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Summary. In the beginning of this article we define the choice function of a non-
empty set family that does not contain/0 as introduced in [6, pages 88–89]. We define order
of a set as a relation being reflexive, antisymmetric and transitive in the set, partially ordered
set as structure non-empty set and order of the set, chains, lower and upper cone of a subset,
initial segments of element and subset of partially ordered set. Some theorems that belong
rather to [5] or [12] are proved.

MML Identifier: ORDERS_1.

WWW: http://mizar.org/JFM/Vol1/orders_1.html

The articles [8], [5], [9], [10], [12], [2], [11], [4], [3], [1], and [7] provide the notation and termi-
nology for this paper.

We adopt the following convention:X, Y denote sets,x, y, z denote sets, andM denotes a non
empty set.

Let us considerM. Let us assume that/0 /∈M. A function fromM into
⋃

M is said to be a choice
function ofM if:

(Def. 1) For everyX such thatX ∈M holds it(X) ∈ X.

In the sequelD, D1 denote non empty sets.
Let D be a set. The functor 2D

+ yields a set and is defined by:

(Def. 2) 2D
+ = 2D \{ /0}.

Let us considerD. One can verify that 2D+ is non empty.
Next we state four propositions:

(4)1 /0 /∈ 2D
+.

(5) D1 ⊆ D iff D1 ∈ 2D
+.

(6) D1 is a subset ofD iff D1 ∈ 2D
+.

(7) D ∈ 2D
+.

In the sequelP is a binary relation.
Let us considerX. An order inX is a total reflexive antisymmetric transitive binary relation on

X.
In the sequelO is an order inX.
We now state three propositions:

(12)2 If x∈ X, then〈〈x, x〉〉 ∈O.

1 The propositions (1)–(3) have been removed.
2 The propositions (8)–(11) have been removed.
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(13) If x∈ X andy∈ X and〈〈x, y〉〉 ∈O and〈〈y, x〉〉 ∈O, thenx = y.

(14) If x∈ X andy∈ X andz∈ X and〈〈x, y〉〉 ∈O and〈〈y, z〉〉 ∈O, then〈〈x, z〉〉 ∈O.

We consider relational structures as extensions of 1-sorted structure as systems
〈 a carrier, an internal relation〉,

where the carrier is a set and the internal relation is a binary relation on the carrier.
Let X be a non empty set and letRbe a binary relation onX. Observe that〈X,R〉 is non empty.
Let A be a relational structure. We say thatA is reflexive if and only if:

(Def. 4)3 The internal relation ofA is reflexive in the carrier ofA.

We say thatA is transitive if and only if:

(Def. 5) The internal relation ofA is transitive in the carrier ofA.

We say thatA is antisymmetric if and only if:

(Def. 6) The internal relation ofA is antisymmetric in the carrier ofA.

Let us note that there exists a relational structure which is non empty, reflexive, transitive, anti-
symmetric, and strict.

A poset is a reflexive transitive antisymmetric relational structure.
Let A be a poset. Note that the internal relation ofA is total, reflexive, antisymmetric, and

transitive.
Let X be a set and letO be an order inX. One can verify that〈X,O〉 is reflexive, transitive, and

antisymmetric.
We use the following convention:A denotes a non empty poset,a, a1, a2, b, c denote elements

of A, andS, T denote subsets ofA.
Let A be a relational structure and leta1, a2 be elements ofA. The predicatea1 ≤ a2 is defined

by:

(Def. 9)4 〈〈a1, a2〉〉 ∈ the internal relation ofA.

We introducea2 ≥ a1 as a synonym ofa1 ≤ a2.
Let A be a relational structure and leta1, a2 be elements ofA. The predicatea1 < a2 is defined

as follows:

(Def. 10) a1 ≤ a2 anda1 6= a2.

Let us note that the predicatea1 < a2 is irreflexive. We introducea2 > a1 as a synonym ofa1 < a2.
We now state the proposition

(24)5 For every reflexive non empty relational structureA and for every elementa of A holds
a≤ a.

