Partially Ordered Sets

Wojciech A. Trybulec Warsaw University

Summary. In the beginning of this article we define the choice function of a non-empty set family that does not contain \emptyset as introduced in [6, pages 88–89]. We define order of a set as a relation being reflexive, antisymmetric and transitive in the set, partially ordered set as structure non-empty set and order of the set, chains, lower and upper cone of a subset, initial segments of element and subset of partially ordered set. Some theorems that belong rather to [5] or [12] are proved.

MML Identifier: ORDERS_1.

WWW: http://mizar.org/JFM/Vol1/orders_1.html

The articles [8], [5], [9], [10], [12], [2], [11], [4], [3], [1], and [7] provide the notation and terminology for this paper.

We adopt the following convention: X, Y denote sets, x, y, z denote sets, and M denotes a non empty set.

Let us consider M. Let us assume that $\emptyset \notin M$. A function from M into $\bigcup M$ is said to be a choice function of M if:

(Def. 1) For every X such that $X \in M$ holds it(X) $\in X$.

In the sequel D, D_1 denote non empty sets.

Let D be a set. The functor 2^{D}_{+} yields a set and is defined by:

(Def. 2)
$$2_{+}^{D} = 2^{D} \setminus \{\emptyset\}.$$

Let us consider D. One can verify that 2_+^D is non empty. Next we state four propositions:

- $(4)^1 \quad \emptyset \notin 2^D_+$.
- (5) $D_1 \subseteq D \text{ iff } D_1 \in 2^D_+.$
- (6) D_1 is a subset of D iff $D_1 \in 2^D_+$.
- (7) $D \in 2^D_+$.

In the sequel *P* is a binary relation.

Let us consider X. An order in X is a total reflexive antisymmetric transitive binary relation on X.

In the sequel O is an order in X.

We now state three propositions:

$$(12)^2$$
 If $x \in X$, then $\langle x, x \rangle \in O$.

¹ The propositions (1)–(3) have been removed.

² The propositions (8)–(11) have been removed.

- (13) If $x \in X$ and $y \in X$ and $\langle x, y \rangle \in O$ and $\langle y, x \rangle \in O$, then x = y.
- (14) If $x \in X$ and $y \in X$ and $z \in X$ and $\langle x, y \rangle \in O$ and $\langle y, z \rangle \in O$, then $\langle x, z \rangle \in O$.

We consider relational structures as extensions of 1-sorted structure as systems \langle a carrier, an internal relation \rangle ,

where the carrier is a set and the internal relation is a binary relation on the carrier.

Let *X* be a non empty set and let *R* be a binary relation on *X*. Observe that $\langle X, R \rangle$ is non empty. Let *A* be a relational structure. We say that *A* is reflexive if and only if:

(Def. 4)³ The internal relation of A is reflexive in the carrier of A.

We say that *A* is transitive if and only if:

(Def. 5) The internal relation of A is transitive in the carrier of A.

We say that A is antisymmetric if and only if:

(Def. 6) The internal relation of A is antisymmetric in the carrier of A.

Let us note that there exists a relational structure which is non empty, reflexive, transitive, antisymmetric, and strict.

A poset is a reflexive transitive antisymmetric relational structure.

Let A be a poset. Note that the internal relation of A is total, reflexive, antisymmetric, and transitive.

Let X be a set and let O be an order in X. One can verify that $\langle X, O \rangle$ is reflexive, transitive, and antisymmetric.

We use the following convention: A denotes a non empty poset, a, a_1 , a_2 , b, c denote elements of A, and S, T denote subsets of A.

Let A be a relational structure and let a_1 , a_2 be elements of A. The predicate $a_1 \le a_2$ is defined by:

(Def. 9)⁴ $\langle a_1, a_2 \rangle \in$ the internal relation of A.

We introduce $a_2 \ge a_1$ as a synonym of $a_1 \le a_2$.

Let A be a relational structure and let a_1 , a_2 be elements of A. The predicate $a_1 < a_2$ is defined as follows:

(Def. 10) $a_1 \le a_2 \text{ and } a_1 \ne a_2.$

Let us note that the predicate $a_1 < a_2$ is irreflexive. We introduce $a_2 > a_1$ as a synonym of $a_1 < a_2$. We now state the proposition

(24)⁵ For every reflexive non empty relational structure A and for every element a of A holds $a \le a$.

Let A be a reflexive non empty relational structure and let a_1 , a_2 be elements of A. Let us note that the predicate $a_1 \le a_2$ is reflexive.

