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The articles [6], [4], [7], [8], [1], [2], [5], and [3] provide the notation and terminology for this
paper.

In this paperB, C, D are categories.
Let X, Y, Z be non empty sets and letf be a partial function from[:X, Y :] to Z. Thenx f is a

partial function from[:Y, X :] to Z.
Next we state the proposition

(1) 〈the objects ofC, the morphisms ofC, the cod-map ofC, the dom-map ofC, x(the com-
position ofC),the id-map ofC〉 is a category.

Let us considerC. The functorCop yielding a strict category is defined by the condition (Def. 1).

(Def. 1) Cop = 〈the objects ofC, the morphisms ofC, the cod-map ofC, the dom-map ofC, x(the
composition ofC),the id-map ofC〉.

We now state the proposition

(2) (Cop)op = the category structure ofC.

Let us considerC and letc be an object ofC. The functorcop yielding an object ofCop is defined
by:

(Def. 2) cop = c.

Let us considerC and letc be an object ofCop. The functoropc yields an object ofC and is
defined as follows:

(Def. 3) opc = cop.

The following propositions are true:

(3) For every objectc of C holds(cop)op = c.

(4) For every objectc of C holdsop(cop) = c.

(5) For every objectc of Cop holds(opc)op = c.
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Let us considerC and let f be a morphism ofC. The functorf op yields a morphism ofCop and
is defined as follows:

(Def. 4) f op = f .

Let us considerC and let f be a morphism ofCop. The functorop f yields a morphism ofC and
is defined by:

(Def. 5) op f = f op.

One can prove the following propositions:

(6) For every morphismf of C holds( f op)op = f .

(7) For every morphismf of C holdsop( f op) = f .

(8) For every morphismf of Cop holds(op f )op = f .

(9) For every morphismf of C holds dom( f op) = cod f and cod( f op) = dom f .

(10) For every morphismf of Cop holds domop f = cod f and codop f = dom f .

(11) For every morphismf of C holds(dom f )op = cod( f op) and(cod f )op = dom( f op).

(12) For every morphismf of Cop holdsopdom f = codop f andopcod f = domop f .

(13) For all objectsa, b of C and for every morphismf of C holds f ∈ hom(a,b) iff f op ∈
hom(bop,aop).

(14) For all objectsa, b of Cop and for every morphismf of Cop holds f ∈ hom(a,b) iff op f ∈
hom(opb,opa).

(15) Leta, b be objects ofC and f be a morphism froma to b. If hom(a,b) 6= /0, then f op is a
morphism frombop to aop.

(16) Leta, b be objects ofCop and f be a morphism froma to b. If hom(a,b) 6= /0, thenop f is a
morphism fromopb to opa.

(17) For all morphismsf , g of C such that domg = cod f holds(g· f )op = f op ·gop.

(18) For all morphismsf , g of C such that cod(gop) = dom( f op) holds(g· f )op = f op ·gop.

(19) For all morphismsf , g of Cop such that domg = cod f holdsop(g· f ) = op f · opg.

(20) Leta, b, c be objects ofC, f be a morphism froma to b, andg be a morphism fromb to c.
If hom(a,b) 6= /0 and hom(b,c) 6= /0, then(g· f )op = f op ·gop.

(21) For every objecta of C holds(ida)op = idaop.

(22) For every objecta of Cop holdsop(ida) = idopa.

(23) For every morphismf of C holds f op is monic iff f is epi.

(24) For every morphismf of C holds f op is epi iff f is monic.

(25) For every morphismf of C holds f op is invertible iff f is invertible.

(26) For every objectc of C holdsc is initial iff cop is terminal.

(27) For every objectc of C holdscop is initial iff c is terminal.

Let us considerC, B and letSbe a function from the morphisms ofCop into the morphisms of
B. The functor∗Syielding a function from the morphisms ofC into the morphisms ofB is defined
by:

(Def. 6) For every morphismf of C holds(∗S)( f ) = S( f op).
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We now state three propositions:

(28) LetS be a function from the morphisms ofCop into the morphisms ofB and f be a mor-
phism ofCop. Then(∗S)(op f ) = S( f ).

(29) For every functorS from Cop to B and for every objectc of C holds (Obj∗S)(c) =
(ObjS)(cop).

(30) For every functorS from Cop to B and for every objectc of Cop holds (Obj∗S)(opc) =
(ObjS)(c).

Let us considerC, D. A function from the morphisms ofC into the morphisms ofD is said to
be a contravariant functor fromC into D if it satisfies the conditions (Def. 7).

(Def. 7)(i) For every objectc of C there exists an objectd of D such that it(idc) = idd,

(ii) for every morphismf of C holds it(iddom f ) = idcodit( f ) and it(idcod f ) = iddomit( f ), and

(iii) for all morphisms f , g of C such that domg = cod f holds it(g· f ) = it( f ) · it(g).

We now state several propositions:

(31) LetSbe a contravariant functor fromC into D, c be an object ofC, andd be an object of
D. If S(idc) = idd, then(ObjS)(c) = d.

(32) For every contravariant functorS from C into D and for every objectc of C holdsS(idc) =
id(ObjS)(c).