Let A be a reflexive non empty relational structure and leta1, a2 be elements ofA. Let us note
that the predicatea1 ≤ a2 is reflexive.

One can prove the following propositions:

(25) For every antisymmetric relational structureA and for all elementsa1, a2 of A such that
a1 ≤ a2 anda2 ≤ a1 holdsa1 = a2.

(26) For every transitive relational structureA and for all elementsa1, a2, a3 of A such that
a1 ≤ a2 anda2 ≤ a3 holdsa1 ≤ a3.

(28)6 For every antisymmetric relational structureAand for all elementsa1, a2 of Aholdsa1 6< a2

or a2 6< a1.

3 The definition (Def. 3) has been removed.
4 The definitions (Def. 7) and (Def. 8) have been removed.
5 The propositions (15)–(23) have been removed.
6 The proposition (27) has been removed.



PARTIALLY ORDERED SETS 3

(29) LetA be a transitive antisymmetric relational structure anda1, a2, a3 be elements ofA. If
a1 < a2 anda2 < a3, thena1 < a3.

(30) For every antisymmetric relational structureA and for all elementsa1, a2 of A such that
a1 ≤ a2 holdsa2 6< a1.

(32)7 Let A be a transitive antisymmetric relational structure anda1, a2, a3 be elements ofA. If
a1 < a2 anda2 ≤ a3 or a1 ≤ a2 anda2 < a3, thena1 < a3.

Let A be a relational structure and letI1 be a subset ofA. We say thatI1 is strongly connected if
and only if:

(Def. 11) The internal relation ofA is strongly connected inI1.

Let A be a relational structure. Note that/0A is strongly connected.
Let A be a relational structure. Note that there exists a subset ofA which is strongly connected.
Let A be a relational structure. A chain ofA is a strongly connected subset ofA.
The following propositions are true:

(35)8 For every non empty reflexive relational structureA and for every elementa of A holds
{a} is a chain ofA.

(36) Let A be a non empty reflexive relational structure anda1, a2 be elements ofA. Then
{a1,a2} is a chain ofA if and only if a1 ≤ a2 or a2 ≤ a1.

(37) LetA be a relational structure,C be a chain ofA, andSbe a subset ofA. If S⊆C, thenS is
a chain ofA.

(38) Let A be a reflexive relational structure anda1, a2 be elements ofA. Then there exists a
chainC of A such thata1 ∈C anda2 ∈C if and only if a1 ≤ a2 or a2 ≤ a1.

(39) LetA be a reflexive antisymmetric relational structure anda1, a2 be elements ofA. Then
there exists a chainC of A such thata1 ∈C anda2 ∈C if and only if a1 < a2 iff a2 6≤ a1.

(40) LetA be a relational structure andT be a subset ofA. Suppose the internal relation ofA
well ordersT. ThenT is a chain ofA.

Let us considerA and let us considerS. The functor UpperConeS yields a subset ofA and is
defined by:

(Def. 12) UpperConeS= {a1 :
∧

a2
(a2 ∈ S ⇒ a2 < a1)}.

Let us considerA and let us considerS. The functor LowerConeS yielding a subset ofA is
defined as follows:

(Def. 13) LowerConeS= {a1 :
∧

a2
(a2 ∈ S ⇒ a1 < a2)}.

One can prove the following propositions:

(43)9 UpperCone( /0A) = the carrier ofA.

(44) UpperCone(ΩA) = /0.

(45) LowerCone( /0A) = the carrier ofA.

(46) LowerCone(ΩA) = /0.

(47) If a∈ S, thena /∈ UpperConeS.

(48) a /∈ UpperCone{a}.
7 The proposition (31) has been removed.
8 The propositions (33) and (34) have been removed.
9 The propositions (41) and (42) have been removed.
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(49) If a∈ S, thena /∈ LowerConeS.

(50) a /∈ LowerCone{a}.

(51) c < a iff a∈ UpperCone{c}.

(52) a < c iff a∈ LowerCone{c}.

Let us considerA, let us considerS, and let us considera. The functor InitSegm(S,a) yields a
subset ofA and is defined by:

(Def. 14) InitSegm(S,a) = LowerCone{a}∩S.

