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The articles|[B], 4], [[7], [[8], [1], [2], [5], and[IB] provide the notation and terminology for this
paper.

In this papemB, C, D are categories.

Let X, Y, Z be non empty sets and létbe a partial function fronfiX,Y ] to Z. Then~fisa
partial function from:Y, X to Z.

Next we state the proposition

(1) (the objects oZ, the morphisms o€, the cod-map o€, the dom-map o€, .~ (the com-
position ofC),the id-map ofC) is a category.

Let us conside€. The functoiC°P yielding a strict category is defined by the condition (Def. 1).

(Def. 1) C°P = (the objects o, the morphisms of, the cod-map o€, the dom-map o€, ~(the
composition ofC),the id-map ofC).

We now state the proposition
(2) (C°P)oP = the category structure @.

Let us conside€ and letc be an object of. The functorc®® yielding an object o€°P is defined
by:

(Def. 2) cP=c.

Let us conside€ and letc be an object oC°P. The functor®Pc yields an object o and is
defined as follows:

(Def. 3) ©Pc = c°P.
The following propositions are true:
(3) For every object of C holds(c°P)°P = c.
(4) For every object of C holds®P(c°F) =c.
(5) For every object of C°P holds(°Pc)°P = c.
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Let us conside€ and letf be a morphism o€. The functorf°P yields a morphism o€°P and
is defined as follows:

(Def. 4) foP = f.

Let us conside€ and letf be a morphism o€°P. The functorPPf yields a morphism of and
is defined by:

(Def.5) OPf = fOP,
One can prove the following propositions:
(6) For every morphisni of C holds(f°P)°P = f.
(7) For every morphisnf of C holds°P(f°P) = f.
(8) For every morphisni of C°P holds(°Pf)°P = f.
(9) For every morphisni of C holds donf f°P) = codf and codf°P) = domf.
(10) For every morphisni of C°P holds don?Pf = codf and cod?f = domf.
(11) For every morphisnfi of C holds(domf)°P = cod f°P) and(codf)°P = dom(f°P).
(12) For every morphisni of C°P holds°®?domf = cod®?f and®°Pcodf = dom°®Pf.

(13) For all objectsa, b of C and for every morphisnf of C holds f € hom(a,b) iff P ¢
hom(b°P, a%?).

(14) For all objects, b of C°P and for every morphisnfi of C°P holds f € hom(a,b) iff °Pf
hom(°Pb, °Pa).

(15) Leta, b be objects o and f be a morphism frona to b. If hom(a,b) # 0, thenf° is a
morphism fromh°P to a°P.

(16) Leta, b be objects o£°? and f be a morphism fromato b. If hom(a,b) # 0, then®Pf is a
morphism fronmPb to °Pa.

(17) For all morphismd, g of C such that dorg = codf holds(g- f)°P = f°P.gCP.
(18) For all morphism¢, g of C such that co@°?) = dom(f°P) holds(g- f)°P = fP.g°F.
(19) For all morphismd, g of C°? such that dorg = codf holds®?(g- f) = °Pf - °Pg.

(20) Leta, b, c be objects ofC, f be a morphism fronato b, andg be a morphism fronb to c.
If hom(a, b) # 0 and hontb,c) # 0, then(g- f)°° = fOP. g°P.

(21) For every objeca of C holds(ida)°P = idgop.

(22) For every objeca of C° holds®P(id,) = idop,.

(23) For every morphisni of C holds f°P is monic iff f is epi.

(24) For every morphisnfi of C holds f°P is epi iff f is monic.

(25) For every morphisni of C holds f°P is invertible iff f is invertible.
(26) For every objeat of C holdsc is initial iff c°Pis terminal.

(27) For every objeat of C holdsc®P is initial iff cis terminal.

Let us conside€, B and letSbe a function from the morphisms @6fP into the morphisms of
B. The functor,Syielding a function from the morphisms @finto the morphisms oB is defined
by:

(Def. 6) For every morphisnfi of C holds(.S)(f) = S(f°P).
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We now state three propositions:

(28) LetSbe a function from the morphisms 6fP into the morphisms oB and f be a mor-
phism ofC°P. Then(.S)(°Pf) = S(f).

(29) For every functorS from C° to B and for every object of C holds (Obj.S)(c) =
(Obj$)(c*P).

(30) For every functoiS from C°P to B and for every object of C° holds (Obj,S)(°’c) =
(ObjS)(c).

Let us conside€, D. A function from the morphisms o into the morphisms ob is said to
be a contravariant functor fro@ into D if it satisfies the conditions (Def. 7).

(Def. 7)(i) For every object of C there exists an objedtof D such that ifidc) = idq,
(i) for every morphismf of C holds it(idgomf ) = idcogit() @and i(idcodf ) = idgomit(f), and
(iiiy  for all morphismsf, g of C such that dorg = codf holds ifg- f) = it(f)-it(g).

We now state several propositions:

(31) LetSbe a contravariant functor fro@ into D, ¢ be an object o€, andd be an object of
D. If §(id¢) = idg, then(ObjS)(c) =d.

