Opposite Categories and Contravariant Functors

Czesław Byliński Warsaw University Białystok

Summary. The opposite category of a category, contravariant functors and duality functors are defined.

MML Identifier: OPPCAT_1.

WWW: http://mizar.org/JFM/Vol3/oppcat_1.html

The articles [6], [4], [7], [8], [1], [2], [5], and [3] provide the notation and terminology for this paper.

In this paper B, C, D are categories.

Let X, Y, Z be non empty sets and let f be a partial function from [:X, Y:] to Z. Then f is a partial function from [:Y, X:] to Z.

Next we state the proposition

(1) \langle the objects of C, the morphisms of C, the cod-map of C, the dom-map of C, \langle (the composition of C), the id-map of C \rangle is a category.

Let us consider C. The functor C^{op} yielding a strict category is defined by the condition (Def. 1).

(Def. 1) $C^{op} = \langle \text{the objects of } C, \text{ the morphisms of } C, \text{ the cod-map of } C, \text{ the dom-map of } C, \land \text{ (the composition of } C), \text{ the id-map of } C \rangle$.

We now state the proposition

(2) $(C^{op})^{op}$ = the category structure of C.

Let us consider C and let c be an object of C. The functor c^{op} yielding an object of C^{op} is defined by:

(Def. 2)
$$c^{op} = c$$
.

Let us consider C and let c be an object of C^{op} . The functor ^{op}c yields an object of C and is defined as follows:

(Def. 3)
$$^{\text{op}}c = c^{\text{op}}$$
.

The following propositions are true:

- (3) For every object c of C holds $(c^{op})^{op} = c$.
- (4) For every object c of C holds $^{op}(c^{op}) = c$.
- (5) For every object c of C^{op} holds $({}^{op}c)^{op} = c$.

Let us consider C and let f be a morphism of C. The functor f^{op} yields a morphism of C^{op} and is defined as follows:

(Def. 4)
$$f^{op} = f$$
.

Let us consider C and let f be a morphism of C^{op} . The functor ^{op}f yields a morphism of C and is defined by:

(Def. 5)
$$^{\text{op}} f = f^{\text{op}}$$
.

One can prove the following propositions:

- (6) For every morphism f of C holds $(f^{op})^{op} = f$.
- (7) For every morphism f of C holds $^{op}(f^{op}) = f$.
- (8) For every morphism f of C^{op} holds $({}^{op}f)^{op} = f$.
- (9) For every morphism f of C holds $dom(f^{op}) = cod f$ and $cod(f^{op}) = dom f$.
- (10) For every morphism f of C^{op} holds $dom^{op} f = cod f$ and $cod^{op} f = dom f$.
- (11) For every morphism f of C holds $(\operatorname{dom} f)^{\operatorname{op}} = \operatorname{cod}(f^{\operatorname{op}})$ and $(\operatorname{cod} f)^{\operatorname{op}} = \operatorname{dom}(f^{\operatorname{op}})$.
- (12) For every morphism f of C^{op} holds op dom $f = \operatorname{cod}^{op} f$ and op cod $f = \operatorname{dom}^{op} f$.
- (13) For all objects a, b of C and for every morphism f of C holds $f \in \text{hom}(a,b)$ iff $f^{\text{op}} \in \text{hom}(b^{\text{op}}, a^{\text{op}})$.
- (14) For all objects a, b of C^{op} and for every morphism f of C^{op} holds $f \in hom(a,b)$ iff $^{op}f \in hom(^{op}b,^{op}a)$.
- (15) Let a, b be objects of C and f be a morphism from a to b. If $hom(a,b) \neq \emptyset$, then f^{op} is a morphism from b^{op} to a^{op} .
- (16) Let a, b be objects of C^{op} and f be a morphism from a to b. If $hom(a,b) \neq \emptyset$, then ^{op}f is a morphism from ^{op}b to ^{op}a .
- (17) For all morphisms f, g of C such that dom g = cod f holds $(g \cdot f)^{op} = f^{op} \cdot g^{op}$.
- (18) For all morphisms f, g of C such that $cod(g^{op}) = dom(f^{op})$ holds $(g \cdot f)^{op} = f^{op} \cdot g^{op}$.
- (19) For all morphisms f, g of C^{op} such that dom g = cod f holds $c^{op}(g \cdot f) = c^{op} f \cdot c^{op} g$.
- (20) Let a, b, c be objects of C, f be a morphism from a to b, and g be a morphism from b to c. If $hom(a,b) \neq \emptyset$ and $hom(b,c) \neq \emptyset$, then $(g \cdot f)^{op} = f^{op} \cdot g^{op}$.
- (21) For every object a of C holds $(id_a)^{op} = id_{a^{op}}$.
- (22) For every object a of C^{op} holds $^{op}(id_a) = id_{op_a}$.
- (23) For every morphism f of C holds f^{op} is monic iff f is epi.
- (24) For every morphism f of C holds f^{op} is epi iff f is monic.
- (25) For every morphism f of C holds f^{op} is invertible iff f is invertible.
- (26) For every object c of C holds c is initial iff c^{op} is terminal.
- (27) For every object c of C holds c^{op} is initial iff c is terminal.