One can prove the following propositions:

- (25) For every antisymmetric relational structure A and for all elements a_1 , a_2 of A such that $a_1 \le a_2$ and $a_2 \le a_1$ holds $a_1 = a_2$.
- (26) For every transitive relational structure A and for all elements a_1 , a_2 , a_3 of A such that $a_1 \le a_2$ and $a_2 \le a_3$ holds $a_1 \le a_3$.
- (28)⁶ For every antisymmetric relational structure A and for all elements a_1 , a_2 of A holds $a_1 \not< a_2$ or $a_2 \not< a_1$.

³ The definition (Def. 3) has been removed.

⁴ The definitions (Def. 7) and (Def. 8) have been removed.

⁵ The propositions (15)–(23) have been removed.

⁶ The proposition (27) has been removed.

- (29) Let A be a transitive antisymmetric relational structure and a_1 , a_2 , a_3 be elements of A. If $a_1 < a_2$ and $a_2 < a_3$, then $a_1 < a_3$.
- (30) For every antisymmetric relational structure A and for all elements a_1 , a_2 of A such that $a_1 \le a_2$ holds $a_2 \not< a_1$.
- $(32)^7$ Let A be a transitive antisymmetric relational structure and a_1 , a_2 , a_3 be elements of A. If $a_1 < a_2$ and $a_2 \le a_3$ or $a_1 \le a_2$ and $a_2 < a_3$, then $a_1 < a_3$.

Let A be a relational structure and let I_1 be a subset of A. We say that I_1 is strongly connected if and only if:

(Def. 11) The internal relation of A is strongly connected in I_1 .

Let *A* be a relational structure. Note that \emptyset_A is strongly connected.

Let A be a relational structure. Note that there exists a subset of A which is strongly connected.

Let *A* be a relational structure. A chain of *A* is a strongly connected subset of *A*.

The following propositions are true:

- (35)⁸ For every non empty reflexive relational structure A and for every element a of A holds $\{a\}$ is a chain of A.
- (36) Let A be a non empty reflexive relational structure and a_1 , a_2 be elements of A. Then $\{a_1, a_2\}$ is a chain of A if and only if $a_1 \le a_2$ or $a_2 \le a_1$.
- (37) Let *A* be a relational structure, *C* be a chain of *A*, and *S* be a subset of *A*. If $S \subseteq C$, then *S* is a chain of *A*.
- (38) Let A be a reflexive relational structure and a_1 , a_2 be elements of A. Then there exists a chain C of A such that $a_1 \in C$ and $a_2 \in C$ if and only if $a_1 \le a_2$ or $a_2 \le a_1$.
- (39) Let A be a reflexive antisymmetric relational structure and a_1 , a_2 be elements of A. Then there exists a chain C of A such that $a_1 \in C$ and $a_2 \in C$ if and only if $a_1 < a_2$ iff $a_2 \nleq a_1$.
- (40) Let A be a relational structure and T be a subset of A. Suppose the internal relation of A well orders T. Then T is a chain of A.

Let us consider A and let us consider S. The functor UpperCone S yields a subset of A and is defined by:

(Def. 12) UpperCone $S = \{a_1 : \bigwedge_{a_2} (a_2 \in S \Rightarrow a_2 < a_1)\}.$

Let us consider A and let us consider S. The functor LowerCone S yielding a subset of A is defined as follows:

(Def. 13) LowerCone $S = \{a_1 : \bigwedge_{a_2} (a_2 \in S \Rightarrow a_1 < a_2)\}.$

One can prove the following propositions:

- $(43)^9$ UpperCone(\emptyset_A) = the carrier of A.
- (44) UpperCone(Ω_A) = \emptyset .
- (45) LowerCone(\emptyset_A) = the carrier of A.
- (46) LowerCone(Ω_A) = \emptyset .
- (47) If $a \in S$, then $a \notin \text{UpperCone } S$.
- (48) $a \notin \text{UpperCone}\{a\}.$

⁷ The proposition (31) has been removed.

⁸ The propositions (33) and (34) have been removed.

⁹ The propositions (41) and (42) have been removed.

- (49) If $a \in S$, then $a \notin \text{LowerCone } S$.
- (50) $a \notin \text{LowerCone}\{a\}.$
- (51) $c < a \text{ iff } a \in \text{UpperCone}\{c\}.$
- (52) $a < c \text{ iff } a \in \text{LowerCone}\{c\}.$

Let us consider A, let us consider S, and let us consider a. The functor $\operatorname{InitSegm}(S, a)$ yields a subset of A and is defined by:

(Def. 14) InitSegm $(S, a) = \text{LowerCone}\{a\} \cap S$.

Let us consider A and let us consider S. A subset of A is called an initial segment of S if:

- (Def. 15)(i) There exists a such that $a \in S$ and it = InitSegm(S, a) if $S \neq \emptyset$,
 - (ii) it = \emptyset , otherwise.

In the sequel *I* denotes an initial segment of *S*.

