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Summary. In the beginning of this article we define the choice function of a non-
empty set family that does not contdiras introduced in [6, pages 88—89]. We define order
of a set as a relation being reflexive, antisymmetric and transitive in the set, partially ordered
set as structure non-empty set and order of the set, chains, lower and upper cone of a subset,
initial segments of element and subset of partially ordered set. Some theorems that belong
rather to[[5] or[[12] are proved.

MML Identifier: ORDERS_1.

WWW: http://mizar.org/JFM/Voll/orders_1.html

The articles|[8], 5], [9], [10], [12], [[2], [11],[[4], 8], [1], andL[7] provide the notation and termi-
nology for this paper.

We adopt the following conventiorX, Y denote sets, y, zdenote sets, ankll denotes a non
empty set.

Let us consideM. Let us assume thét¢ M. A function fromM into [ JM is said to be a choice
function ofM if:

(Def. 1) For everyX such thaX € M holds i X) € X.

In the sequeD, D; denote non empty sets.
Let D be a set. The functor2yields a set and is defined by:

(Def.2) 2 =20\ {0}.

Let us consideD. One can verify that2is non empty.
Next we state four propositions:

@f] o0¢2R.

(5) D1 CDiff Dy €28.

(6) Diis asubsetob iff D; € 2°.
(7) De2D.

In the sequeP is a binary relation.
Let us consideK. An order inX is a total reflexive antisymmetric transitive binary relation on

In the sequeD is an order inX.
We now state three propositions:

(12E] If x e X, then(x, x) € O.

1 The propositions (1)—(3) have been removed.
2 The propositions (8)—(11) have been removed.
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(13) Ifxe X andy € X and(x,y) € Oand(y, x) € O, thenx=y.
(14) Ifxe X andy e X andze X and(x, y) € O and(y, z) € O, then(x, z) € O.

We consider relational structures as extensions of 1-sorted structure as systems
( a carrier, an internal relation
where the carrier is a set and the internal relation is a binary relation on the carrier.

Let X be a non empty set and [Btbe a binary relation oX. Observe that{X,R) is non empty.
Let A be a relational structure. We say theits reflexive if and only if:

(Def. 4f| The internal relation oA is reflexive in the carrier oA.
We say thad is transitive if and only if:
(Def. 5) The internal relation oA is transitive in the carrier oA.
We say tha# is antisymmetric if and only if:
(Def. 6) The internal relation oA is antisymmetric in the carrier &.

Let us note that there exists a relational structure which is non empty, reflexive, transitive, anti-
symmetric, and strict.
A poset is a reflexive transitive antisymmetric relational structure.

Let A be a poset. Note that the internal relation/fofs total, reflexive, antisymmetric, and
transitive.

Let X be a set and D be an order irK. One can verify thatX, O) is reflexive, transitive, and
antisymmetric.

We use the following conventiorA denotes a non empty posat,a;, a, b, c denote elements
of A, andS T denote subsets &t

Let A be a relational structure and l&t, a, be elements of. The predicate < a; is defined
by:
(Def. 9 (a1, az) € the internal relation oA.

We introduceay > a; as a synonym ody < ay.

Let A be a relational structure and l&t, a, be elements of\. The predicate; < a; is defined
as follows:

(Def. 10) a; < ay anda; # a.

Let us note that the predicatg < ay is irreflexive. We introduce, > a; as a synonym odi; < ap.
We now state the proposition

(24E] For every reflexive non empty relational structérend for every elemerd of A holds
a<a

Let A be a reflexive non empty relational structure andajgta, be elements of.. Let us note
that the predicate; < ay is reflexive.

One can prove the following propositions:

(25) For every antisymmetric relational structuxeand for all elementsy, a, of A such that
a; < ay anday < a1 holdsa; = ay.

(26) For every transitive relational structubeand for all elementsy, ap, ag of A such that
a1 < ap anday < ag holdsa; < as.

(ZSE] For every antisymmetric relational structuxand for all elementa;, a; of Aholdsa; £ a,
oray £ a.

3 The definition (Def. 3) has been removed.

4 The definitions (Def. 7) and (Def. 8) have been removed.
5 The propositions (15)-(23) have been removed.

6 The proposition (27) has been removed.
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(29) LetA be a transitive antisymmetric relational structure anday, az be elements of. If
a; < ap anday < ag, thena; < as.

(30) For every antisymmetric relational structuxeand for all elementsy, a, of A such that
a1 < ap holdsay £ a;.

(32 Let A be a transitive antisymmetric relational structure andhy, az be elements oA. If
a1 < ap anday < agora; < ap anday < ag, thena; < ag.

Let A be a relational structure and letbe a subset 0A. We say that; is strongly connected if
and only if:

(Def. 11) The internal relation ok is strongly connected ih.

Let A be a relational structure. Note th#t is strongly connected.

Let A be a relational structure. Note that there exists a subsktdfich is strongly connected.
Let A be a relational structure. A chain Afis a strongly connected subset/f

The following propositions are true:

(35 For every non empty reflexive relational structéend for every elemerd of A holds
{a} is a chain ofA.

(36) LetA be a non empty reflexive relational structure aagda, be elements oA. Then
{a1,az} isachain ofAif and only ifay < ay oray < a.