Let us consider C, B and let S be a function from the morphisms of C^{op} into the morphisms of B. The functor ${}_*S$ yielding a function from the morphisms of C into the morphisms of B is defined by:

(Def. 6) For every morphism f of C holds $(*S)(f) = S(f^{op})$.

We now state three propositions:

- (28) Let S be a function from the morphisms of C^{op} into the morphisms of B and f be a morphism of C^{op} . Then $(*S)(^{op}f) = S(f)$.
- (29) For every functor S from C^{op} to B and for every object c of C holds $(\mathrm{Obj}_*S)(c) = (\mathrm{Obj}_*S)(c^{op})$.
- (30) For every functor S from C^{op} to B and for every object c of C^{op} holds $(Obj_*S)(^{op}c) = (Obj_*S)(c)$.

Let us consider C, D. A function from the morphisms of C into the morphisms of D is said to be a contravariant functor from C into D if it satisfies the conditions (Def. 7).

- (Def. 7)(i) For every object c of C there exists an object d of D such that $it(id_c) = id_d$,
 - (ii) for every morphism f of C holds it(id_{dom f}) = id_{cod it(f}) and it(id_{cod f}) = id_{dom it(f), and}
 - (iii) for all morphisms f, g of C such that dom g = cod f holds $it(g \cdot f) = it(f) \cdot it(g)$.

We now state several propositions:

- (31) Let S be a contravariant functor from C into D, c be an object of C, and d be an object of D. If $S(id_c) = id_d$, then (Obj S)(c) = d.
- (32) For every contravariant functor S from C into D and for every object c of C holds $S(\mathrm{id}_c) = \mathrm{id}_{(\mathrm{Obj}S)(c)}$.
- (33) For every contravariant functor S from C into D and for every morphism f of C holds $(\operatorname{Obj} S)(\operatorname{dom} f) = \operatorname{cod} S(f)$ and $(\operatorname{Obj} S)(\operatorname{cod} f) = \operatorname{dom} S(f)$.
- (34) Let S be a contravariant functor from C into D and f, g be morphisms of C. If dom g = cod f, then dom S(f) = cod S(g).
- (35) For every functor S from C^{op} to B holds *S is a contravariant functor from C into B.
- (36) Let S_1 be a contravariant functor from C into B and S_2 be a contravariant functor from B into D. Then $S_2 \cdot S_1$ is a functor from C to D.
- (37) For every contravariant functor S from C^{op} into B and for every object c of C holds $(\mathrm{Obj}_*S)(c)=(\mathrm{Obj}S)(c^{op}).$
- (38) For every contravariant functor S from C^{op} into B and for every object c of C^{op} holds $(\mathrm{Obj}_*S)(^{op}c) = (\mathrm{Obj}S)(c)$.
- (39) For every contravariant functor S from C^{op} into B holds *S is a functor from C to B.

Let us consider C, B and let S be a function from the morphisms of C into the morphisms of B. The functor S yields a function from the morphisms of S into the morphisms of S and is defined by:

(Def. 8) For every morphism f of C^{op} holds $(*S)(f) = S(^{op}f)$.

The functor \overline{S} yields a function from the morphisms of C into the morphisms of B^{op} and is defined by:

(Def. 9) For every morphism f of C holds $\overline{S}(f) = S(f)^{op}$.

One can prove the following propositions:

- (40) Let *S* be a function from the morphisms of *C* into the morphisms of *B* and *f* be a morphism of *C*. Then $(*S)(f^{op}) = S(f)$.
- (41) For every functor S from C to B and for every object c of C^{op} holds $(Obj^*S)(c) = (ObjS)(^{op}c)$.