One can prove the following propositions:

- (56)¹⁰ $x \in \text{InitSegm}(S, a) \text{ iff } x \in \text{LowerCone}\{a\} \text{ and } x \in S.$
- (57) $a \in \text{InitSegm}(S, b) \text{ iff } a < b \text{ and } a \in S.$
- $(60)^{11}$ InitSegm $(\emptyset_A, a) = \emptyset$.
- (61) InitSegm(S,a) $\subseteq S$.
- (62) $a \notin \text{InitSegm}(S, a)$.
- (64)¹² If $a_1 < a_2$, then InitSegm $(S, a_1) \subseteq \text{InitSegm}(S, a_2)$.
- (65) If $S \subseteq T$, then InitSegm $(S, a) \subseteq \text{InitSegm}(T, a)$.
- $(67)^{13}$ $I \subseteq S$.
- (68) $S \neq \emptyset$ iff S is not an initial segment of S.
- (69) If $S \neq \emptyset$ or $T \neq \emptyset$ and if S is an initial segment of T, then T is not an initial segment of S.
- (70) If $a_1 < a_2$ and $a_1 \in S$ and $a_2 \in T$ and T is an initial segment of S, then $a_1 \in T$.
- (71) If $a \in S$ and S is an initial segment of T, then InitSegm(S, a) = InitSegm(T, a).
- (72) Suppose $S \subseteq T$ and the internal relation of A well orders T and for all a_1 , a_2 such that $a_2 \in S$ and $a_1 < a_2$ holds $a_1 \in S$. Then S = T or S is an initial segment of T.
- (73) Suppose $S \subseteq T$ and the internal relation of A well orders T and for all a_1 , a_2 such that $a_2 \in S$ and $a_1 \in T$ and $a_1 < a_2$ holds $a_1 \in S$. Then S = T or S is an initial segment of T.

In the sequel f denotes a choice function of $2^{\text{the carrier of } A}$.

Let us consider A and let us consider f. A chain of A is called a chain of f if:

(Def. 16) It $\neq \emptyset$ and the internal relation of A well orders it and for every a such that $a \in \text{it holds}$ f(UpperCone InitSegm(it, a)) = a.

In the sequel f_1 , f_2 , f_3 are chains of f. One can prove the following propositions:

¹⁰ The propositions (53)–(55) have been removed.

¹¹ The propositions (58) and (59) have been removed.

¹² The proposition (63) has been removed.

¹³ The proposition (66) has been removed.

- $(78)^{14}$ { f(the carrier of A)} is a chain of f.
- (79) f(the carrier of A) $\in f_1$.
- (80) If $a \in f_1$ and b = f (the carrier of A), then $b \le a$.
- (81) If a = f (the carrier of A), then InitSegm $(f_1, a) = \emptyset$.
- (82) f_2 meets f_3 .
- (83) If $f_2 \neq f_3$, then f_2 is an initial segment of f_3 iff f_3 is not an initial segment of f_2 .
- (84) $f_2 \subset f_3$ iff f_2 is an initial segment of f_3 .

Let us consider A and let us consider f. The functor Chains f yields a set and is defined by:

(Def. 17) $x \in \text{Chains } f \text{ iff } x \text{ is a chain of } f$.

Let us consider A and let us consider f. Note that Chains f is non empty. Next we state a number of propositions:

- $(87)^{15}$ UChains $f \neq \emptyset$.
- (88) If $f_1 \neq \bigcup$ Chains f and $S = \bigcup$ Chains f, then f_1 is an initial segment of S.
- (89) UChains f is a chain of f.
- $(91)^{16}$ There exists X such that $X \neq \emptyset$ and $X \in Y$ iff $\bigcup Y \neq \emptyset$.
- (92) P is strongly connected in X iff P is reflexive in X and connected in X.
- (93) If *P* is reflexive in *X* and $Y \subseteq X$, then *P* is reflexive in *Y*.
- (94) If *P* is antisymmetric in *X* and $Y \subseteq X$, then *P* is antisymmetric in *Y*.
- (95) If *P* is transitive in *X* and $Y \subseteq X$, then *P* is transitive in *Y*.
- (96) If P is strongly connected in X and $Y \subseteq X$, then P is strongly connected in Y.
- (97) For every total reflexive binary relation R on X holds field R = X.
- (98) For every set A and for every binary relation R on A such that R is reflexive in A holds dom R = A and field R = A.

REFERENCES

- Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/wellordl.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Kazimierz Kuratowski. Wstęp do teorii mnogości i topologii. PWN, Warszawa, 1977.
- [7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.

¹⁴ The propositions (74)–(77) have been removed.

¹⁵ The propositions (85) and (86) have been removed.

¹⁶ The proposition (90) has been removed.

- [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [12] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received August 30, 1989

Published January 2, 2004