(32) For every contravariant funct&from C into D and for every objeat of C holdsS(id¢) =
id objs)(c)-

(33) For every contravariant funct@ from C into D and for every morphisnf of C holds
(ObjS)(domf) = codS(f) and(ObjS)(codf) = domS(f).

(34) LetShbe a contravariant functor frof into D and f, g be morphisms o€. If domg=
codf, then don$(f) = codS(g).

(35) For every functo&from C°P to B holds, Sis a contravariant functor froi@ into B.

(36) LetS; be a contravariant functor frof into B and S, be a contravariant functor frod
intoD. ThenS - S is a functor fronC to D.

(37) For every contravariant funct@® from C°P into B and for every object of C holds
(Obj..S)(c) = (ObjS)(cP).

(38) For every contravariant funct® from C°P into B and for every object of C°P holds
(Obj..S)(°Pc) = (ObjS)(c).

(39) For every contravariant funct&from C°P into B holds, Sis a functor fromC to B.

Let us conside€, B and letSbe a function from the morphisms Gfinto the morphisms oB.
The functor*Syields a function from the morphisms 6P into the morphisms oB and is defined
by:

(Def. 8) For every morphisnfi of C°P holds(*S)(f) = S(°Pf).

The functorS yields a function from the morphisms 6finto the morphisms oB°P and is defined
by:

(Def. 9) For every morphisnfi of C holds S(f) = S(f)°P.
One can prove the following propositions:

(40) LetSbe a function from the morphisms Gfinto the morphisms dB and f be a morphism
of C. Then(*S)(fP) = §(f).

(41) For every functorS from C to B and for every object of C°P holds (Obj*S)(c) =
(ObjS)(%Pc).
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(42) For every functorS from C to B and for every object of C holds (Obj*S)(c°?) =
(ObjS)(c).

(43) For every functo8from C to B and for every objeat of C holds(Obj S)(c) = (ObjS)(c)°P.

(44) For every contravariant funct@® from C into B and for every object of C° holds
(Obj*S)(c) = (ObjS)(*Pc).

(45) For every contravariant funct@® from C into B and for every object of C holds
(Obj*S)(c*) = (ObjS)(c).

(46) For every contravariant funct@® from C into B and for every object of C holds
(Obj'S)(c) = (ObjS)(c)*.

(47) LetF be afunction from the morphisms Gfinto the morphisms dd andf be a morphism
of C. Then*F (f°P) = F(f)°P.

(48) For every functiors from the morphisms of into the morphisms db holds,(*S) =S
(49) For every functiors from the morphisms oE°F into the morphisms db holds*(,.S) = S
(50) For every functiors from the morphisms of into the morphisms db holds*S = *S.

(51) LetD be astrict category arféibe a function from the morphisms Gfinto the morphisms
of D. ThenS =S

(52) LetC be a strict category aribe a function from the morphisms Gfinto the morphisms
of D. Then*(*S) =S

(53) LetShbe a function from the morphisms Gfinto the morphisms oB andT be a function
from the morphisms oB into the morphisms ob. Then*(T-S) =T -*S.

(54) LetSbe a function from the morphisms 6finto the morphisms oB andT be a function

from the morphisms oB into the morphisms ob. ThenT-S=T -S

(55) LetF; be a function from the morphisms Gfinto the morphisms dB andF, be a function

from the morphisms oB into the morphisms ob. Then*(F,-F;) = *R - *Fy.
(56) For every contravariant funct&from C into D holds*Sis a functor fromC°P to D.
(57) For every contravariant funct&from C into D holds S is a functor fromC to D°P.
(58) For every functoBfrom C to D holds*Sis a contravariant functor froi@°P into D.
(59) For every functoSfrom C to D holds S is a contravariant functor froi@ into D°P.

(60) LetS be a contravariant functor fro@ into B and S be a functor fromB to D. Then
S-S is a contravariant functor frof@ into D.

(61) LetS be a functor fromC to B and S, be a contravariant functor from into D. Then
S-S is a contravariant functor frof@d into D.

(62) For every functoi= from C to D and for every object of C holds (Obj*F)(c°P) =
(ObjF)(c)°P.

(63) For every contravariant functdf from C into D and for every object of C holds
(Obj*F )(c) = (ObjF)(c)°.

(64) For every functoF from C to D holds*F is a functor fromC°P to D°P,

(65) For every contravariant functér from C into D holds*F is a contravariant functor from
C°Pinto DOP,
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Let us conside€. The functor idP(C) yields a contravariant functor fro@ into C°P and is
defined by:

(Def. 10) icPP(C) = idc.
The functor®fid(C) yielding a contravariant functor frof@°? into C is defined by:
(Def. 11) °Pid(C) = *(idc).
The following propositions are true:

(66) For every morphisnf of C holds ic?P(C)(f) = f°P.

(67) For every objeat of C holds(Objid°?(C))(c) = c°P.

(68) For every morphisnfi of C° holds(°Pid(C))(f) = °Pf.

(69) For every objeat of C°P holds(Obj°Pid(C))(c) = °Pc.

(70) For every functiors from the morphisms o€ into the morphisms ob holds*S=S-

°Pid(C) and'S = id°P(D) - S
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