(33) For every contravariant functorS from C into D and for every morphismf of C holds
(ObjS)(dom f ) = codS( f ) and(ObjS)(cod f ) = domS( f ).

(34) Let S be a contravariant functor fromC into D and f , g be morphisms ofC. If domg =
cod f , then domS( f ) = codS(g).

(35) For every functorS from Cop to B holds∗S is a contravariant functor fromC into B.

(36) LetS1 be a contravariant functor fromC into B andS2 be a contravariant functor fromB
into D. ThenS2 ·S1 is a functor fromC to D.

(37) For every contravariant functorS from Cop into B and for every objectc of C holds
(Obj∗S)(c) = (ObjS)(cop).

(38) For every contravariant functorS from Cop into B and for every objectc of Cop holds
(Obj∗S)(opc) = (ObjS)(c).

(39) For every contravariant functorS from Cop into B holds∗S is a functor fromC to B.

Let us considerC, B and letSbe a function from the morphisms ofC into the morphisms ofB.
The functor∗Syields a function from the morphisms ofCop into the morphisms ofB and is defined
by:

(Def. 8) For every morphismf of Cop holds(∗S)( f ) = S(op f ).

The functorS yields a function from the morphisms ofC into the morphisms ofBop and is defined
by:

(Def. 9) For every morphismf of C holdsS( f ) = S( f )op.

One can prove the following propositions:

(40) LetSbe a function from the morphisms ofC into the morphisms ofB and f be a morphism
of C. Then(∗S)( f op) = S( f ).

(41) For every functorS from C to B and for every objectc of Cop holds (Obj∗S)(c) =
(ObjS)(opc).
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(42) For every functorS from C to B and for every objectc of C holds (Obj∗S)(cop) =
(ObjS)(c).

(43) For every functorSfromC to B and for every objectc of C holds(Obj S)(c) = (ObjS)(c)op.

(44) For every contravariant functorS from C into B and for every objectc of Cop holds
(Obj∗S)(c) = (ObjS)(opc).

(45) For every contravariant functorS from C into B and for every objectc of C holds
(Obj∗S)(cop) = (ObjS)(c).

(46) For every contravariant functorS from C into B and for every objectc of C holds
(Obj S)(c) = (ObjS)(c)op.

(47) LetF be a function from the morphisms ofC into the morphisms ofD and f be a morphism
of C. Then∗F ( f op) = F( f )op.

(48) For every functionS from the morphisms ofC into the morphisms ofD holds∗(∗S) = S.

(49) For every functionS from the morphisms ofCop into the morphisms ofD holds∗(∗S) = S.

(50) For every functionS from the morphisms ofC into the morphisms ofD holds ∗S = ∗S.

(51) LetD be a strict category andSbe a function from the morphisms ofC into the morphisms
of D. Then S = S.

(52) LetC be a strict category andSbe a function from the morphisms ofC into the morphisms
of D. Then∗(∗S) = S.

(53) LetSbe a function from the morphisms ofC into the morphisms ofB andT be a function
from the morphisms ofB into the morphisms ofD. Then∗(T ·S) = T · ∗S.

(54) LetSbe a function from the morphisms ofC into the morphisms ofB andT be a function
from the morphisms ofB into the morphisms ofD. ThenT ·S = T ·S.

(55) LetF1 be a function from the morphisms ofC into the morphisms ofB andF2 be a function
from the morphisms ofB into the morphisms ofD. Then∗(F2 ·F1) = ∗F2 · ∗F1 .

(56) For every contravariant functorS from C into D holds∗S is a functor fromCop to D.

(57) For every contravariant functorS from C into D holdsS is a functor fromC to Dop.

(58) For every functorS from C to D holds∗S is a contravariant functor fromCop into D.

(59) For every functorS from C to D holdsS is a contravariant functor fromC into Dop.

(60) Let S1 be a contravariant functor fromC into B andS2 be a functor fromB to D. Then
S2 ·S1 is a contravariant functor fromC into D.

(61) Let S1 be a functor fromC to B andS2 be a contravariant functor fromB into D. Then
S2 ·S1 is a contravariant functor fromC into D.

(62) For every functorF from C to D and for every objectc of C holds (Obj ∗F )(cop) =
(ObjF)(c)op.

(63) For every contravariant functorF from C into D and for every objectc of C holds
(Obj ∗F )(cop) = (ObjF)(c)op.

(64) For every functorF from C to D holds ∗F is a functor fromCop to Dop.

(65) For every contravariant functorF from C into D holds ∗F is a contravariant functor from
Cop into Dop.
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Let us considerC. The functor idop(C) yields a contravariant functor fromC into Cop and is
defined by:

(Def. 10) idop(C) = idC .

The functoropid(C) yielding a contravariant functor fromCop into C is defined by:

(Def. 11) opid(C) = ∗(idC).

The following propositions are true:

(66) For every morphismf of C holds idop(C)( f ) = f op.

(67) For every objectc of C holds(Obj idop(C))(c) = cop.

(68) For every morphismf of Cop holds(opid(C))( f ) = op f .

(69) For every objectc of Cop holds(Objopid(C))(c) = opc.

(70) For every functionS from the morphisms ofC into the morphisms ofD holds ∗S= S·
opid(C) andS = idop(D) ·S.
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