and for all elements x, y of \mathcal{A} such that $x \in X$ and $y \in X$ holds $\mathcal{P}[x,y]$ or $\mathcal{P}[y,x]$. Then there exists an element y of \mathcal{A} such that for every element x of \mathcal{A} such that $x \in X$ holds $\mathcal{P}[y,x]$.

We now state a number of propositions:

- (81) If R partially orders X and field R = X, then there exists P such that $R \subseteq P$ and P linearly orders X and field P = X.
- (82) $R \subseteq [: field R, field R:].$
- (83) If R is reflexive and $X \subseteq \text{field } R$, then $\text{field}(R|^2 X) = X$.
- (84) If R is reflexive in X, then $R|^2 X$ is reflexive.
- (85) If R is transitive in X, then $R|^2X$ is transitive.
- (86) If R is antisymmetric in X, then $R|^2X$ is antisymmetric.
- (87) If R is connected in X, then $R|^2X$ is connected.
- (88) If *R* is connected in *X* and $Y \subseteq X$, then *R* is connected in *Y*.
- (89) If *R* well orders *X* and $Y \subseteq X$, then *R* well orders *Y*.
- (90) If R is connected, then R^{\smile} is connected.
- (91) If R is reflexive in X, then R^{\smile} is reflexive in X.
- (92) If R is transitive in X, then R^{\smile} is transitive in X.
- (93) If R is antisymmetric in X, then R^{\sim} is antisymmetric in X.
- (94) If R is connected in X, then R^{\sim} is connected in X.
- (95) $(R|^2X)^{\smile} = R^{\smile}|^2X$.
- (96) $R|^2 \emptyset = \emptyset$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/wellordl.html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [6] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.
- [12] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received September 19, 1989

Published January 2, 2004