(837) LetAbe arelational structur€ be a chain ofA, andShe a subset dA. If SC C, thenSis
a chain ofA.

(38) LetA be a reflexive relational structure aag, a, be elements oA. Then there exists a
chainC of Asuch thaty € Canday e Cifandonlyifa; <ayora; < a;.

(39) LetA be a reflexive antisymmetric relational structure anda, be elements oA. Then
there exists a chai@ of A such that; € Candaz € Cifand only ifay < ap iff ap £ a3.

(40) LetA be a relational structure aridbe a subset of. Suppose the internal relation Af
well ordersT. ThenT is a chain ofA.

Let us consideA and let us consideB. The functor UpperCor@yields a subset ofA and is
defined by:

(Def. 12) UpperConB={a1: Ay, (2 €S = ax<a)}.

Let us consideA and let us conside®. The functor LowerCon8 yielding a subset oA is
defined as follows:

(Def. 13) LowerCon&={a1: \,, (2 €S = a1 <ap)}.
One can prove the following propositions:
(43f] UpperConéna) = the carrier ofA.
(44) UpperCongQp) = 0.
(45) LowerConéda) = the carrier ofA.
(46) LowerConéQa) = 0.
(47) Ifac S thena¢ UpperConé&.
(48) a¢ UpperConéa}.

7 The proposition (31) has been removed.
8 The propositions (33) and (34) have been removed.
9 The propositions (41) and (42) have been removed.
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(49) Ifac S thena¢ LowerCones.
(50) a¢ LowerConda}.
(51) c<aiff a€ UpperConéc}.

(52) a<ciff a€ LowerCongc}.

Let us consideA, let us conside, and let us considea. The functor InitSegr{§,a) yields a
subset ofA and is defined by:

(Def. 14) InitSegniS,a) = LowerConda} NS
Let us consideA and let us consides. A subset ofA is called an initial segment &if:

(Def. 15)()) There exista such thata € Sand it= InitSegn(S a) if S# 0,
(i) it =0, otherwise.

In the sequel denotes an initial segment 8f
One can prove the following propositions:

(56@ x € InitSegm(S, a) iff x € LowerConda} andx € S.

(57) aenitSegnSb) iff a<bandac S

(GOE InitSegn{0a,a) = 0.

(61) InitSegnfS.a) C S

(62) a¢ InitSegn(S a).

(64 If a1 < ap, then InitSegn(iS a;) C InitSegn(S az).

(65) If SCT,then InitSegniS a) C InitSegm(T, a).

671 1cs

(68) S#0iff Sis not an initial segment @

(69) IfS#0orT #0andifSis an initial segment of , thenT is not an initial segment d&.
(70) Ifay <apanda; € Sanday € T andT is an initial segment o8, thena; € T.
(71) Ifa€ SandSis an initial segment of , then InitSegn(S a) = InitSegm(T, a).

(72) Suppos&sC T and the internal relation oh well ordersT and for alla;, a, such that
a; € Sanda; < az holdsa; € S ThenS=T or Sis an initial segment of .

(73) Suppose&s C T and the internal relation o well ordersT and for alla;, a; such that
a; € Sanda; € T anda; < ap holdsa; € S ThenS=T or Sis an initial segment of .

In the sequef denotes a choice function of'g carrier ofA,
Let us consideA and let us considef. A chain ofAis called a chain of if:

(Def. 16) It# 0 and the internal relation oA well orders it and for evera such thata € it holds
f (UpperCone InitSegfit,a)) = a.

In the sequefy, fp, f3 are chains off.
One can prove the following propositions:

10 The propositions (53)—(55) have been removed.

11 The propositions (58) and (59) have been removed.
12 The proposition (63) has been removed.

13 The proposition (66) has been removed.
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(78@ {f(the carrier ofA)} is a chain off.

(79) f(the carrier ofd) € f;.

(80) Ifac f; andb= f(the carrier ofA), thenb < a.

(81) If a= f(the carrier ofA), then InitSegnf;,a) = 0.

(82) f, meetsfs.

(83) If fo #£ f3, thenf, is an initial segment ofs iff f3is not an initial segment off,.

(84) f, c f3iff fyis aninitial segment ofs.

Let us consideA and let us considef. The functor Chain$ yields a set and is defined by:

(Def. 17) x e Chainsf iff xis a chain off.

Let us consideA and let us considef. Note that Chain$ is non empty.
Next we state a number of propositions:

(870 UChainsf # 0.

(88) If f1 # |JChainsf andS= JChainsf, thenf; is an initial segment o.

(89) (JChainsf is a chain off.

(9119 There existx such thaX # 0 andX €Y iff JY # 0.

(92) Pis strongly connected iK iff P is reflexive inX and connected iX.

(93) If Pisreflexive inX andY C X, thenP is reflexive inY.

(94) If Pis antisymmetric inrX andY C X, thenP is antisymmetric ir¥.

(95) If Pis transitive inX andY C X, thenP is transitive inY.

(96) If Pis strongly connected iK andY C X, thenP is strongly connected ix.

(97) For every total reflexive binary relatiédthon X holds fieldR = X.

(98) For every seA and for every binary relatioR on A such thatR is reflexive inA holds

(1

(2]

(3]

(4]
(5]

6]
(7]

domR = A and fieldR = A.
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