Let us considerA and let us considerS. A subset ofA is called an initial segment ofS if:

(Def. 15)(i) There existsa such thata∈ Sand it= InitSegm(S,a) if S 6= /0,

(ii) it = /0, otherwise.

In the sequelI denotes an initial segment ofS.
One can prove the following propositions:

(56)10 x∈ InitSegm(S,a) iff x∈ LowerCone{a} andx∈ S.

(57) a∈ InitSegm(S,b) iff a < b anda∈ S.

(60)11 InitSegm( /0A,a) = /0.

(61) InitSegm(S,a)⊆ S.

(62) a /∈ InitSegm(S,a).

(64)12 If a1 < a2, then InitSegm(S,a1)⊆ InitSegm(S,a2).

(65) If S⊆ T, then InitSegm(S,a)⊆ InitSegm(T,a).

(67)13 I ⊆ S.

(68) S 6= /0 iff S is not an initial segment ofS.

(69) If S 6= /0 or T 6= /0 and ifS is an initial segment ofT, thenT is not an initial segment ofS.

(70) If a1 < a2 anda1 ∈ Sanda2 ∈ T andT is an initial segment ofS, thena1 ∈ T.

(71) If a∈ SandS is an initial segment ofT, then InitSegm(S,a) = InitSegm(T,a).

(72) SupposeS⊆ T and the internal relation ofA well ordersT and for alla1, a2 such that
a2 ∈ Sanda1 < a2 holdsa1 ∈ S. ThenS= T or S is an initial segment ofT.

(73) SupposeS⊆ T and the internal relation ofA well ordersT and for alla1, a2 such that
a2 ∈ Sanda1 ∈ T anda1 < a2 holdsa1 ∈ S. ThenS= T or S is an initial segment ofT.

In the sequelf denotes a choice function of 2the carrier ofA
+ .

Let us considerA and let us considerf . A chain ofA is called a chain off if:

(Def. 16) It 6= /0 and the internal relation ofA well orders it and for everya such thata ∈ it holds
f (UpperConeInitSegm(it,a)) = a.

In the sequelf1, f2, f3 are chains off .
One can prove the following propositions:

10 The propositions (53)–(55) have been removed.
11 The propositions (58) and (59) have been removed.
12 The proposition (63) has been removed.
13 The proposition (66) has been removed.
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(78)14 { f (the carrier ofA)} is a chain off .

(79) f (the carrier ofA) ∈ f1.

(80) If a∈ f1 andb = f (the carrier ofA), thenb≤ a.

(81) If a = f (the carrier ofA), then InitSegm( f1,a) = /0.

(82) f2 meetsf3.

(83) If f2 6= f3, then f2 is an initial segment off3 iff f3 is not an initial segment off2.

(84) f2 ⊂ f3 iff f2 is an initial segment off3.

Let us considerA and let us considerf . The functor Chainsf yields a set and is defined by:

(Def. 17) x∈ Chainsf iff x is a chain off .

Let us considerA and let us considerf . Note that Chainsf is non empty.
Next we state a number of propositions:

(87)15 ⋃
Chainsf 6= /0.

(88) If f1 6=
⋃

Chainsf andS=
⋃

Chainsf , then f1 is an initial segment ofS.

(89)
⋃

Chainsf is a chain off .

(91)16 There existsX such thatX 6= /0 andX ∈Y iff
⋃

Y 6= /0.

(92) P is strongly connected inX iff P is reflexive inX and connected inX.

(93) If P is reflexive inX andY ⊆ X, thenP is reflexive inY.

(94) If P is antisymmetric inX andY ⊆ X, thenP is antisymmetric inY.

(95) If P is transitive inX andY ⊆ X, thenP is transitive inY.

(96) If P is strongly connected inX andY ⊆ X, thenP is strongly connected inY.

(97) For every total reflexive binary relationRonX holds fieldR= X.

(98) For every setA and for every binary relationR on A such thatR is reflexive inA holds
domR= A and fieldR= A.
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[2] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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