- (42) For every functor S from C to B and for every object c of C holds $(\text{Obj}^*S)(c^{\text{op}}) = (\text{Obj}S)(c)$.
- (43) For every functor *S* from *C* to *B* and for every object *c* of *C* holds $(\text{Obj } \overline{S})(c) = (\text{Obj } S)(c)^{\text{op}}$.
- (44) For every contravariant functor S from C into B and for every object c of C^{op} holds $(\mathrm{Obj}^*S)(c) = (\mathrm{Obj}S)(^{op}c)$.
- (45) For every contravariant functor S from C into B and for every object c of C holds $(\mathrm{Obj}^*S)(c^{\mathrm{op}}) = (\mathrm{Obj}S)(c)$.
- (46) For every contravariant functor S from C into B and for every object c of C holds $(\text{Obj }\overline{S})(c) = (\text{Obj }S)(c)^{\text{op}}$.
- (47) Let F be a function from the morphisms of C into the morphisms of D and f be a morphism of C. Then $\overline{F}(f^{\text{op}}) = F(f)^{\text{op}}$.
- (48) For every function S from the morphisms of C into the morphisms of D holds *(*S) = S.
- (49) For every function S from the morphisms of C^{op} into the morphisms of D holds (*s) = S.
- (50) For every function S from the morphisms of C into the morphisms of D holds $\overline{S} = \overline{S}$.
- (51) Let D be a strict category and S be a function from the morphisms of C into the morphisms of D. Then $\overline{\overline{S}} = S$.
- (52) Let *C* be a strict category and *S* be a function from the morphisms of *C* into the morphisms of *D*. Then $^*(^*S) = S$.
- (53) Let *S* be a function from the morphisms of *C* into the morphisms of *B* and *T* be a function from the morphisms of *B* into the morphisms of *D*. Then $^*(T \cdot S) = T \cdot ^*S$.
- (54) Let *S* be a function from the morphisms of *C* into the morphisms of *B* and *T* be a function from the morphisms of *B* into the morphisms of *D*. Then $\overline{T \cdot S} = \overline{T} \cdot S$.
- (55) Let F_1 be a function from the morphisms of C into the morphisms of B and F_2 be a function from the morphisms of B into the morphisms of D. Then $\overline{{}^*(F_2 \cdot F_1)} = \overline{{}^*F_2} \cdot \overline{{}^*F_1}$.
- (56) For every contravariant functor S from C into D holds *S is a functor from C^{op} to D.
- (57) For every contravariant functor S from C into D holds \overline{S} is a functor from C to D^{op} .
- (58) For every functor S from C to D holds *S is a contravariant functor from C^{op} into D.
- (59) For every functor S from C to D holds \overline{S} is a contravariant functor from C into D^{op} .
- (60) Let S_1 be a contravariant functor from C into B and S_2 be a functor from B to D. Then $S_2 \cdot S_1$ is a contravariant functor from C into D.
- (61) Let S_1 be a functor from C to B and S_2 be a contravariant functor from B into D. Then $S_2 \cdot S_1$ is a contravariant functor from C into D.
- (62) For every functor F from C to D and for every object c of C holds $(\text{Obj }\overline{*F})(c^{\text{op}}) = (\text{Obj }F)(c)^{\text{op}}$.
- (63) For every contravariant functor F from C into D and for every object c of C holds $(\text{Obj} \ \overline{^*F})(c^{\text{op}}) = (\text{Obj} F)(c)^{\text{op}}$.
- (64) For every functor F from C to D holds \overline{F} is a functor from C^{op} to D^{op} .
- (65) For every contravariant functor F from C into D holds \overline{F} is a contravariant functor from C^{op} into D^{op} .

Let us consider C. The functor $id^{op}(C)$ yields a contravariant functor from C into C^{op} and is defined by:

(Def. 10)
$$id^{op}(C) = \overline{id_C}$$
.

The functor $^{\text{op}}\text{id}(C)$ yielding a contravariant functor from C^{op} into C is defined by:

(Def. 11)
$$^{\text{op}}id(C) = *(id_C).$$

The following propositions are true:

- (66) For every morphism f of C holds $id^{op}(C)(f) = f^{op}$.
- (67) For every object c of C holds $(Objid^{op}(C))(c) = c^{op}$.
- (68) For every morphism f of C^{op} holds $({}^{op}id(C))(f) = {}^{op}f$.
- (69) For every object c of C^{op} holds $(Obj^{op}id(C))(c) = {}^{op}c$.
- (70) For every function S from the morphisms of C into the morphisms of D holds ${}^*S = S \cdot {}^{\mathrm{op}}\mathrm{id}(C)$ and $\overline{S} = \mathrm{id}^{\mathrm{op}}(D) \cdot S$.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [3] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat_1.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [8] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received February 13, 1991

Published January 2, 2004